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Abstract

Hand and face play an important role in expressing sign
language. Their features are usually especially leveraged to
improve system performance. However, to effectively ex-
tract visual representations and capture trajectories for hands
and face, previous methods always come at high computa-
tions with increased training complexity. They usually em-
ploy extra heavy pose-estimation networks to locate human
body keypoints or rely on additional pre-extracted heatmaps
for supervision. To relieve this problem, we propose a self-
emphasizing network (SEN) to emphasize informative spa-
tial regions in a self-motivated way, with few extra compu-
tations and without additional expensive supervision. Specif-
ically, SEN first employs a lightweight subnetwork to incor-
porate local spatial-temporal features to identify informative
regions, and then dynamically augment original features via
attention maps. It’s also observed that not all frames con-
tribute equally to recognition. We present a temporal self-
emphasizing module to adaptively emphasize those discrim-
inative frames and suppress redundant ones. A comprehen-
sive comparison with previous methods equipped with hand
and face features demonstrates the superiority of our method,
even though they always require huge computations and rely
on expensive extra supervision. Remarkably, with few ex-
tra computations, SEN achieves new state-of-the-art accuracy
on four large-scale datasets, PHOENIX14, PHOENIX14-
T, CSL-Daily, and CSL. Visualizations verify the effects
of SEN on emphasizing informative spatial and temporal
features. Code is available at https://github.com/hulianyuyy/
SEN CSLR

Introduction
Sign language is one of the most commonly-used commu-
nication tools for the deaf community in their daily life. It
mainly conveys information by both manual components
(hand/arm gestures), and non-manual components (facial
expressions, head movements, and body postures) (Dreuw
et al. 2007; Ong and Ranganath 2005). However, master-
ing this language is rather difficult and time-consuming for
the hearing people, thus hindering direct communications
between two groups. To relieve this problem, isolated sign
language recognition tries to classify a video segment into
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Figure 1: Visualization of class activation maps with Grad-
CAM (Selvaraju et al. 2017) for VAC (Min et al. 2021)
(baseline). Top: Original frames. Bottom: activation maps.
It’s observed that without extra supervision, it fails to locate
discriminative face and hand regions precisely.

an independent gloss1. Continuous sign language recogni-
tion (CSLR) progresses by sequentially translating image
streams into a series of glosses to express a complete sen-
tence, more prospective towards bridging the communica-
tion gap.

In sign language, the left hand, right hand, and face play
the most important role in expressing glosses. Mostly, they
convey the information through horizontal/vertical hand
movements, finger activities, and static gestures, assisted
with facial expressions and mouth shapes to holistically
deliver messages (Dreuw et al. 2007; Ong and Ranganath
2005). As a result, hand and face, are always especially
leveraged and incorporated in sign language systems. In iso-
lated sign language recognition, early methods (Freeman
and Roth 1995; Sun et al. 2013) leveraged hand-crafted fea-
tures to describe the gestures and motion of both hands. Re-
cent methods either choose to build a pure pose-based sys-
tem (Tunga, Nuthalapati, and Wachs 2021; Hu et al. 2021)
based on detected keypoints for both hands and face, or con-
struct appearance-based systems (Hu, Zhou, and Li 2021;
Boukhayma, Bem, and Torr 2019) with cropped patches
for hands and face as collaborative inputs. In CSLR, CNN-
LSTM-HMM (Koller et al. 2019) builds a multi-stream
(hands and face) Hidden-Markov-Model (HMM) to inte-
grate multiple visual inputs to boost recognition accuracy.
STMC (Zhou et al. 2020) explicitly inserts a pose-estimation

1Gloss is the atomic lexical unit to annotate sign languages.
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network and uses the detected regions (hand and face)
as multiple cues to perform recognition. More recently,
C2SLR (Zuo and Mak 2022) leverages the pre-extracted
pose keypoints heatmaps as additional supervision to guide
models to focus on hand and face areas.

Although it has been proven effective to incorporate hand
and face features to improve recognition performance for
sign language systems, previous methods usually come at
huge computations with increased training complexity, and
rely on additional pose estimation networks or extra expen-
sive supervision (e.g., heatmaps). However, without these
supervision signals, we find current methods (Min et al.
2021; Hao, Min, and Chen 2021; Cheng et al. 2020) in
CSLR fail to precisely locate the hand and face regions
(Fig. 1). To more effectively excavate these key cues but
avoid relying on expensive supervision, we propose a self-
emphasizing network (SEN) to explicitly emphasize infor-
mative spatial regions in a self-motivated way. Specifically,
SEN first employs a lightweight subnetwork to incorporate
local spatial-temporal features to identify informative re-
gions, and then dynamically emphasizes or suppresses input
features via attention maps.

It’s also observed that not all frames contribute equally
to recognition. For example, frames with hand/arm move-
ments of the signer are usually more important than those
transitional frames. We present a temporal self-emphasizing
module to emphasize those discriminative frames and
suppress redundant ones dynamically. Remarkably, SEN
yields new state-of-the-art accuracy upon four large-scale
CSLR datasets, especially outperforming previous methods
equipped with hand and face features, even though they al-
ways come at huge computations and rely on expensive su-
pervision. Visualizations verify the effects of SEN in em-
phasizing spatial and temporal features. Code is available at
https://github.com/hulianyuyy/SEN CSLR

Related Work
Continuous Sign Language Recognition
Sign language recognition methods can be roughly catego-
rized into isolated sign language recognition (Tunga, Nutha-
lapati, and Wachs 2021; Hu et al. 2021; Hu, Zhou, and Li
2021) and continuous sign language recognition (Pu, Zhou,
and Li 2019; Cheng et al. 2020; Cui, Liu, and Zhang 2019;
Niu and Mak 2020; Min et al. 2021) (CSLR), and we fo-
cus on the latter in this paper. CSLR tries to translate image
frames into corresponding glosses in a weakly-supervised
way: only sentence-level label is provided. Early methods in
CSLR usually depend on hand-crafted features (Gao et al.
2004; Freeman and Roth 1995) to provide visual informa-
tion, especially body gestures, hands, and face, or rely on
HMM-based systems (Koller et al. 2016; Han, Awad, and
Sutherland 2009; Koller, Zargaran, and Ney 2017; Koller,
Forster, and Ney 2015) to perform temporal modeling and
then translate sentences step by step. The HMM-based meth-
ods typically first employ a feature extractor to capture vi-
sual representations and then adopt an HMM to perform
long-term temporal modeling. The recent success of convo-
lutional neural networks (CNNs) and recurrent neural net-

works brings huge progress for CSLR. The widely-used
CTC loss (Graves et al. 2006) enables end-to-end training
for recent methods by aligning target glosses with inputs.

Especially, hands and face are paid close attention to by
recent methods. For example, CNN-LSTM-HMM (Koller
et al. 2019) employs a multi-stream HMM (including hands
and face) to integrate multiple visual inputs to improve
recognition accuracy. STMC (Zhou et al. 2020) utilizes a
pose-estimation network to estimate human body keypoints
and then sends cropped patches (including hands and face)
for integration. More recently, C2SLR (Zuo and Mak 2022)
leverages the pre-extracted pose keypoints as supervision to
guide the model. Despite high accuracy, they consume huge
additional computations and training complexity.

Practically, recent methods (Pu, Zhou, and Li 2019; Pu
et al. 2020; Cheng et al. 2020; Cui, Liu, and Zhang 2019;
Niu and Mak 2020; Min et al. 2021) usually first employ
a feature extractor to capture frame-wise visual represen-
tations for each frame, and then adopt 1D CNN and BiL-
STM to perform short-term and long-term temporal model-
ing, respectively. However, several methods (Pu, Zhou, and
Li 2019; Cui, Liu, and Zhang 2019) found in such condi-
tions the feature extractor is not well trained and propose
the iterative training strategy to refine the feature extractor,
but consume much more computations. More recent meth-
ods try to directly enhance the feature extractor by adding
visual alignment losses (Min et al. 2021) or adopt pseudo
label (Cheng et al. 2020; Hao, Min, and Chen 2021) for su-
pervision. We propose the self-emphasizing network to em-
phasize informative spatial features, which can be viewed to
enhance the feature extractor in a self-motivated way.

Spatial Attention
Spatial attention has been proven to be effective in many
fields including image classification (Cao et al. 2019; Hu
et al. 2018; Woo et al. 2018; Hu, Shen, and Sun 2018), scene
segmentation (Fu et al. 2019) and video classification (Wang
et al. 2018). SENet (Hu, Shen, and Sun 2018), CBAM (Woo
et al. 2018), SKNet (Li et al. 2019) and ECA-Net (Wang
et al. 2020) devise lightweight channel attention modules
for image classification. The widely used self-attention op-
erator (Wang et al. 2018) employs dot-product feature sim-
ilarities to build attention maps and aggregate long-term
dependencies. However, the calculation complexity of the
self-attention operator is quadratic to the incorporated pix-
els, incurring a heavy burden for video-based tasks (Wang
et al. 2018). Instead of feature similarities, our SEN employs
a learnable subnetwork to aggregate local spatial-temporal
representations and generates spatial attention maps for each
frame, much more lightweight than self-attention opera-
tors. Some works also propose to leverage external super-
vision to guide the spatial attention module. For example,
GALA (Linsley et al. 2018) collects click maps from games
to supervise the spatial attention for image classification. A
relation-guided spatial attention module (Li et al. 2020) is
designed to explore the discriminative regions globally for
Video-Based Person Re-Identification. MGAN (Pang et al.
2019) introduces an attention network to emphasize visible
pedestrian regions by modulating full body features. In con-
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trast to external supervision, our self-emphasizing network
strengthens informative spatial regions in a self-motivated
way, thus greatly lowering required computations and train-
ing complexity.

Method
Framework Overview
As shown in fig. 2, the backbone of CSLR models is con-
sisted of a feature extractor (2D CNN2), a 1D CNN, a
BiLSTM, and a classifier (a fully connected layer) to per-
form prediction. Given a sign language video with T in-
put frames x = {xt}Tt=1 ∈ RT×3×H0×W0 , a CSLR model
aims to translate the input video into a series of glosses
y = {yi}Ni=1 to express a sentence, with N denoting the
length of the label sequence. Specifically, the feature ex-
tractor first processes input frames into frame-wise features
v = {vt}Tt=1 ∈ RT×d. Then the 1D CNN and BiLSTM per-
form short-term and long-term temporal modeling based on
these extracted visual representations, respectively. Finally,
the classifier employs widely-used CTC loss to predict the
probability of target gloss sequence p(y|x).

To emphasize the informative spatial and tempo-
ral features for CSLR models, we present a spatial
self-emphasizing module (SSEM) and a temporal self-
emphasizing module (TSEM). Specifically, we incorporate
them into the feature extractor to operate on each frame.
Fig. 2 shows an example of a common feature extractor con-
sisting of multiple stages with several blocks in each. We
place the SSEM and TSEM in parallel before the 3 × 3
spatial convolution in each block to emphasize informative
spatial and temporal features, respectively. When design-
ing the architecture, efficiency is our core consideration,
to avoid heavy computational burdens like previous meth-
ods (Zhou et al. 2020; Zuo and Mak 2022) based on heavy
pose-estimation networks or expensive heatmaps. We next
introduce our SSEM and TSEM, respectively.

Spatial Self-Emphasizing Module (SSEM)
From fig. 1, we argue current CSLR models fail to effec-
tively leverage the informative spatial features, e.g., hands
and face. We try to enhance the capacity of the feature ex-
tractor of CSLR models to incorporate such discriminative
features without affecting its original spatial modeling abil-
ity. Practically, our SSEM is designed to first leverage the
closely correlated local spatial-temporal features to identify
the informative regions for each frame, and then augment
original representations in the form of attention maps.

As shown in fig. 3, SSEM first projects the input features
s = {st}Tt=1 ∈ RT×C×H×W into sr ∈ RT×C/r×H×W to
decrease the computational costs brought by SSEM, with r
the reduction factor as 16 by default.

The frame-wise features s in the feature extractor are
independently extracted for each frame by 2D convolu-
tions, failing to incorporate local spatial-temporal features

2Here we only consider the feature extractor based on 2D CNN,
because recent findings (Adaloglou et al. 2021; Zuo and Mak 2022)
show 3D CNN can not provide as precise gloss boundaries as 2D
CNN, and lead to lower accuracy.
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Figure 2: A overview for our SEN. It first employs a fea-
ture extractor (2D CNN) to capture frame-wise features, and
then adopts a 1D CNN and a BiLSTM to perform short-term
and long-term temporal modeling, respectively, followed by
a classifier to predict sentences. We place our proposed spa-
tial self-emphasizing module (SSTM) and temporal self-
emphasizing module (TSEM) into each block of the feature
extractor to emphasize the spatial and temporal features, re-
spectively.

to distinguish the informative spatial regions. Besides, as
the signer has to throw his/her arms and hands to express
glosses, the informative regions in adjacent frames are al-
ways misaligned. Thus, we devise a multi-scale architecture
to perceive spatial-temporal features in a large neighborhood
to help identify informative regions.

Instead of a large spatial-temporal convolution kernel, we
employN parallel factorized branches with group-wise con-
volutions of progressive dilation rates to lower computa-
tions and increase the model capacity. As shown in fig. 3,
these N branches own the same spatial-temporal kernel size
Kt×Ks×Ks, with different spatial dilation rates [1 · · ·N ].
Features from different branches are multiplied with learn-
able factors {σ1 . . . σk} to control the importance of differ-
ent branches via gradient-based backward propagation, and
are then added to mix information from different receptive
fields. This multi-scale architecture is expressed as:

sm =
N∑
i=1

σi × Convi(sr) (1)

where the group-wise convolution Convi at different levels
captures spatial-temporal features from different receptive
fields, with dilation rate (1, i, i).

Especially, as the channels are downsized by r times in
SSEM and we employ group-wise convolutions with small
spatial-temporal kernels to capture multi-scale features, the
overall architecture is rather lightweight with few (<0.1%)
extra computations compared to the original model, as
demonstrated in our ablative experiments.

Next, sm is sent into a 1 × 1 × 1 convolution to project
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1×1×1

s: [T, C, H, W]
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× 𝜎𝜎1 × 𝜎𝜎2 × 𝜎𝜎𝑑𝑑
+

1×1×1
[T, C, H, W]

𝑠𝑠𝑚𝑚: [T, C/r, H, W]
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− 0.5

×

+
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Activation 
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Constant

Math operator
Convolution

Activation 
function

Constant

Math operator

N branchs

𝑀𝑀𝑠𝑠: [T, C, H, W]

Figure 3: Illustration for our spatial self-emphasizing mod-
ule (SSEM).

channels back into C, and then passed through a sig-
moid activation function to generate attention maps Ms ∈
RT×C×H×W with values ranging between [0, 1] as:

Ms = Sigmoid(Conv1×1×1(sm)) (2)

Finally, the attention maps Ms are used to emphasize in-
formative spatial regions for input features. To avoid hurting
original representations and degrading accuracy, we propose
to emphasize input features via a residual way as:

u = (Ms − 0.5× 1)� s+ s (3)

where � denotes element-wise multiplication and u is the
output.

In specific, we first subtract 0.5 × 1 from the attention
maps Ms, with 1 ∈ RT×C×H×W denoting an all-one ma-
trix, to change the range of values in Ms into [−0.5, 0.5].
Then we element-wisely multiply the resulting attention
maps with input features s to dynamically emphasize the in-
formative regions and suppress unnecessary areas. Here, the
values in Ms larger than 0 would strengthen the correspond-
ing inputs features, otherwise they would weaken the input
features. Finally, we add the modulated features with input
features s to emphasize or suppress certain spatial features,
but avoid hurting original representations.

Temporal Self-Emphasizing Module
We argue that not all frames in a video contribute equally
to recognition, where some frames are more discrimina-
tive than others. For example, frames in which the signer
moves his/her arms to express a sign are usually more im-
portant than those transitional frames or idle frames with
meaningless contents. However, the feature extractor only
employs 2D spatial convolutions to capture spatial features

u: [T, C, H, W]

𝑢𝑢𝑟𝑟 : [T, C/r]

Kernel size=1

[T, C]

𝑢𝑢𝑚𝑚: [T, 2C/r]

Sigmoid

− 0.5

×

+
𝑜𝑜: [T, C, H, W]

Convolution

Activation 
function

Constant

Math operator

Convolution

Activation 
function

Constant

Math operator

𝑀𝑀𝑡𝑡: [T, C]

Pooling 

Average pooling

[T, C]

u𝑟𝑟(𝑡𝑡) u𝑟𝑟(𝑡𝑡 + 1)

Concat

Kernel size=𝑃𝑃𝑡𝑡

Kernel size=1

[T, C/r]

Recover H, W

−

Figure 4: Illustration for our temporal self-emphasizing
module (TSEM).

for each frame, equally treating frames without consider-
ing their temporal correlations. We propose a temporal self-
emphasizing module (TSEM) to adaptively emphasize dis-
criminative frames and suppress redundant ones.

As shown in fig. 4, input features u ∈ RT×C×H×W

first undergo a global average pooling layer to eliminate the
spatial dimension, i.e., H and W . Then these features pass
through a convolution with kernel size of 1 to reduce chan-
nels by r times into ur ∈ RT×C/r as:

ur = ConvK=1(AvgPool(u)) (4)
whereK denotes the kernel size. To better exploit local tem-
poral movements to identify the discriminative frames, we
leverage the temporal difference operator to incorporate mo-
tion information between adjacent frames to make decisions
better. Specially, we calculate the difference between two
adjacent frames for ur as approximate motion information,
and then concatenate it with appearance features ur as :

um = Concat([ur, ur(t+ 1)− ur]) (5)
Next, we send um into a 1D temporal convolution with

kernel size of Pt to capture the short-term temporal infor-
mation. As the size of um is rather small, we here employ
a normal temporal convolution instead of a multi-scale ar-
chitecture. The features then undergo a convolution with
kernel size of 1 to project channels back into C, and pass
through a sigmoid activation function to generate attention
maps Mt ∈ RT×C as:

Mt = Sigmoid(ConvK=1(um)) (6)
Finally, we employ Mt to emphasize the discriminative

features for input u in a residual way as :
o = (Mt − 0.5× 1)� u+ u (7)

where � denotes element-wise multiplication and o is the
output.
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Configurations FLOPs Dev(%) Test(%)
- 3.64G 21.2 22.3

Kt=9, Ks=3, N=1 +0.4M 20.5 22.0
Kt=9, Ks=3, N=2 +0.6M 20.2 21.8
Kt=9, Ks=3, N=3 +0.8M 19.9 21.4
Kt=9, Ks=3, N=4 +1.0M 20.2 21.7
Kt=7, Ks=3, N=3 +0.7M 20.2 21.6
Kt=11, Ks=3, N=3 +1.0M 20.3 21.8
Kt=9, Ks=7, N=1 +2.9M 20.5 22.0

Table 1: Ablations for the multi-scale architecture of SSEM
on the PHOENIX14 dataset.

Experiments
Experimental Setup
Datasets. PHOENIX14 (Koller, Forster, and Ney 2015)
and PHOENIX14-T (Camgoz et al. 2018) are both recorded
from a German weather forecast broadcast before a clean
background with a resolution of 210 × 260. They contain
6841/8247 sentences with a vocabulary of 1295/1085 signs,
divided into 5672/7096 training samples, 540/519 develop-
ment (Dev) samples and 629/642 testing (Test) samples.

CSL-Daily (Zhou et al. 2021) is recorded indoor with
20654 sentences, divided into 18401 training samples, 1077
development (Dev) samples and 1176 testing (Test) samples.

CSL (Huang et al. 2018) is collected in the laboratory
environment by fifty signers with a vocabulary size of 178
with 100 sentences. It contains 25000 videos, divided into
training and testing sets by a ratio of 8:2.

Training details. We adopt ResNet18 (He et al. 2016) as
the 2D CNN with ImageNet (Deng et al. 2009) pretrained
weights. We place SSEM and TSEM before the second con-
volution in each block. The 1D CNN consists of a sequence
of {K5, P2, K5, P2} layers where K and P denotes a 1D
convolutional layer and a pooling layer with kernel size of 5
and 2, respectively. We then adopt a two-layer BiLSTM with
1024 hidden states and a fully connected layer for predic-
tion. We train our model for 80 epochs with initial learning
rate 0.0001 decayed by 5 after 40 and 60 epochs. Adam op-
timizer is adopted with weight decay 0.001 and batch size 2.
All frames are first resized to 256×256 and then randomly
cropped to 224×224, with 50% horizontal flip and ±20%
random temporal scaling during training. During inference,
a central 224×224 crop is simply selected. We use VE and
VA losses from VAC (Min et al. 2021) for extra supervision.

Evaluation Metric. We use Word Error Rate (WER) as
the evaluation metric, which is defined as the minimal sum-
mation of the substitution, insertion, and deletion operations
to convert the predicted sentence to the reference sentence,
as:

WER =
#sub +#ins + #del

#reference
. (8)

Note that the lower WER, the better accuracy.

Ablation Study
We perform ablation studies on the PHOENIX14 dataset and
report on both development (Dev) and testing (Test) sets.

Configurations Dev(%) Test(%)
- 21.2 22.3

Ms � s 22.3 23.4
Ms � s+ s 20.6 21.7

(Ms − 0.5× 1)� s 20.2 21.5
(Ms − 0.5× 1)� s+ s 19.9 21.4

Table 2: Ablations for the implementations of SSEM to aug-
ment input features on the PHOENIX14 dataset.

Configurations Dev(%) Test(%)
- 19.9 21.4
ur 19.8 21.2

Concat([ur, ur(t+ 1)− ur]) 19.5 21.0
Pt = 7 19.6 21.2
Pt = 9 19.5 21.0
Pt = 11 19.7 21.3

Table 3: Ablations for TSEM on the PHOENIX14 dataset.

Effects of the multi-scale architecture of SSEM. Tab. 1
ablates the implementations for the multi-scale architecture
of SSEM. Our baseline achieves 21.2% and 22.3% WER on
the Dev and Test Set. When fixing Kt=9, Ks=3 and varying
the number of branches to expand spatial receptive fields, it’s
observed larger N consistently brings better performance.
When N reaches 3, it brings no more performance gain. We
set N as 3 by default and test the effects of Kt. One can
see that either increasing Kt to 11 or decreasing Kt to 7
achieves worse performance. We thus adopt Kt as 9 by de-
fault. Notably, one can find SSEM brings few extra com-
putations compared to our baseline. For example, the best-
performing SSEM with Kt=9, Ks=3 and N=3 only owns
0.8M (<0.1%) extra FLOPs, which can be neglected com-
pared to 364G FLOPs of our baseline model. Finally, we
compare our proposed multi-scale architecture with a nor-
mal implementation of more computations. The receptive
field of SSEM with Kt=9, Ks=3 and N=3 is identical to a
normal convolution with Kt=9 and Ks=7. As shown in the
bottom of tab. 1, a normal convolution not only brings more
computations than SSEM, but also performs worse, verify-
ing the effectiveness of our architecture.

Implementations of SSEM to augment inputs features.
Tab. 2 ablates the implementations of SSEM to augment
original features. It’s first observed directly multiplying the
attention maps Ms with input features s severely degrades
performance, attributed to destroying input features distribu-
tions. Implemented in a residual way by adding s,Ms�s+s
could notably relieve such phenomenon and achieves +0.6%
& +0.6% on the Dev and Test Sets. Further, we first subtract
0.5×1 from the attention mapsMs to emphasize or suppress
certain positions, and then element-wisely multiply it with
s. This implementation bring +1.0% & +0.8% performance
boost. Finally, we update this implementation in a residual
way by adding input features s as (Ms − 0.5× 1)� s+ s,
achieving notable performance boost by +1.3% & +0.9%.

858



Configurations Dev(%) Test(%)
- 21.2 22.3

SSEM 19.9 21.4
TSEM 20.5 21.7

SSEM + TSEM 19.8 21.4
TSEM + SSEM 19.6 21.2

Parallelled 19.5 21.0

Table 4: Ablations for the effectiveness of SSEM and TSEM
on the PHOENIX14 dataset.

Methods Dev(%) Test(%)
- 21.2 22.3
w/ SENet (Hu, Shen, and Sun 2018) 20.7 21.6
w/ CBAM (Woo et al. 2018) 20.5 21.3
CNN+HMM+LSTM (Koller et al. 2019) 26.0 26.0
STMC (Zhou et al. 2020) 21.1 20.7
C2SLR (Zuo and Mak 2022) 20.5 20.4
SEN 19.5 21.0

Table 5: Comparison with other methods of channel atten-
tion or hand and face features on the PHOENIX14 dataset.

Study on TSEM. Tab. 3 ablates the configurations for
TSEM. We here adopt SSEM as our baseline and ablate the
configurations for TSEM. It’s first noticed that combining
motion information by concatenating ur(t + 1) − ur with
ur slightly outperforms only using ur to capture short-term
temporal dependencies, verifying the effectiveness of local
motion information. Next, when varying Pt, it’s observed
Pt=9 achieves the best performance among Pt=[7,9,11],
which is adopted by default in the following.

Study on the effectiveness of SSEM and TSEM. Tab. 4
studies how to combine SSEM with TSEM. We first no-
tice that only using SSEM or TSEM could already bring
a notable performance boost, by +1.3& +0.9% and +0.7 &
+0.6% on the Dev and Test Sets, respectively. When fur-
ther combining SSEM with TSEM by sequentially placing
SSEM before TSEM (SSEM+TSEM), placing TSEM before
SSEM (TSEM+SSEM) or paralleling TSEM and TSEM, it’s
observed SSEM+TSEM performs best with +1.7% & +1.3%
performance boost on the Dev and Test Sets, respectively,
adopted as the default setting.

Comparison with other methods. We compare our SEN
with related well-known channel attention methods like
SENet (Hu, Shen, and Sun 2018) and CBAM (Woo et al.
2018), and previous CSLR methods equipped with hand
and face features by extra pose-estimation networks or pre-
extracted heatmaps. In the upper part of tab. 5, one can see
SEN largely outperforms these channel attention methods,
for its superior ability to emphasize informative hand and
face features. In the bottom part of tab. 5, it’s observed SEN
greatly surpasses previous CSLR methods equipped with
hand and face features, even though they employ extra heavy
networks or expensive supervision. These results verify the
effectiveness of our SEN in leveraging hand and face fea-
tures.

Raw

Baseline

Ours

Raw

Baseline

Ours

Figure 5: Visualizations of class activation maps by Grad-
CAM (Selvaraju et al. 2017). Top: raw frames; Middle: class
activation maps of our baseline; Bottom: class activation
maps of our SEN. Our baseline usually focuses on nowhere
or only attends to a single hand or face. Our SEN could gen-
erally focus on the human body (light yellow areas) and pays
special attention to informative regions like hands and face
(dark red areas).

Visualizations
Visualization for SSEM. We sample a few frames for ex-
pressing a gloss and plot the class activation maps for our
baseline and SEN with Grad-CAM (Selvaraju et al. 2017) in
fig. 5. The activation maps generated by our baseline usually
focus on nowhere or only attend to a single hand or face, fail-
ing to fully focus on the informative regions (e.g., hands and
face). Instead, our SEN could generally focus on the human
body (light yellow areas), and pays special attention to those
discriminative regions like hands and face (dark red areas).
These visualizations show that without additional expensive
supervision, our SEN could still effectively leverage the in-
formative spatial features in a self-supervised way.

Visualization for TSEM. We visualize the temporal at-
tention maps of TSEM in fig 6. We sample several frames
corresponding to an output gloss ’nord’ as an example. The
darker color, the higher weight. One can find that TSEM
tends to allocate higher weights for frames with rapid move-
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Methods Backbone
PHOENIX14 PHOENIX14-T

Dev(%) Test(%) Dev(%) Test(%)del/ins WER del/ins WER
Align-iOpt (Pu, Zhou, and Li 2019) 3D-ResNet 12.6/2 37.1 13.0/2.5 36.7 - -

Re-Sign (Koller, Zargaran, and Ney 2017) GoogLeNet - 27.1 - 26.8 - -
SFL (Niu and Mak 2020) ResNet18 7.9/6.5 26.2 7.5/6.3 26.8 25.1 26.1
FCN (Cheng et al. 2020) Custom - 23.7 - 23.9 23.3 25.1

CMA (Pu et al. 2020) GoogLeNet 7.3/2.7 21.3 7.3/2.4 21.9 - -
VAC (Min et al. 2021) ResNet18 7.9/2.5 21.2 8.4/2.6 22.3 - -

SMKD (Hao, Min, and Chen 2021) ResNet18 6.8/2.5 20.8 6.3/2.3 21.0 20.8 22.4
SLT∗ (Camgoz et al. 2018) GoogLeNet - - - - 24.5 24.6

CNN+LSTM+HMM∗ (Koller et al. 2019) GoogLeNet - 26.0 - 26.0 22.1 24.1
DNF∗ (Cui, Liu, and Zhang 2019) GoogLeNet 7.3/3.3 23.1 6.7/3.3 22.9 - -

STMC∗ (Zhou et al. 2020) VGG11 7.7/3.4 21.1 7.4/2.6 20.7 19.6 21.0
C2SLR∗ (Zuo and Mak 2022) ResNet18 - 20.5 - 20.4 20.2 20.4

Baseline ResNet18 7.9/2.5 21.2 8.4/2.6 22.3 21.1 22.8
SEN (Ours) ResNet18 5.8/2.6 19.5 7.3/4.0 21.0 19.3 20.7

Table 6: Comparison with state-of-the-art methods on the PHOENIX14 and PHOENIX14-T datasets. ∗ indicates extra clues
such as face or hand features are included by additional networks or pre-extracted heatmaps.

nord

nord

Label

Label

Weights

Weights

Weights

Weights

Figure 6: Visualizations of temporal attention maps for
TSEM. One can find that TSEM highlight frames with rapid
movements and suppress those static frames.

ments (the latter two frames in the first line; the middle three
frames in the second line). TSEM assigns lower weights for
static frames with few body movements. Such observation
is consistent with our habits, as humans always pay more
attention to those moving objects in the visual field to cap-
ture key movements. Those frames can also be considered
conveying more important pattern for expressing a sign.

Comparison with State-of-the-Art Methods
PHOENIX14 and PHOENIX14-T. Tab. 6 shows a com-
prehensive comparison between our SEN and other state-
of-the-art methods. We notice that with few extra computa-
tions, SEN could outperform other state-of-the-art methods
upon both datasets. Especially, SEN outperforms previous
CSLR methods equipped with hand and faces acquired by
heavy pose-estimation networks or pre-extracted heatmaps
(notated with *), without additional expensive supervision.

CSL-Daily. CSL-Daily is a recently released large-
scale dataset with the largest vocabulary size (2k) among
commonly-used CSLR datasets, covering daily contents.
Tab. 7 shows that our SEN achieves new state-of-the-art ac-
curacy upon this challenging dataset with large progresses,
which generalizes well upon real-world scenarios.

Methods Dev(%) Test(%)
LS-HAN (Huang et al. 2018) 39.0 39.4

TIN-Iterative (Cui, Liu, and Zhang 2019) 32.8 32.4
Joint-SLRT (Camgoz et al. 2020) 33.1 32.0

FCN (Cheng et al. 2020) 33.2 32.5
BN-TIN (Zhou et al. 2021) 33.6 33.1

Baseline 32.8 32.3
SEN(Ours) 31.1 30.7

Table 7: Comparison with state-of-the-art methods on the
CSL-Daily dataset (Zhou et al. 2021).

Methods WER(%)
SubUNet (Cihan Camgoz et al. 2017) 11.0

SF-Net (Yang et al. 2019) 3.8
FCN (Cheng et al. 2020) 3.0
STMC (Zhou et al. 2020) 2.1

VAC (Min et al. 2021) 1.6
C2SLR (Zuo and Mak 2022) 0.9

Baseline 3.5
SEN(Ours) 0.8

Table 8: Comparison with state-of-the-art methods on the
CSL dataset (Huang et al. 2018).

CSL. As shown in tab. 8, our SEN could achieve extreme
superior accuracy (0.8% WER) upon this well-examined
dataset, outperforming existing CSLR methods.

Conclusion
This paper proposes a self-motivated architecture, coined
as SEN, to adaptively emphasize informative spatial and
temporal features. Without extra expensive supervision,
SEN outperforms existing CSLR methods upon four CSLR
datasets. Visualizations confirm the effectiveness of SEN in
leveraging discriminative hand and face features.
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