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Abstract

In point cloud analysis tasks, the existing local feature ag-
gregation descriptors (LFAD) are unable to fully utilize in-
formation in the neighborhood of central points. Previous
methods rely solely on Euclidean distance to constrain the
local aggregation process, which can be easily affected by
abnormal points and cannot adequately fit with the original
geometry of the point cloud. We believe that fine-grained
geometric information (FGGI) is significant for the aggre-
gation of local features. Therefore, we propose a gradient-
based local attention module, termed as Gradient Attention
Module (GAM), to address the aforementioned problem. Our
proposed GAM simplifies the process that extracts gradient
information in the neighborhood and uses the Zenith An-
gle matrix and Azimuth Angle matrix as explicit represen-
tation, which accelerates the module by 35X. Comprehen-
sive experiments were conducted on five benchmark datasets
to demonstrate the effectiveness and generalization capabil-
ity of the proposed GAM for 3D point cloud analysis. Espe-
cially on S3DIS dataset (Armeni et al. 2016), GAM achieves
the best performance among current point-based models with
mIoU/OA/mAcc of 74.4%/90.6%/83.2%, respectively.

Introduction
In recent years, point cloud analysis has become a hot topic
in academia and industry due to the rapid development of
autonomous driving and indoor robotics. Considering that
point cloud is unordered, sparse, and irregular, traditional
methods for 2D image processing cannot be directly ap-
plied to point clouds. PointNet (Qi et al. 2017a) is a pi-
oneering work that uses Multi-Layer Perceptron (MLP) to
learn point features independently. Qi et al. proposed Point-
Net++ (Qi et al. 2017b), which introduces local features
to point cloud analysis models for further performance im-
provement of point cloud analysis models. Recent works
present some promising results, using convolutional layers
(Boulch 2020; Thomas et al. 2019; Xiang et al. 2021), graph
structures (Wang et al. 2019b; Xu et al. 2020), MLP (Ma
et al. 2022), or attention mechanisms (Guo et al. 2021; Zhao
et al. 2021) for point cloud analysis. Among them, local fea-
ture aggregation descriptors (LFAD) play an important role.
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However, existing LFAD cannot effectively distinguish
points in a point cloud neighborhood, and thus are unable to
learn finer semantic information of the point cloud. This ob-
servation motivates us to consider the attention mechanism
within a point cloud neighborhood. The previous works treat
all points in the neighborhood as equally important (Wang
et al. 2019b), or only use distance information to constrain
aggregation process (Lan et al. 2019; Thomas et al. 2019;
Ma et al. 2022), ignoring deeper geometric relationships
within the neighborhood. These operations include too much
outlier information in the local feature aggregation process
and impede the model to conform the original geometry of
the point cloud. Therefore, we propose a novel gradient at-
tention module (GAM) that utilizes neighboring gradient in-
formation to better constrain the aggregation process of the
neighborhood features. As shown in Figure 1, with gradi-
ent information, our proposed method is enabled to predict
clearer object boundaries.

In addition, we find that the gradient calculation
method (Pauly 2003) based on the local surface fitting
method is very slow, and hinders real-time inference after
adding gradient information. To solve this problem, we pro-
pose to simplify the calculation of gradient information in
the neighborhood, by converting gradient information to an
explicit representation of the Zenith Angle and Azimuth An-
gle between the center point and its neighboring points. Our
proposed method can accelerate computation speed by 35
times. As shown in Figure 2, GAM is a plug-and-play mod-
ule, which effectively improves the performance of baseline
methods while maintaining a similar inference speed.

Our proposed GAM is portable and can be added to pre-
vious state-of-the-art methods with a few lines of code. We
conduct experiments on 3D semantic segmentation task us-
ing S3DIS dataset (Armeni et al. 2016), 3D shape classifica-
tion task using ScanObjectNN dataset (Uy et al. 2019) and
ModelNet40 dataset (Wu et al. 2015), 3D part segmentation
task using ShapeNet (Yi et al. 2016), and 3D object detec-
tion task on KITTI dataset (Geiger et al. 2013). Experiment
results demonstrate that GAM is an effective module and
applicable to a wide range of point cloud analysis tasks with
good performance improvements for various models.

The contributions of this paper are summarised as fol-
lows:

• We propose a lightweight and efficient gradient attentive
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Ground Truth With GAMPointNet++

Figure 1: S3DIS benchmark visualization results, from left
to right are ground truth, PointNet++ (Qi et al. 2017b)
and the results after adding the gradient attention module
(GAM).

module (GAM). To the best of our knowledge, gradient
information is the first time to be introduced into the vec-
tor of locally aggregated descriptors of point cloud neigh-
borhood features.

• The relationship between gradient information and zenith
angle and azimuth angle in the point cloud neighborhood
is established through mathematical representation. The
gradient calculation process is simplified to the calcula-
tion of the zenith angle and azimuth angle of neighbor-
hood points. Thus, the computation speed of GAM is ef-
fectively improved.

• Comprehensive experiments on five benchmarks demon-
strate that our proposed gradient attention module can
effectively boost performances of state-of-the-art meth-
ods within limited additional memory consumption and
inference time. In addition, our proposed GAM can be
used in various 3D tasks such as 3D semantic segmenta-
tion, 3D shape classification, 3d object detection, and 3D
part segmentation.

Related Work
The point cloud analysis task starts with learning the em-
bedding of each point, then extracts global embedding from
the whole point cloud using local aggregation methods, and
finally feeds global embedding to branches of each task.
Due to the disorderly nature of point clouds, some pre-
vious works attempt to project point clouds into regular
voxels (Zhou and Tuzel 2018; Wu et al. 2015; Yan, Mao,
and Li 2018) or multiple views (Su et al. 2015; Wei, Yu,
and Sun 2020; Liang et al. 2018). These methods signifi-
cantly improve the computational speed, but lose informa-
tion during the projection process and undermine model ac-
curacy severely. In contrast, point-based methods directly
use original point cloud information as input and employ
various well-designed local feature aggregation descrip-
tors (Thomas et al. 2019; Lan et al. 2019; Yang et al. 2019;
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Figure 2: Overall Accuracy (OA) and throughput compar-
ison plots of 3D shape classification experiment results on
PointMLP (Ma et al. 2022), PointMLP-Elite (Ma et al.
2022), PointTNT (Berg, Oskarsson, and O’Connor 2022)
and RepSurf 2x (Ran, Liu, and Wang 2022) models before
and after adding GAM in ScanObjectNN (Uy et al. 2019).

Komarichev, Zhong, and Hua 2019). Meanwhile, some pre-
vious works (Wang et al. 2019a; Chen, Luca, and Antonios
2021; Wang et al. 2022; Cui et al. 2021; Wu et al. 2022) use
the attention mechanism to extract the feature of the point
cloud.

Multi-view and Voxel-based Approaches

Early works (Su et al. 2015; Wei, Yu, and Sun 2020) project
unstructured point clouds into multiple 2D views, extract
features from different views using 2D convolution, and
then use sophisticated methods to fuse features from mul-
tiple views. MVCNN (Su et al. 2015) is a pioneering work
that uses a maximum pooling layer to aggregate multi-view
information into global features. But the maximum pool-
ing layer retains only the largest elements, which inevitably
leads to information loss. To address this problem, Wei et
al. proposed View-GCN (Wei, Yu, and Sun 2020) using di-
rected graphs to find the relationship between individual
views. Each individual view is regarded as a graph node,
and the global shape descriptor is obtained by max pooling
graph nodes of all levels.

Voxel-based approaches divide the point cloud into a uni-
form 3D spatial grid and use 3D convolutional neural net-
works for feature extraction. Zhou et al. introduced Voxel-
Net (Zhou and Tuzel 2018) for robust 3D target detection.
Although this method has achieved high detection perfor-
mance, computation time and memory consumption sharply
increase as the point cloud resolution is enhanced. To solve
this problem, SECOND (Yan, Mao, and Li 2018) proposed
3D sparse convolution that effectively reduces memory and
computation costs, but most devices still have difficulty af-
fording such a large amount of computation.
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Figure 3: Schematic diagram of GAM structure, where p represents one center point, q represents a particular neighbor point
of p, and LFE denotes the local feature extractor of different baselines. Module inputs are original positional information of the
point cloud and features. Step (a) searches the center points of the point cloud and their corresponding neighborhood points;
step (b) builds a directed graph to obtain the relative position vector between the center point and its neighborhood points. Then
GAM calculates the zenith and azimuth angles in the neighborhood and uses them to construct a gradient attention matrix.

Point-based Approaches
PointNet (Qi et al. 2017a) has paved the way for rele-
vant research studies on the point cloud, using MLP and
max-pooling to extract and aggregate global features. Point-
Net++ (Qi et al. 2017b) introduces the concept of local fea-
tures into 3D point cloud analysis. It uses Farthest Point
Sampling (FPS) and ball query to perform centroid sam-
pling, and neighborhood point search on point clouds to ob-
tain various levels of local-global features. Subsequent work
on 3D point cloud analysis focuses on the study of point
cloud local feature aggregation descriptors. DGCNN (Wang
et al. 2019b) builds a directed graph between centroids
and neighboring points, extracts features of each edge us-
ing EdgeConv, and finally aggregates local features through
max-pooling layer. In Geo-CNN (Lan et al. 2019), the edge
feature of each direction is weighted by a learnable matrix
that relates to the direction. Then local features are aggre-
gated according to the angle between the relative vector and
three axes.

Different from the above methods, the proposed GAM uti-
lizes fine-grained geometric information to aggregate finer
local features, which helps to improve the accuracy of sub-
sequent tasks. Besides, compared to sophisticated local fea-
ture aggregation descriptors that lead to inefficiency in point
cloud analysis models, the proposed GAM does not burden
the computing device.

Proposed Method
The proposed gradient attention module (GAM) uses both
gradient information and distance information between the
center point and its neighboring points to generate corre-
sponding importance weights of each neighboring point.
The mathematical representation of gradient information of
point cloud neighborhoods is given in Section 3.1, followed
by the overall structure of GAM in Section 3.2.

Mathematical Representation of Point Cloud
Neighborhood Gradients
We use a center point and a point in its neighborhood as an
example to illustrate the mathematical relation between gra-

dient information, zenith angle, and azimuth angle. Given a
set of N cloud points {pi} ∈ RN×3, where i = 1, 2, ..., N . A
central point pi has the coordinate of (xi, yi, zi), and another
point qj is the neighborhood point of pi, whose coordinate is
(xj , yj , zj). In the range image of the point cloud, two points
pi, qj can be represented as discrete points f(ui, vi) = zi
and f(uj , vj) = zj , and the conversion equation is written
as follows.


uj =

l

d
xj + u0

vj =
l

d
yj + v0

(1)

where d is the depth of current point, l is the camera focal
length, u0 and v0 are the X , Y coordinates of center point
of the range image respectively.

Traditional method uses the difference of pixel value in
depth map between current pixel and its adjacent pixels in
the X and Y axis directions to represent depth gradient of
the point. However, we focus on the association between the
center point pi and one of its neighboring points qj in 3D
space. Hence the point qj is regarded as a neighboring pixel
of pi in the range image. We calculate the pixel value dif-
ference of these two points in the direction of an edge vector
b⃗ = (uj−ui, vj−vi) to represent depth gradient of the point.
The depth gradient ∇db is defined as ∇db =

zji√
u2
ji+v2

ji

. And

depth gradient along X , Y axes ∇dx, ∇dy are defined as
follows, 

∇dx =
zji√

u2
ji + v2ji

∗ uji√
u2
ji + v2ji

∇dy =
zji√

u2
ji + v2ji

∗ vji√
u2
ji + v2ji

.
(2)

where uij , vij , zij denote uj − ui, vj − vi, zj − zi, respec-
tively. Combining Eq. 1 and Eq. 2, components of depth gra-
dient along X and Y axis are defined as∇dx, ∇dy .
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∇dx =

d

f

zjixji

x2
ji + y2ji

,

∇dy =
d

f

zjiyji
x2
ji + y2ji

.

(3)

Since we explore the geometric structure of point clouds
in 3D space, it is necessary to convert depth gradient to the
world coordinate system, in order to obtain gradients ∇zx
and ∇zy respectively.

∇zx =
d

f
∇dx =

xjizji
x2
ji + y2ji

,

∇zy =
d

f
∇dy =

yjizji
x2
ji + y2ji

.

(4)

The approximate gradient g⃗ of the neighboring point qj is
g⃗ = (gx, gy, gz), where

gx =
zji√

x2
ji+y2

ji+z2
ji

xji√
x2
ji+y2

ji

,

gy =
zji√

x2
ji+y2

ji+z2
ji

yji√
x2
ji+y2

ji

,

gz =

√
x2
ji+y2

ji√
x2
ji+y2

ji+z2
ji

.

(5)

Where zji√
x2
ji+y2

ji+z2
ji

and
√

x2
ji+y2

ji√
x2
ji+y2

ji+z2
ji

denote sine and co-

sine of the zenith angle of the neighborhood point respec-
tively, xji√

x2
ji+y2

ji

and yji√
x2
ji+y2

ji

denote sine and cosine of the

azimuth angle of the neighborhood point respectively.
We simplify gradient calculation of neighborhood points

by using the zenith angles and azimuth angles, and effec-
tively reduce computation time.

Gradient Attention Module
In this section we introduce our proposed gradient atten-
tion module (GAM) based on the zenith and azimuth angles
of neighborhood points, which includes gradient informa-
tion of neighborhood points during neighborhood aggrega-
tion process. Therefore the model is enabled to capture more
accurate local features, by using more fine-grained geomet-
ric information in the local feature aggregation descriptors.
Details of our proposed GAM are given in Algorithm 1.

As shown in Figure 3, there are a set of N points P =
{pi|i = 1, ..., N} ∈ RN×3 in the Cartesian coordinate sys-
tem (x, y, z), with their corresponding features F = {fi|i =
1, ..., N} ∈ RN×C . We use the baseline method (Qi et al.
2017b; Wang et al. 2019b) to find center point and search
for neighbor points. P center = {pcenter

s |s = 1, ..., Ns} ∈
RNs×3 represents the selected set of center point. For each
center point, K neighboring points are searched. In total
there are K ∗Ns neighboring points QNBR = {qNBR

s,j |s =
1, ..., Ns, j = 1, ...,K} ∈ RNs×K×3 with corresponding
features FNBR = {fNBR

s,j |s = 1, ..., Ns, j = 1, ...,K} ∈
RNs×K×C , where C denotes the number of channels of in-
put features.

After establishing the directed graph between cen-
ter points and each of its neighboring points, the rela-
tive position matrix is represent as E = {es,j |s =

Algorithm 1: Gradient Attention Module
Input: point cloud P = {pi|i = 1, ..., N} ∈ RN×3, with
corresponding features F = {fi|i = 1, ..., N} ∈ RN×C

Parameter: local feature extractor ϕ(·), balanced weights λ,
sampling radius r, number of centroid samples Ns, number
of neighborhood point samples K
Output: output features F out

1: Sample Ns points as the center points of the point
cloud, with corresponding coordinates denoted as
{pcenter

s |s = 1, ..., Ns} ∈ RNs×3.
2: Search K points for each center point as its neigh-

borhood, with corresponding coordinates QNBR =
{qNBR

s,j |s = 1, ..., Ns, j = 1, ...,K} ∈ RNs×K×3,
and corresponding features FNBR = {fNBR

s,j |s =

1, ..., Ns, j = 1, ...,K} ∈ RNs×K×C .
3: Create a directed graph in the neighborhood of each cen-

ter point and compute relative position vector, distance
information ds,j (Eq. 6) and gradient information gs,j
(Eq. 7) of the neighborhood points.

4: Calculate weighted score matrix of neighborhood points
A by using fine-grained geometric information ds,j and
gs,j .(Eq. 8)

5: Local features FNBR are fed to local feature extrac-
tor ϕ(·), multiplied with the corresponding weight score
matrix A and then weighted by λ to obtain F out

(Eq. 9).
6: Return F out

1, ..., Ns, j = 1, ...,K} . es,j is represented as qNBR
s,j −

pcenter
s , where pcenter

s is the center point and qNBR
s,j is

one of its neighboring points. Vector length ds,j is also ex-
pressed as follows,{

es,j = (−−→xs,j ,
−−→ys,j ,

−−→zs,j)
ds,j =

√
(−−→xs,j)

2
+ (−−→ys,j)

2
+ (−−→zs,j)

2 (6)

where (−−→xs,j ,
−−→ys,j ,

−−→zs,j) represent the relative position vector
in the Cartesian coordinate system.

Then the sum of azimuthal sine and cosine values of each
neighboring point is calculated, and multiplied with sine of
zenith angle, to represent the gradient information of the
neighborhood points gs,j written as follows,

gs,j = (
−−→zs,j
ds,j

−−→xs,j +
−−→ys,j√

(−−→xs,j)2 + (−−→ys,j)2
). (7)

Our proposed GAM uses MLP to fuse gradient information
and distance information of neighborhood points to obtain
attentive weight calculated as follows,

as,j = Sigmoid(MLP ([gs,j ;ds,j ])). (8)

where Sigmoid is the activation function and [;] denotes the
concatenation operation. The weight matrix is represented
as A = {as,j |s = 1, ..., Ns, j = 1, ...,K}

After obtaining the weight matrix A, it is multiplied with
the input point cloud features. Thus GAM can extract deep
features of the point cloud according to importance of each
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Method mIoU OA mAcc TP
PointNet (Qi et al. 2017a) 47.6 78.5 66.2 -
PointCNN (Li et al. 2018) 65.4 88.1 75.6 -

PointWeb (Zhao et al. 2019) 66.7 87.3 76.2 -
RandLA-Net (Hu et al. 2020) 70.0 88.0 82.0 -
KPConv (Thomas et al. 2019) 70.6 - 79.1 -
BAAF-Net (Qiu et al. 2021) 72.2 88.9 83.1 -
PointNet++ (Qi et al. 2017b) 54.5 81.0 67.1 130

+ GAM 56.6 81.8 71.7 127
DGCNN (Wang et al. 2019b) 56.1 84.1 - 32

+ GAM 58.8 85.5 69.1 31
Point Trans. (Zhao et al. 2021) 73.5 90.2 81.9 26

+ GAM 73.9 89.9 83.0 25
+ GAM* 74.4 90.6 83.2 -

Table 1: Comparison results on S3DIS dataset for 3D seman-
tic segmentation with 6-fold cross-validation. Mean Inter-
over-Union (mIoU), overall accuracy (OA) and mean accu-
racy (mAcc) are used as evaluation metrics. * represents the
voting strategy and throughput using the test result in Area5.

neighborhood point. A complete local feature aggregation
process can be expressed as follows,

F out = MLP (
λϕ(FNBR) ·A+ ϕ(FNBR)

1 + λ
) (9)

where F out ∈ RNs×K×Cout , Cout denotes the number of
channels of output features. λ is the balance weight and ·
represents the element-wise multiplication. ϕ(·) denotes the
local feature extractor used in previous works (Ma et al.
2022; Qi et al. 2017b; Wang et al. 2019b) to extract deeply
aggregated features.

Experiments
To fully evaluate the effectiveness and generality of our
proposed GAM, we apply our proposed method on several
state-of-the-art methods for 3D shape classification, 3D part
segmentation, 3D semantic segmentation, and 3D object de-
tection. Experiments are conducted on S3DIS dataset (Ar-
meni et al. 2016), ScanObjectNN dataset (Uy et al. 2019),
ShapeNet dataset (Yi et al. 2016), KITTI dataset (Geiger
et al. 2013) and ModelNet40 dataset (Wu et al. 2015), re-
spectively. The same training strategy used in each baseline
is employed in our experiments, except that only GAM is
added in each downsampling layer of the model. And λ is set
to 1. The number of channels of the two-layer MLP in GAM
is set to (1,16), (16,1). Experiments are run on NVIDIA
GTX 3090 GPU and AMD EPYC 7402 CPU.

Results on 3D Semantic Segmentation
We conduct the 3D semantic segmentation experiment on
S3DIS dataset (Armeni et al. 2016), which contains 3D
scanned point clouds of six interior regions with 272 rooms
in total. Each point belongs to one of the 13 seman-
tic categories containing wood panels, bookcases, chairs,
ceilings, etc. We compare the proposed GAM with state-
of-the-art methods, including PointNet (Qi et al. 2017a),
PointCNN (Li et al. 2018), PointWeb (Zhao et al. 2019),

Method OA mAcc TP
PointNet++ (Qi et al. 2017b) 77.9 75.4 -
DGCNN (Wang et al. 2019b) 78.1 73.6 -

GBNet (Qiu, Anwar, and Barnes 2022) 80.5 77.8 -
PRA-Net(1K) (Cheng et al. 2021) 81.0 77.9 1152

+ GAM 81.6 77.9 1094
Point-TNT (Berg et al. 2022) 83.6 82.3 240

+ GAM 85.0 82.8 238
PointMLP-elite (Ma et al. 2022) 84.4 82.6 749

+ GAM 84.8 88.24 708
PointMLP (Ma et al. 2022) 85.7 84.4 213

+ GAM 86.1 84.7 204
RepSurf-2x (Ran, Liu, and Wang 2022) 86.0 - 420

+ GAM 86.4 - 418
PointNeXt-s (Qian et al. 2022) 88.1 86.4 1628

+ GAM 88.4 86.5 1544

Table 2: Comparison result on ScanObjectNN dataset for 3D
shape classification. For a fair comparison, all methods in
the table use 1024 points as the input. Overall accuracy (OA)
and mean accuracy (mAcc) are used as evaluation metrics.

RandLA-Net (Hu et al. 2020), KPConv (Thomas et al.
2019), BAAF-Net (Qiu, Anwar, and Barnes 2021), Point-
Net++ (Qi et al. 2017b), DGCNN (Wang et al. 2019b),
and Point Trans. (Zhao et al. 2021). We select PointNet++,
DGCNN, and Point Trans. as baselines to evaluate the effec-
tiveness of adding our proposed method GAM.

In Table 1, we report mean Inter-over-Union (mIoU),
overall accuracy (OA) and mean accuracy (mAcc), and
throughput(TP) for the 6-fold cross-validation of S3DIS
dataset. We can find that after adding GAM into the three
baselines PointNet++, DGCNN, and Point Trans, mIoU
scores increase 2.1%, 2.7%, and 0.4% respectively, OA
scores and mAcc scores are also significantly increased. Af-
ter using Voting, GAM with Point Trans achieves the best
performance, where mIoU score, OA score, and mAcc score
are 74.4%, 90.6%, and 83.2%, respectively. Inference time
of three baselines after adding GAM only increases by 2.3%,
3.1%, and 3.8%, respectively. Increment on computational
costs in terms of throughput is almost negligible. These ex-
perimental results demonstrate that our proposed GAM is
lightweight and efficient. Figure 4 shows visualization result
of 3D semantic segmentation of S3DIS dataset.

3D Shape Classification Experimental Results on
ScanObjectNN
We conduct the 3D shape classification experiment on
ScanObjectNN dataset (Uy et al. 2019) that contains
15,000 objects of 15 different classes. The most difficult
and commonly used variant of ScanObjectNN PBT 50RS
is implemented for experiments. We compare our pro-
posed GAM with state-of-the-art methods, including Point-
Net++ (Qi et al. 2017b), DGCNN (Wang et al. 2019b), GB-
Net (Qiu, Anwar, and Barnes 2022), PRA-Net(1k) (Cheng
et al. 2021), Point-TNT (Berg, Oskarsson, and O’Connor
2022), PointMLP-elite (Ma et al. 2022), PointMLP (Ma
et al. 2022), RepSurf-2x (Ran, Liu, and Wang 2022)
and PointNeXt-s (Qian et al. 2022). Among these meth-
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(a)

(b)

Figure 4: 3D semantic segmentation experiment visualization results. (a) represents ground truth and (b) represents forecast
results of point transformer (Zhao et al. 2021) after GAM is inserted.

Method Cars Pedestrians Cyclists
IA-SSD (Zhang et al. 2022) 79.57 58.91 71.24

+GAM 79.16 59.31 72.58

Table 3: Comparison results of 3D object detection on
KITTI 3D target detection validation set. Mean Inter-over-
Union (mIoU) score is used as the evaluation metric.

ods, PRA-Net(1k), Point-TNT, PointMLP-elite, PointMLP,
RepSurf-2x, and PointNeXt-s are used as baselines to eval-
uate the effectiveness of adding our proposed GAM.

In Table 2, we report the overall accuracy (OA) score,
mean accuracy (mAcc), and throughput (TP) on the ScanOb-
jectNN dataset. The voting strategy is not used in each base-
line. After adding GAM, the OA score and mAcc score of
each baseline method are increased significantly. Experi-
ment results demonstrate that our proposed GAM has the
potential to be widely used in the point cloud domain. Be-
sides, results in terms of throughput (TP) indicate that com-
putation cost barely increases after adding GAM.

Result on 3D Object Detection

For 3D object detection task, experiments are conducted on
the KITTI dataset (Geiger et al. 2013), which has three de-
tection categories, cars, pedestrians, and bicycles. Each cat-
egory has three subsets, ”easy”, ”medium” and ”difficult”,
basing on the detection difficulty. The ”medium” subset is
the most commonly used for evaluation.

In Table 3, we report mean Inter-over-Union (mIoU) score
on validation set of the KITTI dataset. After adding GAM,
mIoU scores of pedestrian and bicycle category are im-
proved by 0.4% and 1.34% respectively, while for car cate-
gory mIoU score decreases by 0.41%. These results indicate
that detection performance for small targets can be effec-
tively improved with GAM.

Method Input OA mAcc
KPConv (Thomas et al. 2019) 7k 92.9 -
Point Trans. (Zhao et al. 2021) 1k 93.7 90.6
CurveNet (Xiang et al. 2021) 1k 94.2 -

PointNet++(S) (Qi et al. 2017b) 1k 92.2 89.1
+ GAM 1k 92.8 91.5

PointNet++(M) (Qi et al. 2017b) 1k+N 92.8 90.7
+ GAM 1k+N 93.3 91.4

DGCNN (Wang et al. 2019b) 1k 92.9 90.2
+ GAM 1k 93.3 90.5

PointMLP* (Ma et al. 2022) 1k 94.5 91.4
+ GAM* 1k 94.7 91.9

Table 4: Comparison results on ModelNet40 dataset on 3D
shape classification tasks. N indicates that the input point
cloud contains normal vector information, * indicates that
voting is used, S represents Single-Scale Grouping, and M
represents Multi-Scale Grouping.

3D Shape Classification Experimental Results on
ModelNet40
We conduct 3D shape classification experiments on Model-
Net40 dataset (Wu et al. 2015), which has 12311 CAD sam-
ples, including 9843 training samples and 2468 test sam-
ples. The proposed GAM is compared with the state-of-
the-art methods, which are KPConv (Thomas et al. 2019),
Point Transformer (Zhao et al. 2021), CurveNet (Xiang
et al. 2021), PointNet++(SSG) (Qi et al. 2017b), Point-
Net++(MSG) (Qi et al. 2017b), DGCNN (Wang et al.
2019b), and PointMLP (Ma et al. 2022). We select Point-
Net++(SSG), PointNet++(MSG), DGCNN, and PointMLP
as baselines to evaluate effectiveness of our proposed
method.

In Table 4, we report overall accuracy (OA) score and
mean accuracy (mAcc) on the ModelNet40 dataset. After
adding GAM, OA score and mAcc are increase significantly.
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Method Ins TP
PointNet (Qi et al. 2017a) 83.7 -

Point Tran. (Zhao et al. 2021) 86.6 -
PointMLP (Ma et al. 2022) 86.1 -

PointNet++ (Qi et al. 2017b) 85.1 370
+ GAM 85.5 368

DGCNN (Wang et al. 2019b) 85.2 257
+ GAM 85.5 235

CurveNet (Xiang et al. 2021)* 86.8 104
+ GAM* 87.0 99

Table 5: Comparison results on the ShapeNet dataset for 3D
part segmentation on different classes. Ins. represent the in-
stance average Inter-over-Union. * denotes the use of voting.

PointNet++ PointMLP
Distance Gradient OA mA OA mA
# # 86.2 84.3 85.7 84.4
! # 86.1 84.2 84.3 82.4
# ! 86.5 84.5 85.8 84.6
! ! 87.0 85.8 86.1 84.7

Table 6: Ablation study of our proposed GAM using differ-
ent kinds of information on ScanObjectNN dataset.

Result on 3D Part Segmentation
We conduct 3D part segmentation experiments on the
ShapeNet dataset (Yi et al. 2016) that has 16881 3D ob-
jects with 50 different categories of segmentation masks. We
compare our GAM with the state-of-the-art methods, includ-
ing PointNet (Qi et al. 2017a), Point Tran. (Zhao et al. 2021),
PointMLP (Ma et al. 2022), PointNet++ (Qi et al. 2017b),
DGCNN (Wang et al. 2019b) and CurveNet (Xiang et al.
2021). Each object was sampled to 2048 points.

In Table 5, we report the instruction mIou (Ins.) and
throughput (TP) for each baseline method before and af-
ter adding GAM. The Ins. scores of baseline methods (i.e.
PointNet++, DGCNN, and SOTA CurveNet) increase by
0.4%, 0.3%, and 0.2% after adding GAM, respectively.

Ablation Study
In order to verify the effectiveness of gradient information,
two variants of GAM are created, one with distance informa-
tion and the other with gradient information. Results of ab-
lation experiments conducted on the ScanObjectNN dataset
and S3DIS dataset are present in Table 6 and Table 7, re-
spectively.

As shown in Table 6, after adding the GAM variant with
only distance information for PointNet++ and PointMLP,
OA scores decrease by 0.1% and 1.3%. After adding the
GAM variant with only gradient information, the OA score
increases by 0.3% and 0.1%, indicating that gradient infor-
mation can constrain the local feature aggregation process
more effectively. While with both distance and gradient in-
formation, the OA score can be significantly increased than
single fine-grained information. Therefore, we conclude that

PointNet++ DGCNN
Distance Gradient mIoU OA mIoU OA
# # 53.5 83.0 47.9 83.6
! # 54.1 83.2 49.3 84.4
# ! 54.5 83.0 49.7 84.5
! ! 54.8 83.2 50.0 84.6

Table 7: Ablation study of our proposed GAM using differ-
ent kinds of information on S3DIS dataset Area5.

the combination of various fine-grained geometric informa-
tion is more effective in constraining the local aggregation
process by using multiple geometric dimensions.

In Table 7, we report the results of the ablation study for
our proposed GAM using different kinds of information on
the S3DIS dataset Area5. It also demonstrates the superiority
of gradient information over distance information, and the
effectiveness of combining various fine-grained geometric
information.

Normal Zenith & Azimuth
time (ms) 18.6 0.522

Table 8: Computation time of a single run before and after
GAM simplification. Normal represents direct calculation of
the normal vector for each neighborhood point, Zenith &
Azimuth represents calculation of the explicit representation
using the zenith angles and azimuth angles.

In three-dimensional space, the gradient of a three-
dimensional function and the normal vector of a three-
dimensional isosurface have different geometric meanings,
but they are essentially the same. Therefore, we modify the
local surface fitting method (Pauly 2003) to calculate the
normal vector of a plane, which is formed by the projection
of the center point on the X and Y circles and neighboring
points. It is the same as the object meaning of the gradient
calculated in GAM. The results are shown in Table 8. After
simplification, calculation speed is about 35 times faster than
the original method, which effectively alleviates the problem
of slow inference speed after adding GAM.

Conclusion
In this paper, we propose an efficient, lightweight, and plug-
and-play gradient attention module (GAM), in which gra-
dient information is introduced into the local feature ag-
gregator for the first time. Our proposed GAM solves the
problem of the different importance of each neighborhood
point in the local feature aggregation process, and brings
fine-grained geometric information to the local aggregation
process. The effective and efficient performance of our pro-
posed GAM is verified by conducting comparison experi-
ments on four tasks, including 3D point cloud shape classi-
fication, 3D part segmentation, 3D semantic segmentation,
and 3D object detection. It is our expectation that this work
can promote further research on local feature aggregation
descriptors.
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