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Abstract
Diagram object detection is the key basis of practical appli-
cations such as textbook question answering. Because the di-
agram mainly consists of simple lines and color blocks, its
visual features are sparser than those of natural images. In ad-
dition, diagrams usually express diverse knowledge, in which
there are many low-frequency object categories in diagrams.
These lead to the fact that traditional data-driven detection
model is not suitable for diagrams. In this work, we propose a
gestalt-perception transformer model for diagram object de-
tection, which is based on an encoder-decoder architecture.
Gestalt perception contains a series of laws to explain hu-
man perception, that the human visual system tends to per-
ceive patches in an image that are similar, close or connected
without abrupt directional changes as a perceptual whole ob-
ject. Inspired by these thoughts, we build a gestalt-perception
graph in transformer encoder, which is composed of diagram
patches as nodes and the relationships between patches as
edges. This graph aims to group these patches into objects
via laws of similarity, proximity, and smoothness implied in
these edges, so that the meaningful objects can be effectively
detected. The experimental results demonstrate that the pro-
posed GPTR achieves the best results in the diagram object
detection task. Our model also obtains comparable results
over the competitors in natural image object detection.

1 Introduction
The goal of object detection (Liu et al. 2020; Guo et al. 2021;
Dong et al. 2021) is to accurately locate and classify all ob-
jects in a given image, which is indeed dominated by various
deep neural networks (Pan et al. 2021; Wu et al. 2021; Zhong
et al. 2021; Chen et al. 2021b; Cao et al. 2021; Wang et al.
2021). For this task, it is very important to understand the
detailed and implicit semantic information of images. It also
has great significance in practical applications such as visual
question answering (Yuan et al. 2021), cross-modal retrieval
(Chen et al. 2021a; Diao et al. 2021), etc.

Most existing detectors are designed for natural images of
variant objects, while the research on diagram object detec-
tion is still blank. Diagram is a special kind of image, which
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Figure 1: Efficient diagram object detectors can assist text-
book question answering. Q, A, and C represent question
text, candidate answer, and caption respectively.

usually consists of simple lines and color blocks, and exists
in many fields such as pedagogy and architecture (Hu et al.
2021). Diagram object detection is a key step in many ap-
plications as shown in Figure 1. On this basis, it plays an
important role in smart education and so on. Taking text-
book question answering (Kembhavi et al. 2017; He et al.
2021) as an example, given the diagram and question text,
diagram object detector outputs the locations and categories
of objects in the diagram. And then, these objects interact
with the question text multimodally to facilitate the answer
of the question. However, detectors for natural images can-
not be directly applied to diagram object detection. We adopt
some mainstream detectors to conduct experiments on nat-
ural images and diagrams, respectively. Taking the recent
SAM-DETR (Zhang et al. 2022) model as an example, the
average precision of this model on natural images is as high
as 39%, while the precision on diagrams drops to about 15%.
See Section 4 for more analyses of experimental results. The
reason is that the diagram has two characteristics different
from natural image. On the one hand, the visual features
of diagram are sparser than those of natural image. As
shown in Figure 2 (a), the frequency distribution histograms
are drawn corresponding to the RGB values for all pixels
from the diagrams in AI2D* dataset and the natural images
in MSCOCO (Lin et al. 2014). We can see that the RGB
value distribution of the natural image is more balanced than
that of the diagram, and the distribution of three RGB color
components in the diagram is extremely uneven, which is
concentrated around 255. This phenomenon illustrates the
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Figure 2: Comparative analyses of characteristics between diagram dataset AI2D* and natural image dataset MSCOCO.

presence of a large amount of white in diagrams and the
rest of the color information is scarce. White usually repre-
sents the background, which contains almost useless infor-
mation. Therefore, there are a large number of white back-
grounds in the diagrams, resulting in sparser visual features
and fewer pixels occupied by foreground content compared
with the natural images. On the other hand, the ratio of
low-frequency object categories is larger in the diagram.
In Figure 2 (b), the orange line depicts the long-tail distri-
bution of object category in diagram dataset AI2D*. For
MSCOCO, there is little difference in the frequency of all
object categories. In summary, the existing detectors are not
suitable for the task of diagram object detection.

How can humans efficiently identify the objects? Ac-
cording to the process of human perception (Wagemans
et al. 2012; Pomerantz, Sager, and Stoever 1977), the hu-
man visual system tends to perceive patches in an image
that are similar, close or connected without abrupt direc-
tional changes as a perceptual whole object. For example,
in a jigsaw puzzle, humans consciously splice two patches
with similar colors and close positions into a whole, and the
spliced object has a smooth and continuous contour. Gestalt
perception contains a series of laws to explain human per-
ception, such as laws of similarity, proximity, closeness,
smoothness, symmetry and so on. The diagram is drawn
by experts and the object recognition process conforms to
the gestalt perception theory (Wertheimer 1922; Hörhan and
Eidenberger 2021; Desolneux, Moisan, and Morel 2004).
Among them, similarity, proximity and smoothness laws
play an important role in recognizing objects.

Inspired by this, we propose a Gestalt-Perception
TRansformer model for diagram object detection (GPTR).
GPTR is based on the transformer encoder-decoder archi-
tecture, and the main module is the gestalt-perception graph
named GPG that is constructed during encoding. Gestalt
laws are used as prior knowledge to guide the aggregation
of diagram patches to form reasonable objects, without re-
lying on large amounts of annotations. The way of dividing
the diagram into patches is the same as that of dividing the
image into patches in (Dosovitskiy et al. 2020). Specifically,
GPG is composed of diagram patches as nodes and the rela-
tionships between patches as edges. Node features in GPG
are obtained by three gestalt-visual branches, namely color
branch, position branch and edge branch. Edge weights of
the graph are adaptively learned by the laws of color simi-

larity, position proximity, and contour smoothness. The de-
coder of GPTR decodes the object queries in parallel and
predicts the final location and classification results. Our
main contributions are summarized as follows:

• As far as we know, we put forward the diagram object
detection task for the first time. Due to the problems of
sparser visual features and more low-frequency objects
of diagrams than those of natural images, we propose a
novel gestalt-perception model to complete this task. The
model is based on transformer architecture, and it can
simulate the process of human visual perception to learn
better features for diagram object detection.
• We build a gestalt-perception graph, in which the adap-

tive learning strategy of gestalt-visual branches simulates
humans to combine the diagram patches into more mean-
ingful objects in accordance with the gestalt laws. In ad-
dition, we adopt the multi-scale attention mechanism to
produce better query initialization.
• We conduct experiments on a diagram dataset AI2D* and

a benchmark MSCOCO of natural images to verify the
effectiveness of GPTR. The experimental results show
that our model achieves the best results in the diagram
object detection task, and also obtains comparable results
over the competitors in natural images.

2 Related Work
This section mainly introduces DETR-series detection mod-
els and the gestalt perception theory.

DETR-Series Detection. DETR (Carion et al. 2020) is the
first end-to-end transformer-based detection model, which
effectively removes the need for many hand-designed com-
ponents. Subsequently, there are some improved models.
Deform-DETR (Zhu et al. 2020) designs a deformable atten-
tion module, which attends to a small set of sampling loca-
tions for prominent key elements out of all the feature map
pixels. ConditionDETR (Meng et al. 2021) learns a condi-
tional spatial query from decoder embedding, while DAB-
DETR (Liu et al. 2021) presents a novel query formulation
using dynamic anchor boxes for DETR. SMCA-DETR con-
strains co-attention responses to be high near initially esti-
mated bounding box locations. SAM-DETR interpretes its
cross-attention as a matching and distillation process and
semantically aligns object queries with encoded image fea-
tures to facilitate their matching. The above models adopt
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Figure 3: The overview architecture of our proposed gestalt-perception transformer model (GPTR). At each transformer encoder
layer, we construct gestalt-perception graph to aggregate node features according to different laws. The whole process is stacked
for L layers and the decoder layer is used to decode M object queries in parallel to predict the location and category of objects.

convolutional network, which cannot effectively represent
diagrams because of the sparse visual features.

Gestalt Perception Theory. According to the process of
human perception (Pomerantz, Sager, and Stoever 1977),
characterized by the laws of similarity, proximity, and conti-
nuity, the human visual system tends to perceive objects that
are similar, close or connected without abrupt directional
changes as a perceptual whole. For example, GLGOV (Yan
et al. 2018) is guided by the gestalt laws of perception for
image saliency detection with a bottom-up mechanism. In-
spired by the gestalt laws of feature grouping, we propose a
gestalt-perception model. Similarity, proximity and smooth-
ness laws are considered in our work.

3 The GPTR Model
The overall architecture of GPTR is depicted in Figure 3.
It follows the encoder-decoder transformer and mainly con-
tains three components: 1) the pre-projection module maps
the patch features from different visual branches to the same
dimensional space to initialize GPTR model; 2) the trans-
former encoder is built by gestalt-perception graph, which
aims to model the relationships between the diagram patches
and group these patches into objects via gestalt laws, so that
the meaningful features can be better processed by the detec-
tor; 3) the transformer decoder transforms the object queries
that represented by learnable positional embeddings into an
output embedding and makes the final prediction with a
feed-forward neural network (FFN). GPTR model is opti-
mized with classification loss and box regression loss that
are same as DETR (Carion et al. 2020). These three compo-
nents are detailed in the following subsections.

3.1 Pre-Projection Module
The global features generated by only convolutional back-
bone network can not effectively represent diagrams be-
cause of the sparse visual features of diagrams. In order
to make up for this limitation, we divide the diagram into

local-level patches and let the GPTR model focus on the
details of the diagram. Specifically, given an initial dia-
gram d ∈ RH0×W0×3, we reshape it into a set of patches

dP = {dPi ∈ R
H0√
N

× W0√
N

×3
, i = 1, · · · , N} that is same

as (Dosovitskiy et al. 2020). (H0,W0) is the resolution of
diagram d and 3 means three color channels. N is the to-
tal number of patches in a diagram. Then, the pre-projection
module learns patch features by feeding dP into three differ-
ent gestalt-visual branches. In addition, this module adopts
another MLP layer to project the backbone feature of the
diagram into the d-dimension signed as FS .

Color Branch (CB) maps per patch dPi into a 9-dim
color feature fCB

i , and all the features consist of the feature
set FCB = {fCB

i ∈ R1×9, i = 1, · · · , N}. Specifically,
fCB
i is concatenated by three central moments (Stricker and

Orengo 1995) of each color channel. These three moments
represent mean feature, variance feature, and skewness fea-
ture of color distribution, respectively.

Position Branch (PB) outputs a position feature fPB
i for

each patch, and FPB = {fPB
i ∈ R1×4, i = 1, · · · , N}.

fPB
i is composed of the coordinates of the top left corner
(xi0, yi0) and the bottom right corner (xi1, yi1) of patch dPi .

Edge Branch (EB) represents each patch dPi as the pixel
values of top, bottom, left, and right edges. We use Canny
algorithm (Canny 1986) converting 3-channel patch into 1-
channel contour map. Then, the pixel values of the four
edges of each contour map are concatenated as the edge fea-

ture for per patch. FEB = {fEB
i ∈ R1×(2× W0√

N
+2× H0√

N
)
, i =

1, · · · , N} denotes a set of edge features for each diagram.
We use FEB

(t;b) and FEB
(l;r) to distinguish the top and bottom

edge features from the left and right edge features.
In order to facilitate the construction and updating of the

gestalt-perception graph, the pre-projection module adopts
three kinds of MLP layers mapping low-dimensional visual
features into high-dimensional ones as shown in follows. dc,
dp and de are mapping dimensions for color, position and
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Figure 4: Example of color similarity, position proximity, and contour smoothness. A, B and C in (b) indicate three randomly
sampled patches in the diagram, and the white curve refers to the contour existing in the patch. Ë and é respectively indicate
whether the gestalt law is conformed to.

edge features. || denotes the concatenating operator in (2).

F̂CB = MLPCB(FCB), F̂CB ∈ RN×dc ,

F̂PB = MLPPB(FPB), F̂PB ∈ RN×dp ,
(1)

F̂EB = MLPEB(FEB
(t;b))||MLPEB(FEB

(l;r)),

F̂EB ∈ RN×4×de .
(2)

3.2 Gestalt-Perception Graph in Encoder
According to the process of human perception, the human
visual system tends to perceive similar, close, or connected
patches as a perceptual whole object. As shown by the color
similarity and position proximity in Figure 4 (a), for the
cactus patch and sun patch, because their color features are
quite different, the two patches may not belong to the same
object according to the law of color similarity. The same
green grass patch and cactus patch are consistent with color
similarity, but they are far away in spatial and do not meet
the law of position proximity. Consequently, they can not be-
long to the same object. On the contrary, two different cac-
tus patches that are both green and close to each other can
be easily recognized as the same object. Taking the contour
smoothness in Figure 4 (b) as an example, according to the
left and right edges for each patch, the features of the left
edge of patch B and the right edge of patch A are similar,
which means that the contours in B and A can be connected
into a smooth curve, and they are more likely belong to the
same object. On the contrary, the features of the left edge of
patch B and the right edge of patch C are quite different, that
is, if B and C are spliced into one object, it does not meet the
human perception of the contour smoothness law.

These gestalt laws, as a kind of priori knowledge, guide
human to effectively identify the objects in the diagrams
without relying on a large annotated dataset. Therefore,
gestalt-perception based method can learn good representa-
tions for low-frequency objects. Inspired by this, GPTR de-
signs a gestalt-perception graph (GPG) and it is composed
of diagram patches as nodes and the relationships between
patches as edges. GPG consists of three subgraphs, in other
words, similarity, proximity and smoothness are encoded by
the edges on subgraphs GCB , GPB and GEB , respectively.

Color Similarity. GCB = (NCB , ECB) is a subgraph for
modeling color similarity between patches.NCB = F̂CB ∈

RN×dc indicates N nodes, each node is a dc-dimension
color feature for one patch. ECB ⊆ NCB × NCB repre-
sents the color similarity between nodes. Specifically, given
two node features F̂CB

i and F̂CB
j , the weight of ECB

ij is
given by (3), where sim(·) is a cosine similarity function
and i, j = {1, · · · , N}.

WCB
ij = sim(F̂CB

i , F̂CB
j ). (3)

Position Proximity. In order to measure the proximity
of spatial positions, GPB = (NPB , EPB) is formulated
to learn the positional relation between two patches. Con-
cretely, NPB indicates the nodes set with position feature
F̂PB ∈ RN×dp , and EPB is denoted as position proxim-
ity between each pair of nodes in NPB . The weight of
EPB
ij is shown in (4). The parameter δ is fixed as 0.1 and
i, j = {1, · · · , N}.

WPB
ij = exp(−

√∑dp

t=1(F̂
PB
it − F̂PB

jt )2

δ
). (4)

Contour Smoothness. The law of contour smoothness is
one of the gestalt laws that states humans perceive objects
as continuous in a smooth pattern, which means that ob-
ject usually contains a smooth contour. In order to judge
whether two patches may belong to the same object, GEB

is constructed to measure the feature consistency of the top,
bottom, left and right edges between patches. Specifically,
GEB is defined as GEB = (NEB , EEB).NEB indicates the
nodes with edge features F̂EB ∈ RN×4×de and EEB deter-
mines the possibility of splicing two patches. The weight of
EEB is computed as follows, where i, j = {1, · · · , N} and
F̂EBb
i represents the bottom edge feature of patch dPi .

σ1 = sim(F̂EBb
i , F̂EBt

j );σ2 = sim(F̂EBt
i , F̂EBb

j ), (5)

σ3 = sim(F̂EBl
i , F̂EBr

j );σ4 = sim(F̂EBr
i , F̂EBl

j ), (6)

WEB
ij = max{σ1, σ2, σ3, σ4}. (7)

GPG Grouping with an Assignment Matrix. For aggre-
gating patch features to obtain meaningful object features,
we denote a learned assignment matrix (Ying et al. 2018)
at layer l as S(l) ∈ RNl×Nl+1 , where Nl is the number of
nodes at layer l. It provides a soft assignment of each node

902



at layer l to layer l + 1. Taking GCB as an example, when
l = 0, F̂CB(l−1) in (8) denotes the output of pre-projection
module. The node feature F̂CB(l) at layer l is computed
by (9). The node update method of GPB and GEB is sim-
ilar as that of GCB . GPG concatenates F̂CB(l), F̂PB(l) and
F̂EB(l), where α, β and γ are three learnt adaptive weight
coefficients. Then, a self-attention layer (SA) is applied to
generate the final visual feature FV (l) as shown in (10).

F̃CB(l−1) =WCB(l−1) × F̂CB(l−1), (8)

F̂CB(l) = S(l)> × F̃CB(l−1), (9)

FV (l) = SA(α× F̂CB(l)||β× F̂PB(l)||γ× F̂EB(l)). (10)

GPTR updates the diagram feature of visual enhancement
through cross-attention strategy (CA), then a self-attention
layer (SA) and a feed-forward layer (FFN) are stacked to
form a transformer encoder layer. FS in (11) and (12) indi-
cates the high-level semantic feature extracted from Convo-
lution Neural Network (CNN).

CA(FS , FV (l)) = softmax(FS , FV (l)>)× FV (l), (11)

F
(l)

ENCODER = FFN(SA(CA(FS , FV (l)) + FS)). (12)

3.3 Multi-Scale Visual-Enhanced Decoder
The decoder follows the standard architecture of Condition-
DETR (Meng et al. 2021), transforming M embeddings
using multi-head self-attention and cross-attention mecha-
nisms. Unlike ConditionDETR decoder, which receives zero
set as initial queries, we consider the human visual percep-
tion. When recognizing objects in diagrams, humans follow
the process of visual perception to identity variety of objects
with different scales. Inspired by this, our GPTR designs
a multi-scale attention mechanism named MSA, to acquire
better initial query features.

Firstly, the output of each layer of GCB , GPB and GEB

is taken as the multi-scale visual feature. Taking GCB as
an example, the multi-scale color feature is recorded as
MSCB = [F̂CB(1), · · · , F̂CB(l), · · · , F̂CB(L)]. The score
of color feature SCORECB is computed by a single-layer
MLP as shown in (13), and top-M color feature M̃S

CB
is

selected according to the score. M̃S
PB

and M̃S
EB

are ac-
quired in the same way as M̃S

CB
. The final selected multi-

scale visual feature is written as MSV = M̃S
CB

+ M̃S
PB

+

M̃S
EB

. In (14), GPTR first concatenates the MSV and the
output feature F

(L)

ENCODER of the L-layer encoder, and
then obtains the enhanced features through the self-attention
mechanism SA. [: M ] indicates that the first M features are
selected as the initial query representation QUERY.

SCORECB = softmax(MLP(||Ll=1F̂
CB(l))), (13)

QUERY = SA(MSV ||F (L)

ENCODER)[:M ]. (14)

Loss Function. We follow DETR to find an optimal bi-
partite matching (Kuhn 1955) between the predicted and
ground-truth objects using the Hungarian algorithm, and
then form the loss function for optimizing GPTR model.
Focal loss (Lin et al. 2017) is used for classification and
GIoU loss (Rezatofighi et al. 2019) for box regression, both
of which are the same as DETR.

4 Experiments
4.1 Datasets
In this work, we evalute the baselines and our GPTR model
both on the diagram and the natural image datasets.

AI2D* is composed of diagrams in the original AI2D
dataset (Kembhavi et al. 2016), and the topic is grade school
science. AI2D is mainly used to verify the question and an-
swering task. We annotate it with more fine-grained details,
including the spatial coordinates and category labels of ob-
jects in per diagram. The novel AI2D* dataset contains total
557 object categories and it is divided into a train set with
1,634 diagrams and a test set with 404 diagrams.

MSCOCO (Lin et al. 2014) is a large-scale object detec-
tion dataset with 80 categories. It comprises 118,287 images
for training and 5,000 images for testing.

4.2 Experimental Settings
GPTR Implementation. Our architecture is almost the
same with the DETR-like architecture and contains the
CNN backbone, transformer encoder and transformer de-
coder. The main difference is that we introduce the details
of gestalt-perception graph in transformer encoder. For the
gestalt visual preprocessing, we resize all images of two
datasets to 224×224×3 and each image is divided into 196
patches. The dimension of per patch feature is dc = dp =
de =256. We set 50 and 100 object queries for AI2D* and
MSCOCO datasets, respectively.

Training and Evaluation. The learning rate is initially
set to 10−4 and the AdamW optimizer is used in GPTR.
The weight decay is set to be 10−4 and the dropout rate
in transformer is 0.1. We use the standard COCO evalua-
tion introduced in (Meng et al. 2021), and we also report the
average precision (AP), and the AP scores at 0.50 (AP50),
0.75 (AP75) and for the small (APS), medium (APM), and
large (APL) objects. For fair comparison, we adopt the same
equipment and settings, such as the layer numberL for trans-
former encoder and decoder, and the number of attention
heads H inside the transformer’s attentions, to rerun all the
baseline models for several times, and then record the av-
erage results. All the models are trained and evaluated on
NVIDIA Tesla V100 GPU.

4.3 Performance Comparison
Diagram Object Detection. We conduct this experiment
on the AI2D* dataset and the proposed GPTR achieves the
best results compared with all the competitors. One can find
in Table 1 that DETR with 1,000 training epochs performs
much worse than ConditionDETR with only 100 epochs.
The performance of our GPTR is 1.8% to 4.5% higher than
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Models L H BS Epoch AP AP50 AP75 APS APM APL params
CenterNet (Duan et al. 2019) / / 16 500 8.6 13.2 9.9 10.7 13.4 12.5 50.39M
RetinaNet (Lin et al. 2017) / / 16 100 10.5 16.3 11.4 6.0 12.8 14.9 29.86M
DETR (Carion et al. 2020) 4 4 16 1000 10.5 18.3 11.0 6.6 13.7 13.9 28.93M
ConditionDETR (Meng et al. 2021) 4 4 16 100 11.5 18.5 12.7 10.4 15.1 15.2 29.22M
GPTR(Ours) 4 4 16 100 14.1 23.0 15.6 12.2 18.4 18.9 30.56M
Deform-DETR (Zhu et al. 2020) 6 8 8 100 11.8 16.8 14.2 13.9 15.8 16.6 35.11M
DAB-DETR (Liu et al. 2021) 6 8 8 100 10.8 17.1 12.0 14.9 14.1 14.6 41.55M
SMCA-DETR (Gao et al. 2021) 6 8 8 300 13.8 21.7 15.4 10.5 18.1 18.4 39.66M
SAM-DETR (Zhang et al. 2022) 6 8 8 200 14.6 21.7 16.6 10.9 19.0 18.5 47.08M
AnchorDETR (Wang et al. 2022) 6 8 8 120 15.6 23.5 17.3 14.8 19.4 20.5 32.22M
GPTR(Ours) 6 8 8 120 16.1 24.6 18.4 15.3 21.1 21.5 33.44M

Table 1: The precision (%) comparison on challenging AI2D* dataset for diagram object detection. L, H , and BS represent
the layer number of transformer encoder-decoder, the number of attention heads and batchsize respectively.

Models L H BS Epoch AP AP50 AP75 APS APM APL
CenterNet (Duan et al. 2019) / / 32 100 20.1 39.6 16.6 7.5 22.8 29.1
RetinaNet (Lin et al. 2017) / / 16 100 25.5 42.4 26.2 10.7 27.6 38.0
DETR (Carion et al. 2020) 4 4 16 1000 30.2 49.7 30.6 10.1 31.4 47.2
ConditionDETR (Meng et al. 2021) 4 4 16 50 31.9 52.4 32.6 13.7 34.0 48.7
GPTR(Ours) 4 4 16 50 32.1 52.4 33.2 13.8 34.7 48.8
SMCA-DETR (Gao et al. 2021) 6 8 8 50 28.9 50.3 28.7 9.9 30.7 46.9
SAM-DETR (Zhang et al. 2022) 6 8 8 50 39.0 60.5 40.8 19.7 42.5 58.0
GPTR(Ours) 6 8 8 50 37.2 57.8 38.2 14.0 41.6 54.9
SAM-DETR+GPG 6 8 8 50 39.3 61.5 41.2 19.5 43.3 58.9

Table 2: The precision (%) comparison on benchmark MSCOCO dataset for natural image object detection.

that of ConditionDETR in all AP scores. Compared with
SMCA-DETR and SAM-DETR, GPTR achieves better re-
sults in all AP scores. Concretely, GPTR is 2.3% and 1.5%
higher in AP than SMCA-DETR and SAM-DETR, respec-
tively. Especially for small objects, GPTR has a gain of 4.8%
in APS than that of SMCA-DETR. In addition, the parame-
ters of SAM-DETR and SMCA-DETR are much more than
our GPTR model, and the training time of GPTR is only
less than half that of SMCA-DETR. Also, our GPTR out-
performs the recently proposed AnchorDETR model in all
AP scores, especially 0.5% higher in AP.

Natural Image Object Detection. Although GPTR
model is especially proposed for the diagram object detec-
tion, it can also be applied to the object detection in natu-
ral images. For natural images, the patches also meet three
gestalt laws of color similarity, position proximity and con-
tour smoothness. The performance of GPTR is verified on
MSCOCO with natural images as shown in Table 2. One can
find that our model achieves competitive results on this task.
Specifically, DETR works better than the anchor-free mod-
els CenterNet and RetinaNet, but it converges more slowly.
The ConditionDETR model is built on the DETR model,
with higher AP scores and faster convergence. Compared
with ConditionDETR, our GPTR still achieves the best per-
formance under the same experimental settings, and GPTR
is 8.3% and 4.1% higher than SMCA-DETR in AP and
APS scores, respectively. In addition, the designed gestalt-
perception graph (GPG) in transformer encoder can be flex-

Model AdaB VQ MSA AP APS APM APL
GVB-CPE - - - 11.6 10.7 15.5 15.6
GVB-CPEa X 11.9 11.6 16.0 16.5
GVB-CPEb X X 12.7 11.7 16.9 18.0
GPTR X X X 14.1 12.2 18.4 18.9

Table 3: Ablation studies on the AI2D* dataset. “AdaB”
indicates the adaptive combination of three gestalt-visual
branches. “VQ” represents the visual-guided query initial-
ization. “MSA” means adding multi-scale attention mecha-
nism to GVB-CPEb to generate better query representations.

ibly added to SAM-DETR model, and the performance of
SAM-DETR+GPG is improved in almost all the AP scores.

Diagrams vs. Natural Images. From the experimental re-
sults in Table 1 and Table 2, it can be seen that the GPTR out-
performs almost all the competitors in AP scores. In partic-
ular, compared with natural image object detection, GPTR
improves the performance of diagram object detection more
significantly. In other words, the gestalt laws in GPTR are
more effective for the representation of diagrams. The rea-
son is that the visual features of diagrams are sparse, and
there are many low-frequency object categories. As a kind of
prior knowledge of human cognition, gestalt laws can effec-
tively learn the visual features of diagrams without relying
on a large amount of labeled dataset, and alleviate the limi-
tations of learning low-frequency object representations.
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Model CB PB EB AP APS APM APL
-ALL - - - 11.4 10.3 15.1 15.2
GVB-C X 11.0 8.6 14.3 14.6
GVB-P X 11.2 7.4 14.9 14.8
GVB-E X 10.6 9.4 13.4 14.0
GVB-CPE X X X 11.6 10.7 15.5 15.6

Table 4: Ablation studies on the AI2D* dataset. “CB”, “PB”
and “EB” represent color branch, position branch, and edge
branch respectively. “-All” refers the model that only uses
CNN backbone for extracting diagram features.

4.4 Ablation Studies
The performance of GPTR in diagram object detection is
mainly improved in three aspects. They are gestalt-visual
branches in GPG module, visual-guided initialization for de-
coder queries, and multi-scale visual enhancement strategy.
To demonstrate the effectiveness of these aspects, we study
the ablation models and the differences between these ver-
sions are shown in Table 3. 1) GVB-CPE represents the com-
bination of three branches as visual features, and the com-
bination mode is direct concatenate. 2) GVB-CPEa adopts
adaptive learning method to combine the three branches on
the basis of GVB-CPE. 3) GVB-CPEb adopts visual-guided
initialization mechanism, and our GPTR model adds the
multi-scale mechanism to GVB-CPEb.

The experimental results are shown in Table 3. One can
find that: 1) after using the adaptive method, GVB-CPEa

has significantly improved the APS score compared with
GVB-CPE model. 2) Compared with taking zero set as ini-
tial queries in GVB-CPEa, the visual-guided initialization
mechanism of GVB-CPEb has improved performance in all
AP scores, especially 1.5% higher in APL. 5) Our GPTR,
which adds multi-scale attention mechanism to GVB-CPEb,
has achieved the best results in all AP scores.

Since three gestalt-visual branches are included in the
GPTR model, we also analyze the effects of different vi-
sual branches. As shown in Table 4, 1) GVB-C, GVB-P
and GVB-E indicate that only the gestalt-visual branches of
color, position and edge, respectively. 2) GVB-CPE is the
same model in Table 3. When three gestalt-visual branches
are used separately, the performance of GVB-C, GVB-P and
GVB-E is affected by the law-bias compared with -ALL
model. 2) GVB-CPE has improved in most AP scores that
compared with all the ablation models.

4.5 Qualitative Results
Visualization of Detection Results. The detection results
for ConditionDETR and GPTR are shown in Figure 5. For
the first case, when two orange are close to each other in a
diagram, ConditionDETR confuses them as a whole object,
while GPTR accurately locates them respectively. For the
second case, the fishtail in the bottom right corner is com-
posed of two polygons. ConditionDETR recognizes it as two
independent objects, while GPTR accurately recognizes it
as a whole fishtail. For the third case, the moon, earth and
light in this diagram are close in space, and the light as the
background affects the recognition of the foreground objects

Figure 5: Qualitative results of ConditionDETR and our
GPTR. We use the red bounding boxes to highlight the dif-
ferences in the detection results between these two models.

Figure 6: The AP score of low-frequency category for Con-
ditionDETR and our GPTR.

moon and earth by the ConditionDETR. On the contrary,
GPTR effectively separates the foreground and background,
and then accurately locate the foreground objects.

Low-Frequency Objects in AI2D* Dataset. Figure 6
shows the AP score of the ConditionDETR and GPTR mod-
els on low-frequency objects, respectively. For the conve-
nience of visualization, the abscissa represents several ob-
ject categories selected with a frequency of no more than 10
times, and the ordinate indicates the AP score. It can be seen
that the performance of GPTR is better than that of the Con-
ditionDETR for low-frequency object categories. Especially
for some categories that only appear once, such as artichoke
and cauliflower in the red box, the performance of GPTR is
about 20% higher than that of ConditionDETR.

5 Conclusion
In this paper, we propose a gestalt-perception transformer
model (GPTR) for the novel diagram object detection. The
gestalt laws, as a kind of priori knowledge, guide human
to identify the objects without relying on a large dataset.
For the sparse visual features and low-frequency objects of
diagrams, GPTR constructs a gestalt-perception graph and
these laws are encoded by the graph edges. During updating,
the designed adaptive learning strategy effectively combine
the laws of similarity, proximity and smoothness to group
the diagram patches to objects. In addition, we adopt the
multi-scale mechanism based on the visual features to pro-
duce better queries. We have demonstrated the effectiveness
of GPTR in diagram object detection by achieving signif-
icant performance improvements. However, there are still
limitations in the application of gestalt laws in this work.
For example, GPTR only uses three laws. How to mine
other laws for diagram representation, and how multiple
laws work together will be the future research works.
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