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Abstract

Real-world recognition system often encounters the chal-
lenge of unseen labels. To identify such unseen labels, multi-
label zero-shot learning (ML-ZSL) focuses on transferring
knowledge by a pre-trained textual label embedding (e.g.,
GloVe). However, such methods only exploit single-modal
knowledge from a language model, while ignoring the rich
semantic information inherent in image-text pairs. Instead, re-
cently developed open-vocabulary (OV) based methods suc-
ceed in exploiting such information of image-text pairs in ob-
ject detection, and achieve impressive performance. Inspired
by the success of OV-based methods, we propose a novel
open-vocabulary framework, named multi-modal knowledge
transfer (MKT), for multi-label classification. Specifically,
our method exploits multi-modal knowledge of image-text
pairs based on a vision and language pre-training (VLP)
model. To facilitate transferring the image-text matching abil-
ity of VLP model, knowledge distillation is employed to guar-
antee the consistency of image and label embeddings, along
with prompt tuning to further update the label embeddings.
To further enable the recognition of multiple objects, a sim-
ple but effective two-stream module is developed to capture
both local and global features. Extensive experimental results
show that our method significantly outperforms state-of-the-
art methods on public benchmark datasets.

Introduction
Multi-label recognition, which aims to recognize all the rel-
evant labels in an image, is a fundamental task in computer
vision applications, such as scene understanding, surveil-
lance systems and self-driving cars. In real-world applica-
tions, multi-label recognition systems should learn tens of
thousands of labels, locate them in images, and even deal
with many unseen labels. To date, classic multi-label classi-
fication methods trained and tested with seen labels are far
from fulfilling the requirements for real applications, where
plenty of unseen labels exist.
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Figure 1: The overall framework of the classic multi-label
zero-shot learning (ML-ZSL), and our multi-modal knowl-
edge transfer (MTK) method. (b) ML-ZSL only exploits
single-modal knowledge of language-based models (e.g.,
Glove), and may fail to recognize unseen text labels (e.g.,
‘Black Dog’). (c) Instead, our MKT succeeds in predicting
it by jointly exploring multi-modal knowledge of vision and
language pre-training (VLP) models. (Best viewed in color.)

To identify the unseen labels in an image, many multi-
label zero-shot learning (ML-ZSL) methods (Huynh and El-
hamifar 2020; Gupta et al. 2021; Ben-Cohen et al. 2021;
Narayan et al. 2021) have been recently developed by trans-
ferring knowledge between seen and unseen labels. How-
ever, most existing methods (Zhang, Gong, and Shah 2016;
Huynh and Elhamifar 2020; Gupta et al. 2021; Ben-Cohen
et al. 2021; Narayan et al. 2021) contain two main issues.
First, these methods solely exploit single-modal knowledge
by a pre-trained textual label embeddings like GloVe (Pen-
nington, Socher, and Manning 2014) (as shown in Figure 1
(b)), while ignoring the visual semantic image-text pair in-
formation. Second, although such textual label embeddings
(e.g., GloVe) handle word labels (e.g., label of ‘cat’) well,
they cannot be easily extended to text labels (e.g., label of
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‘black cat’), thus hindering the flexibility of the models. As
shown in Figure 1, ML-ZSL fails to recognize the unseen
text label of ‘black dog’, while our MKT succeeds in pre-
dicting this label by jointly exploring multi-modal knowl-
edge of vision and language models.

To explore such multi-modal knowledge, recently devel-
oped open-vocabulary (OV) methods (Gu et al. 2022; Huynh
et al. 2022; Ghiasi et al. 2022; Du et al. 2022; Ma et al.
2022) have been proposed based on vision and language
pre-training (VLP) models. Such OV-based methods trained
on billions of image-text pairs contain powerful image-
text matching ability, and have achieved remarkable perfor-
mance in computer vision tasks like object detection. How-
ever, how to extend such OV-based methods to multi-label
classification, including unseen text labels, is less explored.

Motivated by the above observations, we propose a novel
open-vocabulary framework, named multi-modal knowl-
edge transfer (MKT), for multi-label classification. Unlike
the previous ML-ZSL methods that exploit only language-
based information, our MKT utilizes multi-modal knowl-
edge from image-text pairs from a vision and language
pre-training (VLP) model. As shown in Figure 1(c), our
MKT mainly consists of an image encoder to extract im-
age features, and a VLP image/text encoder to extract im-
age/label embeddings. Specifically, to facilitate transferring
the image-text matching ability of VLP models, knowledge
distillation and prompt tuning are introduced to guarantee
the consistency of image and label embeddings. In practice,
knowledge distillation makes image embeddings align bet-
ter with its relevant label embeddings, while prompt tuning
adapts the label embeddings to better support classification
task. Besides, to further improve the ability of feature ex-
pressions, we propose a simple but effective two-stream fea-
ture extraction module to capture both local and global fea-
tures to extract more discriminative features. In this way, our
MKT framework can capture the rich semantic information
inherent in image-text pairs of VLP models.

The main contributions can be summarized as follows:

1. We propose an open-vocabulary based multi-modal
knowledge transfer (MKT) framework for multi-label
classification, which exploits the semantic multi-modal
information in image-text pairs based on VLP models.
To the best of our knowledge, this is the first work to ex-
plore open-vocabulary multi-label classification task.

2. Our MKT framework mainly consists of an image en-
coder to extract image features, and a VLP image/text
encoder to extract image/label embeddings. To guarantee
the consistency of image and label embeddings, a knowl-
edge distillation strategy is incorporated into our MKT
framework, along with prompt tuning to update the label
embeddings iteratively. Besides, to further improve the
ability of feature expressions of our method, we propose
a two-stream feature extraction module by jointly captur-
ing local and global features.

3. Extensive results show that our MKT method signifi-
cantly outperforms the previous ML-ZSL methods and
establishes a new state of the art for open-vocabulary
multi-label classification on two large-scale benchmark

datasets, namely NUS-WIDE and Open Images.

Related Works
Multi-Label Zero-Shot Learning
The goal of standard multi-label classification task is to pre-
dict a set of labels in an image. A vanilla approach is to
train a binary classifier for each label present in the train-
ing dataset without considering the dependence among the
labels (Tsoumakas and Katakis 2007; Read et al. 2011).
To capture the label correlation, structure learning (Gong
et al. 2014; Wang et al. 2016; Zhu et al. 2017; Wang et al.
2017) and graph methods (Li et al. 2016; Lee et al. 2018;
Chen et al. 2019) are introduced in this task. Recently, vi-
sion transformer based methods have received much atten-
tion due to the powerful ability of capturing the global de-
pendency (Lanchantin et al. 2021; Cheng et al. 2022). Al-
though these methods have achieved promising results in
multi-label classification, they cannot handle unseen labels,
thus limiting their real applications.

To identify the unseen labels, zero-shot learning (ZSL)
usually utilizes semantic information like attributes or word
embeddings(Mikolov et al. 2013; Xian, Schiele, and Akata
2017). In particular, Lampert et al. (Lampert, Nickisch, and
Harmeling 2009) proposed two attribute-based paradigms
with direct attribute prediction (DAP) and indirect attribute
prediction (IAP). The former aims to learn multiple attribute
classifiers (Lampert, Nickisch, and Harmeling 2014), while
the latter uses seen class proportions for prediction (Zhang
and Saligrama 2015). While they can recognize to single un-
seen label, they cannot handle multi-label problem.

As an extension of ZSL, multi-label zero-shot learning
(ML-ZSL) is developed to identify multiple seen and unseen
labels in an image. The keys to this task are the alignment
of image embeddings with its relevant label embeddings and
the relation between seen and unseen label embeddings. To
this end, Fast0Tag (Zhang, Gong, and Shah 2016) and ZS-
SDL (Ben-Cohen et al. 2021) aim to find principal directions
of an image along which the relevant labels rank higher.
LESA (Huynh and Elhamifar 2020) and BiAM (Narayan
et al. 2021) introduce attention module to capture both local
and global features for better recognition of multiple objects.
On the other hand, GAN-MLZSL (Gupta et al. 2021) intro-
duces generative adversarial networks (GANs) to tackle the
problem of multi-label feature synthesis from corresponding
multi-label class embedding.

However, most existing ML-ZSL works exploit only
single-modal knowledge via a language model(e.g., GloVe).
Due to the lack of visual information, these language-based
models cannot capture visual consistency among labels, thus
limiting the generalization ability. By contrast, we attempt to
explore multi-modal knowledge from VLP models to lever-
age the consistency of image and label embeddings and can
handle multiple word and text unseen labels.

Open-Vocabulary Classification
With recent great development in vision and language pre-
training model, open-vocabulary classification emerges as
an alternative way to predict arbitrary labels. Large-scale
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Figure 2: The overall framework of our multi-modal knowledge transfer (MKT) model for open-vocabulary multi-label classifi-
cation. Our MKT mainly consists of a vision and language pre-training (VLP) model and a vision transformer model. The VLP
model aims to extract multi-modal knowledge of input image-text pairs, while vision transformer is used to extract semantic
features of input images. Moreover, knowledge distillation is used to guarantee the consistency of image and its relevant label
embeddings, along with prompt tuning to further update the label embeddings. (Best viewed in color.)

pre-trained models first become prevalent in natural lan-
guage processing (NLP), such as BERT (Devlin et al. 2018)
and GPT2 (Radford et al. 2019). Based on large-scale lan-
guage corpus (Raffel et al. 2020) and multiple task-agnostic
pre-training objectives (Devlin et al. 2018), these pre-trained
models achieve promising results in downstream tasks. Re-
cently, Vision and Language Pre-training (VLP) models (Lu
et al. 2019; Chen et al. 2020; Li et al. 2020; Li et al. 2020;
Kim, Son, and Kim 2021) have received much attention
in multi-modal tasks. For example, with billions of image-
text pairs as training samples, CLIP (Radford et al. 2021)
and ALIGN (Jia et al. 2021) have achieved impressive per-
formance in image-text matching task. By transferring this
matching ability to the classification task, we can achieve
arbitrary text label prediction. Specifically, for any concept,
we can generate its label embedding through the text en-
coder of VLP model and calculate its similarity to image em-
bedding for classification. Due to the large scale training cor-
pus, we can excavate label embedding of an unbounded vo-
cabulary and achieve open-vocabulary (OV) classification.

Some works have explored the OV classification in ob-
ject detection (Zareian et al. 2021; Gu et al. 2022; Du et al.
2022; Ma et al. 2022; Zang et al. 2022) and image segmen-
tation (Huynh et al. 2022; Ghiasi et al. 2022). They usu-
ally replace the classification head with label embeddings
and achieve impressive performance in arbitrary text con-
cept recognition. Moreover, to boost the classification abil-
ity, knowledge distillation (Hinton et al. 2015) and prompt
tuning (Li and Liang 2021) are introduced to facilitate trans-
ferring the image-text matching ability (Zhou et al. 2022).

However, most existing OV works focus on single label
classification task. Multi-label classification is more practi-

cal and challenging because the models need to recognize
multiple objects and cannot be trained with contrastive loss
directly. In this work, we first explore the multi-label open-
vocabulary classification task and propose a novel multi-
modal knowledge transfer (MKT) framework by jointly
exploiting multi-modal knowledge of the image-text pairs
based on vision and language pre-training models.

Multi-modal Knowledge Transfer
Preliminary
Similar to the ML-ZSL problem, suppose we have two dis-
joint label sets Y S and Y U , where Y S denotes seen labels
present in the training set and Y U denotes unseen labels
without training images. Let (x1,y1) , . . . , (xN ,yN ) be N
training sample, where xi denotes the i-th training samples
and yi ∈ Y S denotes the labels present in the image. In the
standard zero-shot learning (ZSL) task, the goal is to learn a
classifier fZSL : X → Y U to identify the relevant unseen
labels for a given image. Note that in a more challenging
and realistic setup of generalized zero-shot learning (GZSL)
task, the classifier needs to identify both seen and unseen la-
bels present in the test image, i.e., fGZSL : X → Y U ∪Y S .

The Overall Framework
As illustrated in Figure 2, we show the overall architecture of
our multi-modal knowledge transfer (MKT) method, which
mainly consists of a vision transformer and a vision and lan-
guage pre-training (VLP) model. Specifically, We utilize the
vision transformer (Dosovitskiy et al. 2021) as our backbone
network to extract semantic features from input images. Due
to its powerful ability in learning visual representations, we
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choose CLIP (Radford et al. 2021) as our VLP model to ex-
tract semantic multi-modal knowledge from both VLP im-
age and text encoders. Concretely, the label embedding is
first generated based on the VLP text encoder, followed by
further updates through prompt tuning. Moreover, knowl-
edge distillation is introduced to facilitate the alignment be-
tween image embeddings and its relevant labels.

Vision Transformer with Two-Stream Module
Denote an input image as x ∈ RC×H×W , where H × W
is the size of the image and C is the number of channels.
Following (Dosovitskiy et al. 2021), we reshape it into a se-
quence of flattened 2D patches xpatch ∈ RN×(P 2·C), where
P denotes the size of each patch and the total number of
patches is N = HW/P 2. Followed by a trainable linear
projection, xpatch is mapped into x̄patch ∈ RN×D, where
D is input embedding dimension. Then the processing of
the k-th block in vision transformer is formulated as

x0 = [Ecls, x̄patch] +Epos,

yk = xk−1 +MSA(NORM(xk−1)) ,

xk = yk +MLP (NORM(yk)) ,

(1)

where Ecls is the class token embedding and Epos is the
position embedding. [·, ·] means concatenation. MLP (·),
NORM(·), MSA(·) denote multilayer perceptron, norm
layer and multi-head self-attention, respectively.

Denote the output of vision transformer as xL =
[ocls,opatch], where ocls and opatch correspond to the out-
put of class and patch tokens, respectively. ocls represents
the global feature and opatch denotes the local features.

To identify multiple labels in an image, we propose a sim-
ple two-stream module consisting of local head ΘL (·) and
global head ΘG (·), mapping local and global features into
embedding space respectively,

ecls = ΘG (ocls) , epatch = ΘL (opatch) , (2)
where epatch = [e1, e2, . . . , eN ] and ecls are local and
global feature embeddings respectively.

Then, final prediction score is formulated as

si = ⟨zi, ecls⟩+TopK ([⟨zi, e1⟩ , ⟨zi, e2⟩ , ..., ⟨zi, eN ⟩]) ,
(3)

where zi ∈ R1×De is a label embedding and TopK (·) is the
top-k mean pooling. ⟨·, ·⟩ denotes inner product.

The ranking loss Lrank on prediction scores are used to
train the network:

Lrank ≜
∑
i

∑
p∈yi,n/∈yi

max (1 + sni − spi , 0) , (4)

where yi ∈ Y S is the target labels of an image i. sni and spi
denote the scores of negative and positive labels.

Knowledge Distillation for Alignment
As a key point to generalize to unseen labels, the alignment
of an image embedding with its associated seen label embed-
dings plays a critical role in open-vocabulary classification.
We take CLIP (Radford et al. 2021) as our VLP model, con-
sisting of an image encoder and a text encoder. Considering

that the pre-training task of CLIP is to match the paired im-
age and text, the image embedding generated by the CLIP
image encoder should be similar to its relevant label embed-
dings generated by the CLIP text encoder. Thus, we intro-
duce knowledge distillation to facilitate the alignment be-
tween the embeddings of an image and its relevant labels.

Denote the teacher model (i.e., CLIP image encoder) as
ΦCLIP

I (·), then the process of distillation is formulated as

Ldist ≜
∥∥ΦCLIP

I (x)− ocls

∥∥
1
= ∥odist − ocls∥1 , (5)

where x is an image input, ocls is the global features gen-
erated by the student model (i.e., our vision backbone), and
odist denotes the output of CLIP image encoder. The reason
for distillation on the global features instead of the local is
twofold. First, both ocls and the output of CLIP image en-
coder are corresponded to the CLS token. Moreover, the lo-
cal features opatch corresponding to different input patches
are expected to be discriminative instead of identical in order
to facilitate the recognition of multiple objects.

Prompt Tuning for Label Embedding
Following (Radford et al. 2021), we first design a manual
prompt template as “There is a {label} in the scene”. We
fill up the blank in this template with label name and treat
the whole sentence as the input of CLIP text encoder. The
output of CLIP text encoder is utilized as the label embed-
ding. Due to the different training objectives, we argue that
the label embeddings generated by pre-trained CLIP text en-
coder are not optimal for multi-label classification. Thus, we
propose to further fine-tune the label embedding. However,
it is very hard to fine-tune the entire text encoder due to the
mode collapse problem caused by insufficient training sam-
ples. Motivated by CoOp (Zhou et al. 2022), we introduce
prompt tuning for the adaptation of label embedding. Dur-
ing the tuning process, all parameters except for the context
embedding of the prompt template, which illustrated as the
dotted box in Figure 2, are fixed. We show that compared
with the hand-crafted prompt, continuous search in embed-
ding space based on CLIP text encoder facilitates the learn-
ing of optimal context embedding for our task.

Loss Functions
We divide the training process of our method into two stages.
In the first stage, label embedding is generated by the pre-
trained CLIP text encoder, and the vision encoder is trained
with the objectives of ranking loss and distillation loss,

Lstage1 = Lrank + λLdist, (6)

where λ is the weight factor of knowledge distillation.
In the second stage, we only finetune the context embed-

ding with the objective of ranking loss,

Lstage2 = Lrank . (7)

Experiments
Experiments Setup
Datasets: In the NUS-WIDE dataset, there are 81 human
verified labels, in addition to 925 labels based on Flickr
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Method Setting Task NUS-WIDE Open-Images
F1(K=3) F1(K=5) mAP F1(K=10) F1(K=20) mAP WmAP

LESA (M=10) ZSL 31.6 28.7 19.4 1.4 1.0 41.7 -
GZSL 14.4 16.8 5.6 17.4 14.3 45.4 -

ZS-SDL ZS ZSL 30.5 27.8 25.9 10.7 8.3 62.9 -
GZSL 18.5 21.0 12.1 37.8 32.9 75.3 -

BiAM∗ ZSL 32.7 29.8 25.9 7.0 5.5 65.6 72.9
GZSL 15.4 18.2 9.4 14.8 9.7 81.7 85.0

CLIP-FT

OV

ZSL 23.5 21.7 30.5 19.1 11.1 66.2 88.2
GZSL 20.3 23.2 16.8 40.2 35.4 77.5 85.9

MKT ZSL 34.1 31.1 37.6 19.7 11.4 68.1 89.2
GZSL 22.0 25.4 18.3 40.5 35.4 81.4 89.8

Table 1: State-of-the-art comparison for ZSL and GZSL tasks on the NUS-WIDE and Open Images datasets. The results are
reported in terms of mAP, as well as precision (P), recall (R), and F1 score at K∈{3, 5} for NUS-WIDE and K∈{10, 20} for
Open Images. ‘*’ means that the results are reproduced based on official pre-trained models. Bold indicates the best score.

user tags. Similar to LESA (Huynh and Elhamifar 2020),
we treat 925 labels as seen labels and the other 81 labels as
unseen labels. Following official train/test split, we utilize
161,789 images for training and 107,859 images for testing.
The Open Images (v4) dataset is more challenging because
it consists of 9M training images and 125,456 testing im-
ages. Similar to LESA, we treat 7,186 labels with more than
100 images in training set as seen and the most frequent 400
test labels that are not present in training data as unseen.
Metrics: Following LESA, we use mean Average Precision
(mAP) and F1 score at top-K predictions to evaluate our
method. The mAP reflects the ranking accuracy of each la-
bel across all images and the F1 score reflects the label rank-
ing accuracy of each image.
Implementation Details: We use the ImageNet-1K pre-
trained ViT-B/16 as our vision backbone. As for the two-
stream module, the local head consists of two linear layers,
and the global head is a linear projection layer. To generate
label embedding and conduct knowledge distillation on vi-
sion encoder, we select the pre-trained CLIP with ViT-B/16
image encoder as our VLP model. Patch projection of ViT-
B/16 yields 14 × 14 = 196 patches for an image with a
resolution of 224×224. The k for top-k pooling is set to 18,
and the weight of knowledge distillation λ is set to 1. In the
first stage, we use AdamW optimizer with base learning rate
of 0.001 and weight decay of 0.005. We adjust base learn-
ing rate of the AdamW optimizer to 0.00003 during the sec-
ond stage for fine-tuning the context embedding. On NUS-
WIDE, we train the model for 20 epochs with the mini-batch
of 128 and 10 epochs with the mini-batch of 16 in the first
and second stage, respectively. Considering the large scale
of Open Images, the model is trained for 4 epochs and 2
epochs in each stage with the same batch size as above.

State-of-the-art Comparison
In this experiment, we compare our model with traditional
ML-ZSL methods. Also, we fine-tune the pre-trained CLIP
on base categories with ranking loss and denote it as CLIP-

FT. As a new OV-ML baseline, CLIP-FT surpasses most
existing ML-ZSL methods on mAP. The experimental re-
sults on zero-shot learning(ZSL) and generalized zero-shot
learning(GZSL) tasks are shown in Table 1. The mAP and
F1 scores at top-K (K ∈ {3, 5} for NUS-WIDE and K ∈
{10, 20} for Open Images) are reported.

On NUS-WIDE, the recently proposed BiAM (Narayan
et al. 2021), which utilizes a bi-level attention module to en-
rich the features, acquires the best results in ZSL task with
mAP score of 25.9%. MKT surpasses BiAM with an ab-
solute gain of 11.7% mAP and improves the F1 score by
absolute gains of 1.4% and 1.3% at K=3 and K=5, respec-
tively. In GZSL task, the approach of ZS-SDL (Ben-Cohen
et al. 2021) achieves the best scores with 12.1% mAP. MKT
improves the mAP by an absolute gain of 6.5% and reaches
state of the art in terms of F1 score with 22.0% at K=3 and
25.4% at K=5. Compared with CLIP-FT, MKT shows sig-
nificant improvement on both ZSL and GZSL task.

On Open Images, following BiAM, we also calculate
mAP weighted on different sample numbers(denoted as
WmAP). ZS-SDL reaches the state of the art before in
terms of F1 score in both ZSL and GZSL tasks. MKT
achieves consistent improvement over it with absolute gains
of 9.0%/2.7% and 3.1%/2.5% at K=10 and K=20 on
ZSL/GZSL task. In comparison with previous best re-
sults on mAP/WmAP metric, MKT outperforms BiAM by
2.5%/16.3% on ZSL and have a comparable performance
on GZSL task. MKT also surpasses CLIP-FT on both tasks.

Ablation Studies
Effects of knowledge distillation and prompt tuning: To
study the impacts of knowledge distillation and prompt tun-
ing, we conduct experiments with different training schemes
and illustrate the results in Table 2. We take the first row as
the baseline for the following comparisons, which is trained
without knowledge distillation and prompt tuning. It shows
that the introduction of knowledge distillation improves the
performance on both ZSL and GZSL tasks. We conjecture
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Distill Prompt Task mAP F1 (K = 3) F1 (K = 5)

% %
ZSL 32.4 29.4 26.5

GZSL 16.8 21.0 24.0

! %
ZSL 37.3 32.5 29.5

GZSL 18.2 21.7 24.9

% !
ZSL 32.5 29.5 26.4

GZSL 16.8 21.1 24.1

! !
ZSL 37.6 34.1 31.1

GZSL 18.3 22.0 25.4

Table 2: Impact of knowledge distillation and prompt tuning.

Embedding Task mAP F1 (K = 3) F1 (K = 5)

GloVe ZSL 27.1 22.8 21.4
GZSL 16.1 20.6 23.4

CLIP ZSL 32.4 29.4 26.5
GZSL 16.8 21.0 24.0

Table 3: Impact of label embedding. For a fair comparison,
we only change label embedding and train both models with-
out knowledge distillation or prompt tuning.

that knowledge distillation not only facilitates the image em-
bedding to align better with VLP model based label embed-
ding but also suppresses the overfitting of the model to seen
labels. Moreover, we observe that prompt tuning can fur-
ther improve performance. It can be attributed to the rea-
son that the prompt-tuned context embedding tends to pay
more attention to the visual information that benefits image
classification. Compared with the baseline in the first row,
MKT shows significant improvement with the combination
of knowledge distillation and prompt tuning.
Comparison of label embedding: Because prediction re-
sults are based on the similarity between image and label
embeddings, label embedding has a significant impact on
model performance. Table 3 shows the results of baseline
model with VLP model based and GloVe based label em-
beddings. Compared with the model based on GloVe em-
bedding, the VLP embedding based model achieves supe-
rior performance on both ZSL and GZSL task. We speculate
that language models like GloVe or Bert cannot capture vi-
sual consistency among similar labels because of the lack of
visual information during the training process, thus limiting
the generalization ability to unseen labels. To validate our
assumption, we conduct a label retrieval experiment. We se-
lect 62 common labels in NUS-WIDE and divide them into
14 major categories based on their visual and semantic simi-
larity. Both language models (i.e., GloVe and Bert) and VLP
models (i.e., CLIP and its prompt-tuned version) are utilized
to generate label embeddings. All embeddings are normal-
ized, and cosine similarity is used to retrieve the most simi-
lar embeddings. Figure 3 illustrates the retrieval results with
the overall Top-3 accuracy and examples of retrieved labels.
Notice that compared with language model, VLP model can
capture both semantic and visual consistency between la-
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(a) Top-3 Accuracy

Query Embed Label 1 Label 2 Label 3 

Girls
GloVe Desert Tourist Plane
Bert Kid Cat Dog
CLIP Man Kid School
Prompt Man Kid Person

Airport
GloVe Plane Dawn Train
Bert Hospital Locomotive Hotel
CLIP Airplane Plane Aircraft
Prompt Airplane Aircraft Plane

(b) Top-3 Retrieved Results

Figure 3: Results of label retrieval. Overall Top-3 accuracy
and examples of retrieved labels are reported. Retrieved la-
bels belonging to the same major category with the query
label are considered to be correct (in green).

(a) Global Head Prediction (b) Local Head Prediction

Figure 4: Distribution of global and local predictions.

bels. For instance, “girls” contains similar visual informa-
tion with its retrieved labels “man”, “kid” and “person”. We
argue that label embedding with both visual and semantic
consistency facilitates the generalization to unseen labels.
Effect of the two-stream module: To demonstrate the ef-
fectiveness of our proposed two-stream module, we con-
duct ablation studies of both local and global heads. Table
4 shows the results in terms of mAP and F1 score on NUS-
WIDE. Notice that the global head only model performs
well on mAP while the local head only model achieves bet-
ter F1 score in ZSL task. We speculate that this is due to the
fact that the global representation is more general while the
local representation is more discriminative. As illustrated in
Figure 4, the local head tends to predict higher scores than
the global head. While the more discriminative feature al-
lows relevant labels to stand out, it also makes the model
more sensitive to noise, leading to wrong predictions. On the
other hand, compared to F1 score, mAP is more susceptible
to the wrong predictions with high scores. Therefore, the lo-
cal head only model acquires better F1 score and inferior
mAP. With the combination of local and global heads, the
two-stream module can acquire more discriminative predic-
tions with resistance to noise, leading to higher performance.

Varying the hyper-parameters: Here, we explore the ef-
fect of knowledge distillation and variation of k value in the
local head. Knowledge distillation aims to transfer zero-shot
classification ability. We are more concerned about its per-
formance on unseen labels. Figure 5a illustrates the results
of ZSL task with respect to distillation weight λ. Notice
that when λ is smaller than 1, the performance of our ap-
proach improves because knowledge distillation facilitates
the alignment of image and label embeddings. However,
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Local Global Task mAP F1 (K = 3) F1 (K = 5)

! %
ZSL 29.1 29.9 27.2

GZSL 15.7 20.8 23.8

% !
ZSL 30.3 23.3 21.4

GZSL 15.5 19.4 22.1

! !
ZSL 32.4 29.4 26.5

GZSL 16.8 21.0 24.0

Table 4: Effectiveness of the two-steam module. Bold indi-
cates the best, and underline indicates the second best.
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Figure 5: Impact of hyper-parameters. The results of ZSL
task with respect to distillation weight λ and GZSL task with
respect to k for top-k in local head are presented.

there is a drop in performance when λ is larger than 2. We ar-
gue that too large λ may impair the learning of classification
objective Lrank . The two-stream module is designed to im-
prove the recognition of multiple labels, so we focus more
on GZSL tasks. Figure 5b illustrates the results of GZSL
when altering k value in the local head. As k increases, F1
score reaches the highest when k=18. We argue that when
k is too small, the local head output is sensitive to noise. On
the other hand, if k is too large, the output will be less dis-
criminative. For example, if k is set as the total patch num-
ber, top-k pooling will be equal to global average pooling.
In contrast to F1 score, mAP tends to increase while k value
increases. When k is small, the local head output tends to
be discriminative but sensitive to noise, resulting in a lower
mAP value. As k increases, the output becomes moderate
and more resistant to noise, leading to a higher mAP value.

Qualitative Assessment
In this section, we visualize both predictions and attention
maps on several samples. Figure 6 presents predictions of
CLIP, BiAM and our approach on ZSL and GZSL tasks
respectively. Compared with CLIP, our approach produces
more diverse predictions because the two-stream module
captures discriminative features. Compared to BiAM, our
model with VLP based label embedding can identify seman-
tic and visual similarity among labels. For example, in the
last sample of Figure 6, label “plane”, “airplane” and “air-
craft” are synonymous and should have similar scores. Fig-
ure 7 illustrates the comparison of attention maps between
BiAM and ours. The results show that our method can cap-
ture relevant regions more precisely. For instance, in the first
column, BiAM pays attention to large irrelevant areas while
our method exactly focuses on the boat region.

MKT CLIP BiAM
flowers flowers grass
sky clouds sky

clouds sky mountain
grass valley tree
plants garden snow

MKT CLIP BiAM
birds birds birds
animal sky beach
sky whales ocean
plane plane surf
clouds sunset sky

MKT CLIP BiAM
people facade smoke
wall silhouette silhouette

shadow architecture firefighter
shadows sunlight London
windows figures person

MKT CLIP BiAM
plane airplanes aircraft
airplane airplane airplane
aircraft aviation aviation
jet plane jet

aviation aircraft race

Figure 6: Comparison of predictions. The top row shows the
prediction in ZSL task, and the bottom is the prediction in
GZSL task. True positive predictions are shown in green and
the red font denotes apparently incorrect predictions.
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Figure 7: Comparison of Grad-CAM visualization.

Conclusion
In this work, we propose an open-vocabulary based multi-
modal knowledge transfer (MKT) framework for multi-label
classification, which jointly exploits semantic multi-modal
information in image-text pairs based VLP models. To fa-
cilitate transferring the image-text matching ability of VLP
model to classification, knowledge distillation and prompt
tuning are introduced. Additionally a two-stream module is
proposed to capture both local and global features, leading
to significant performance gains in multi-label tasks. Exten-
sive results demonstrate that our model surpasses previous
ML-ZSL methods and establishes a new state of the art for
open-vocabulary multi-label classification on NUS-WIDE
and Open Images datasets. This is the first work in open-
vocabulary multi-label classification and it is expected to
encourage future works to explore multi-modal knowledge
applications in classification.
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