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Abstract

Most deep trackers still follow the guidance of the siamese
paradigms and use a template that contains only the target
without any contextual information, which makes it diffi-
cult for the tracker to cope with large appearance changes,
rapid target movement, and attraction from similar objects.
To alleviate the above problem, we propose a long-term con-
text attention (LCA) module that can perform extensive in-
formation fusion on the target and its context from long-
term frames, and calculate the target correlation while en-
hancing target features. The complete contextual informa-
tion contains the location of the target as well as the state
around the target. LCA uses the target state from the pre-
vious frame to exclude the interference of similar objects
and complex backgrounds, thus accurately locating the target
and enabling the tracker to obtain higher robustness and re-
gression accuracy. By embedding the LCA module in Trans-
former, we build a powerful online tracker with a target-
aware backbone, termed as TATrack. In addition, we pro-
pose a dynamic online update algorithm based on the clas-
sification confidence of historical information without ad-
ditional calculation burden. Our tracker achieves state-of-
the-art performance on multiple benchmarks, with 71.1%
AUC, 89.3% NP, and 73.0% AO on LaSOT, TrackingNet,
and GOT-10k. The code and trained models are available on
https://github.com/hekaijie123/TATrack.

Introduction
Visual target tracking is a fundamental computer vision task.
Given an initial position of any target, the tracker is required
to evaluate the target state in subsequent each frame of a
video. Tracking task faces significant challenges such as the
variable appearance, fast movement, attraction from similar
objects, etc. Siamese structure based trackers have achieved
considerable success, which realizes tracking by using twin
networks to represent the target and search image and cal-
culating their similarity. Although the existing trackers have
become more and more complex, most of them still originate
from Siamese paradigms.

After carefully investigating the existing Siamese track-
ers, we found that they have more or less inherited cer-
tain simple operation from SiamFC (Bertinetto et al. 2016),
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Figure 1: Comparison with other advanced trackers on
TrackingNet and LaSOT benchmarks.

and have some drawback as follows: (1) Due to insufficient
appearance information, using target template without any
background to correlate with the search region will be dif-
fcult to distinguish the real target from the background at-
tractors similar to the target, and also has difficulty in cop-
ing with the severe appearance changes; (2) In tracking task,
the correlation operation is performed after the backbone
network has completely extracted the image features, but
the backbone network is originally designed for classifica-
tion task, so the applicability of the feature extraction to the
tracking task is limited to a certain extent. (3) The tracker
uses only the optimal model obtained by offline training to
predict the target, and the model only knows the target ap-
pearance of the initial frame without online updated infor-
mation. Such a tracker is static and it does not have any per-
ception of the changes that occur in the target state through-
out the video sequence. The static tracker lacks perception
of the continuous changes in the target and loses robustness
in long time tracking. Above drawbacks are not very promi-
nent in simple tracking scenarios, but they will be rapidly
enlarged in complex tracking scenarios, so it is necessary
to overcome them. Inspired by above three problems, we
propose a long-term context attention mechanism that can
simultaneously accept a target template, a historical frame
and a current search frame as input in an adaptive weighted
fusion way. We embed an improved location encoder in the

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

773



LCA, which enables the target template, the historical frame
and the current search frame to perform self-attention calcu-
lation while perform cross-attention calculation with each
other. The LCA extensively fuses target and background
features of images spanning different times and can effec-
tively extract the location information of the target and the
state information around the target. Since the LCA mod-
ule has correlation calculation and feature extraction func-
tions, we alternately stack multiple LCA and SWA (Liu et al.
2021) modules to construct the backbone network suitable
for tracking task. With the deepening of layers of the back-
bone network, the target-aware ability of LCA module will
be stronger, that is, the real target will be highlighted while
the features of other interfering objects will be weakened.
The previous templates are filled with high quality histori-
cal frames from the inference process, so we need a reliable
quality determination method to select the historical frames.
Different from existing online update trackers that use a two-
stage inference update approach (Mayer et al. 2022) or a
two-stage training network structure (Cui et al. 2022; Yan
et al. 2021), we propose a very concise and efficient algo-
rithm that determines whether to update the template ac-
cording to the classification confidence scores of historical
frames, thus achieving high robustness and avoiding large
calculational cost like aforementioned two-stage methods.
TATracker achieves state-of-the-art performance, shown in
Fig. 1.

In summary, our main contributions as follows:

• We propose a new cross-frame attention module suitable
for fusion interaction of target and its context.

• Based on LCA, we build a powerful tracker that has a
backbone better suited to the tracking task.

• We propose a concise and efficient online updating ap-
proach based on classification confidence to select high-
quality templates with very low computation burden.

• We evaluate our tracker through comprehensive ablation
and comparison experiments, and the experimental re-
sults verify its effectiveness and advancement.

Related Work
Tracker Backbone. Deep trackers rely heavily on offline
training, and more powerful feature extraction networks
can capture deeper semantic information about the target.
This feature allows twin network architectures to easily
gain more powerful performance from each backbone net-
work upgrade. From the early days of siamFC (Bertinetto
et al. 2016), SiamRPN (Li et al. 2018) used AlexNet, then
SiamRPN++ (Li et al. 2019) pioneered the use of the more
mature backbone network Resnet, to recent years when
Transformer backbone networks started to be used in track-
ers (Lin et al. 2021). In these previous works, the backbone
networks used by the tracker were derived from the upstream
image classification task, and the direct use of the feature
extraction network for the classification task is inefficient
for the tracker. The backbone network for the classification
task is used to determine the overall category of the image
and has no perception of the target and background in the

tracking task, which is contrary to the requirement of distin-
guishing interferers in the tracking task. We propose a target-
aware backbone that focuses on the extraction of target fea-
tures. In addition, we also add auxiliary positioning infor-
mation as (Zhang, Li, and Wang 2018) fuses multi-feature
information.

Online Update. In the Siamese paradigm, the tracker uses
the first frame as a template and remains unchanged, and
the performance of the tracker depends entirely on the abil-
ity to match the appearance of the target. However, the ap-
pearance of the target tends to change continuously over
time, and models that are not updated have significant bot-
tlenecks. Guided by this, much work has been done to ex-
periment with online updates. The large network structure
of the tracker requires long time and large amount of data
for training, and the video history information obtained on-
line alone can hardly be used to accurately update the model
parameters of the subject. the ATOM (Danelljan et al. 2019)
model is designed with mini-localization branches, and the
localization branches are trained at each inference. How-
ever, mini-branches have significant performance limits and
increase inference time, and have not become mainstream.
UpdateNet (Zhang et al. 2019) uses a CNN to add the target
template and the cumulative template to the current frame
template with certain weights, resulting in a template with
continuously changing information, but the template will ac-
cumulate contamination over time leading to failure. STM-
track (Fu et al. 2021) uses fused information from multiple
templates, and updates are taken from the historical template
at medium intervals. MixFormer (Cui et al. 2022; Yan et al.
2021)et al. take the training quality branch to score the his-
tory frames, which has the disadvantage of secondary train-
ing and requires restarting the training quality branch after
the training of the main body of the network. ToMP (Mayer
et al. 2022) uses two templates and takes the most recent
frame that meets the conditions as the template, but the infer-
ence phase requires two repetitions to ensure performance.
While each of these online update approaches possesses rel-
atively obvious limitations, our approach uses historical in-
formation about the classification confidence generated dur-
ing the tracker inference to achieve a way to update tem-
plates online without any additional cost.

Method
Long-Term Contextual Attention (LCA)
In this section, we first introduce the proposed Long-term
Contextual Attention (LCA) module, which is designed for
integrating the information of target and context from multi-
frames. Fig. 2 shows the overview of the LCA module.

LCA is a powerful attention computation module, which
can integrate the features from the target template, previous
template, and searched image, perceive the real target from
the previous template and search image based on the fea-
tures of the target template, and reinforce features of the tar-
get while weakening interference information. At the same
time, the LCA can implicitly find the changes in the search
image based on the target state including the appearance and
relative position in the previous template, to further exclude
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Figure 2: Long-term contextual attention module (LCA) is an efficient multi-image attention operation. It can simultaneously
perform feature extracting for each image through self-attention and target searching through cross-attention among images.
LCA uses inter-image independent location encoding to divide the attention weight map into TtoT, TtoP, TtoS, PtoT, PtoP, PtoS,
StoT, StoP, and StoS from top to bottom and left to right, where T, P, and S represent the target template, the previous template,
and the searched image, respectively.

the interfering objects similar to the target, thus more accu-
rately capturing the current target state.

In this module, position encoding plays an important role.
We know that in the self-attention formula Eq. 1, the self-
attention formula without position encoding is Eq. 2 and the
self-attention formula with absolute position encoding is Eq.
3. x ∈ RL×d is the input feature, p is the absolute position
encoding, and W ∈ Rd×d is the linear transformation ma-
trix. Q, K and V represent the query, the key and value three
mapping matrices, which have the same dimensionality. We
did not just directly stitch together the target template, the
previous template, and the search image as a whole to cal-
culate the self-attention. Because the relationship between
the target template, previous template, and search image will
not be distinguished in the formula, the three features will be
treated as one big image and the model’s ability to construct
connections between the three will be limited. Therefore, we
must make improvements to the location coding.

Attention = Softmax(w)xWV (1)

where w =
1√
d
(xWQ)(xWK)T (2)

wAbs =

(
(x+ p)WQ

) (
(x+ p)WK

)T
√
d

(3)

TUPE (Ke, He, and Liu 2020) proposes untied absolute po-
sitional encoding 4 as an alternative to the traditional posi-
tional encoding formulation, where U is a linear transforma-
tion matrix of learnable absolute positional encoding with
dimensionality equal to W . This formulation decouples the
feature x from the absolute positional encoding p. p extracts
position information with a learnable independent transfor-
mation matrix, unlocking the potential of absolute position
coding.

wAbs =
1√
2d

(
xWQ

) (
xWK

)T
+

1√
2d

(
pUQ

) (
pUK

)T (4)

We adopt the relative position encoding r ∈ RL×L form
used in SWA (Liu et al. 2021) Eq. 5, where the Pi−j is the
learnable variable de-indexed according to i− j.

rij = Pi−j (5)

We extend the positional encoding designed for a single im-
age to the multi-image case. We first expand the input tar-
get template, the previous template, and the features of the
search region into a dimension L along the W and H dimen-
sion, and concatenate the three together along the L dimen-
sion x = Concat (z, pre, x), and do the same for the ab-
solute position encoding p = Concat (pz, ppre, px). Divide
the relative position encoding r into n×m = 9 independent
regions to compute P i−j , as shown by the position encod-
ing in Fig. 2. Finally, we obtain the LCA attention formula
as follows Eq. 6.

LCA = Softmax(w + a+ r)xWV

w =
1√
2d

(xWQ)(xWK)T

a =
1√
2d

(
pUQ

) (
pUK

)T
rnm,ij = Pnm,i−j

(6)

Discussions: Why do we introduce additional prior tem-
plates? (1) We introduce rich background information
through the previous templates to locate the target with the
help of the relative position of the previous target in the
background. (2) The addition of prior templates enables on-
line updates, and prior templates contain the state of the tar-
get at more recent time points for more accurate regression
of the target. Why did we not add the background to the tar-
get template? Because, the previous template is temporally
closer to the current frame, and the initial target is not im-
portant to include the background in the target template, and
including only the non-updated targets can emphasize the
consistency of the tracker’s tracking of the target.

Overall
The overall structure of the model is shown in Fig. 3.
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Figure 3: We construct a target-aware backbone network based on alternating stacks of LCA and shift window attention (SWA)
module of Swin-Transformer. The target-aware features extracted by the backbone network are further refined by a neck con-
sisting of multiple layers of LCAs to refine the state information of the target. Finally, only the features of the search image part
are taken for the feature maps of the regression and classification head.

Backbone. The backbone network accepts the target tem-
plate z ∈ RHz×Wz×3, the previous template pre ∈
RHpre×Wpre×3 and the search image x ∈ RHx×Wx×3 of the
input. To better match the LCA, we choose the SWA with
the same transformer structure to build the feature extraction
network. In the first stage of the feature extraction network,
we patch and embed the image features into H

4 × W
4 × C

feature tokens using a convolution kernel of size 4. The to-
ken expands both H , W dimensions into length L in the
transformer operation. and then passed through two SWA
modules. PaE is used before each subsequent stage, and H ,
W is halved while C is doubled. In the stage3, we use two
SWA modules in a group with LCA modules stacked alter-
nately. We use two SWA modules as a group because two
SWA modules complete a window shift and recovery. The
target features, previous features and search features are in-
dividually passed through PaE and SWA modules in turn,
and the three are input into LCA after stitching along the L
dimension, and the output of LCA is reduced to three tokens
in turn by SWA to extract features. Finally, the sequence of
H
16×

W
16 ×4C tokens is obtained from the backbone network.

Neck. In this stage, we add the encoded information about
the target location and target size of the previous template.
We increase the robustness in training by randomly dithering
regions of the previous template, where the target is not al-
ways in the center of the image. The previous template con-
tains larger regions other than the target, and the inclusion
of Gaussian localization information is necessary to avoid
ambiguities induced by similar objects. Also, we adopt a
similar approach by adding the ltrb representation (Mayer
et al. 2022) of the length and width information to help
the model prediction. For the bounding box of the previous
frame bpre = {bx1 , by1 , bx2 , by2}, we first denote each posi-
tion of the feature map by (kx, ky) . Then we get the formula
Eq. 7 for the bounding box information dpre = (l, t, r, b)
represented by the four sides.

l = kx − bx1/s, r = bx2/s− kx,
t = ky − by1/s, b = by2/s− ky,

(7)

where s = 16 is the multiple of image mapping to feature
map reduction. dpre ∈ RH×W×4, ψ is the multilayer per-
ceptron that maps the dimension of d from 4 to C to get
the size information embedding of the target. The Gaussian
position map ypre ∈ RH×W×1 mentioned earlier is multi-
plied by the learnable weight w ∈ R1×1×C using the broad-
cast mechanism to get the position information embedding
of the previous target. Box-embedding is given by the target
size and the target location embedding are directly summed
by the following equation:

Box-embedding = w · ypre +MLP(dpre) (8)
Then we successively overlap with multiple LCA modules
to further process the information of the target. In the last
layer of LCA, we keep only the attention computation of the
search features to the target template and the previous tem-
plate, then pass the search feature map to the classification
head and regression head.

Head and Loss. The head network contains two branches:
the bounding box regression head and the classification
head. The regression map RH×W×4,and the correspond-
ing map RH×W×1 for the prediction are obtained from the
search feature map through the three-layer perceptron, re-
spectively. The regression loss uses the common generalized
IoU loss (Rezatofighi et al. 2019), and the classification loss
we use varifocal loss (Zhang et al. 2021), which uses the
currently more popular IoU-aware design. the core idea of
IoU-aware is to replace the IoU score with the positive la-
bel value of the classification, the traditional positive sample
value of the classification is labeled as 1, the improvement
relates the regression task to the classification task. varifocal
loss is formulated as follows:

VFL(p, q) =

{
−q(q log(p) + (1− q) log(1− p)) q > 0

−αpγ log(1− p) q = 0

(9)
p is the classification prediction while q is the IoU score of
the target. Our total loss function is as follows:

L = λcls Lcls

(
p, IoU(b̂, b)

)
+ λgiou Lgiou (b̂, b) (10)
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For the weights λcls is set to 1.5 and λgiou is set to 1.5.

Online Update Strategy
A common way to pick an update template is to retrain
a quality judgment branch, but such an approach requires
training the model twice. And almost all update approaches
set a fixed hyperparameter as a threshold, and update only
when the quality confidence is higher than this static thresh-
old. We believe that updating the template should follow two
principles, (1) The updated template should be as close to the
current frame as possible in time to ensure that the updated
template has the most similar state to the current frame. (2)
The updated template should be as high quality as possible,
with good recognition and accuracy. In this regard, we pro-
pose a dynamic thresholding algorithm with a simple clas-
sification confidence level to select the ideal historical tem-
plate. The first algorithm uses the classification confidence
historical average as the threshold value, Eq. 11 as follows:

mean =
n∑
i

si/n (11)

n is the current frame serial number n and si is the classifica-
tion confidence of the ith frame. The mean value as a thresh-
old has a low update criterion and may be selected as close
as possible to the historical template of the current frame.
This approach shows relatively reliable performance in the
got-10k and TrackingNet datasets, but underperforms in the
long sequence tracking dataset Lasot. We analyzed the rea-
sons for this; as the target deformation and the environmen-
tal changes it faces tend to get more and more complex with
increasing time, the model keeps accumulating errors during
the tracking process, and even loses the target forever after
losing it midway. This is not obvious on got-10k and Track-
ingNet short series datasets, but long series benchmarks like
LaSOT are more likely to encounter prolonged occlusion or
target disappearance, and using only lower thresholds will
tend to update to the wrong template. Wrong updates will
continuously reduce the classification confidence in subse-
quent tracking, making the threshold of the mean formula
invalid. Therefore, we further propose an improved calcula-
tion method by proposing a threshold formula with penalty
Eq. 12.

The results of the threshold formula with penalty are more
dependent on the prior classification confidence scores, and
the results are more stable compared to the mean formula.
Keeping the threshold higher allows the model to resist er-
roneous template updates when encountering long periods
of target disappearance and occlusion.

p mean =
n∑
m

( m∑
i

si/m
)
/n

=
[(
s1 +

s1
2

+ . . .
s1
n

)
+

(s2
2

+ . . .
s2
n

)
+ . . .

(sn
n

)]
/n

(12)

The results of the threshold formula with penalty are more
dependent on the prior classification confidence scores, and

TATrack-S TATrack-B TATrack-L

Target Image 112× 112 112× 112 192× 192

Previous Image 224× 224 224× 224 384× 384

Search Image 224× 224 224× 224 384× 384

Backbone


N1 = 3

N2 = 2

C = 96



N1 = 9

N2 = 8

C = 128



N1 = 9

N2 = 8

C = 128


Neck N3 = 4 N3 = 8 N3 = 8

MACs 13.1 G 45.1 G 162.4 G

Param 24.5 M 112.8 M 112.8 M

Speed(V100) 29.6 FPS 14.1 FPS 6.6 FPS

Table 1: The network structure parameters of TATrack-S,
TATrack-B, and TATrack-L. The number of N1, N2, N3, C
corresponds to Fig. 3

the results are more stable compared to the mean formula.
Keeping the threshold higher allows the model to resist er-
roneous template updates when encountering long periods
of target disappearance and occlusion.

Experiments
Implementation Details
Our tracker was implemented on Python 3.9 and pytorch
1.11.0, trained on 2 Tesla A100 GPUs. The different sizes
of TATrack are shown in Tab. 1, on PaE and SWA mod-
ules, TATrack-S, TATrack-B, and TATrack-L are loaded
with pre-training weights of Swin-Tiny, Swin-Base, and
Swin-Base384, respectively. We used TrackingNet, LaSOT,
COCO and GOT-10k multiple training sets for joint training.

Comparison with the State-of-the-Art Trackers
GOT-10k. GOT10k (Huang, Zhao, and Huang 2019) is
a large benchmark containing 560 classes of motion ob-
jects and 87 classes of motion patterns, and places more
emphasis on the regression accuracy of the tracker on the
target.GOT-10k officially requires that the tracker be trained
based only on the training set of GOT-10k, and we followed
this guidance.GOT-10k provides 180 test sequences with an
average sequence length of 150, and officially does not dis-
close the true annotation of the test sequences, and we ob-
tained the tracking metrics by submitting the raw tracking
results for online evaluation Tab. 2.

TrackingNet. TrackingNet (Muller et al. 2018) contains
30312 video sequences, videos captured from real-life
filmed YouTube content. trackingNet provides 511 test
videos with an average sequence length of 441 frames, and
no real annotation of the test sequences is publicly available.
We submit the raw data to an official online evaluation ser-
vice Tab. 2.

LaSOT. LaSOT (Fan et al. 2019) is a large benchmark
for long sequences, it contains 280 test sequences averaging
2500 frames, and the challenge of LaSOT is the robustness
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Method Published
GOT-10k TrackingNet LaSOT

AO SR50 SR75 AUC Pnorm P AUC Pnorm P
TATrack-L Ours 79.2 88.6 78.3 85.0 89.3 84.5 71.1 79.1 76.1
TATrack-B Ours 77.3 87.8 74.1 83.5 88.3 81.8 69.4 78.2 74.1
TATrack-S Ours 74.3 84.5 70.6 81.8 86.9 79.7 68.1 77.2 72.2

TATrack-B* Ours 73.0 83.3 68.5 - - - - - -
MixFormer(Cui et al. 2022) CVPR22 71.2 79.9 65.8 82.6 87.7 81.2 67.9 77.3 73.9
ToMP(Mayer et al. 2022) CVPR22 - - - 81.2 86.2 78.6 67.6 78.0 72.2
SBT-B(Xie et al. 2022) CVPR22 69.9 80.4 63.6 - - - 65.9 - 70.0

SwinTrack-B(Lin et al. 2021) arXiv21 69.4 78.0 64.3 82.5 87.0 80.4 69.6 78.6 blue74.1
KeepTrack(Mayer et al. 2021) ICCV21 - - - - - - 67.1 77.0 70.2

STARK(Yan et al. 2021) ICCV21 68.8 78.1 64.1 82.0 86.9 - 67.1 77.0 -
TransT(Chen et al. 2021) CVPR21 67.1 76.8 60.9 81.4 86.7 80.3 64.9 73.8 69.0
Ocean(Zhang et al. 2020) ECCV20 61.1 72.1 47.3 - - - 56.0 65.1 56.6

SiamPRN++(Li et al. 2019) CVPR19 51.7 61.6 32.5 73.3 80.0 69.4 49.6 56.9 49.1
SiamFC(Bertinetto et al. 2016) ECCV16 34.8 35.3 9.8 57.1 66.3 53.3 33.6 42.0 33.9

Table 2: Comparison with the state of the art on the GOT-10k,TrackingNet and LaSOT. The underlined results in GOT-10k
are not involved in the comparison because the models are trained based on multiple datasets. TATrack-B* is trained on the
GOT-10k training set only.

Modification
GOT-10k TrackingNet LaSOT

AO AUC P AUC P

TATrack-S 74.3 81.8 79.7 68.1 72.2
Swin Bac. 72.9 81.5 79.3 67.1 71.4

No Pos. 71.3 81.1 78.8 66.7 70.5

No ltrb. 73.9 82.0 79.7 67.8 72.0

No gauss. 73.7 81.7 79.2 66.9 70.7

Table 3: Ablation studies on TATrack-S.

of long-term tracking. We applied the p-mean algorithm on
LaSOT to calculate the threshold values and achieved state-
of-the-art performance Tab. 2.

Ablation Study and Analysis
We did ablation experiments on the components of TATrack
and we analyzed the contribution of each separable com-
ponent in the model. We designed different combinations
of templates to verify that templates with background are
necessary for the tracker, and we demonstrated the effec-
tiveness of the dynamic thresholding algorithm by compar-
ing multiple update methods. Both the ablation experiments
and the comparison experiments were performed under the
TATrack-S model.

LCA Ablation. Swin backbone means we remove the
LCA module in backbone and use the first three stages of
swin transformer to extract features, so that the image loses
target perception during the feature extraction. We can see
that Tab. 3 all the metrics in TrackingNet, LaSOT, and GOT-
10k are degraded, and we only need to add two layers of
LCA in the TATrack-S backbone to get a direct performance

improvement. For the third line, we remove all the location
codes extended in the LCA module in backbone and neck.
The metrics of the three datasets show significant degrada-
tion, demonstrating that the absence of location encoding
divided independently by image relationships poses signif-
icant difficulties for the model to construct associations be-
tween multiple images.

Box-Embedding. We examined the impact of the box em-
bedding in the previous template Tab. 3. When we removed
ltrb, there was a small decrease in the tracking metrics of
GOT-10k and LaSOT and a small improvement in the AUC
of TrackingNet. The ltrb embedding has a more limited
improvement on the model, probably due to the fact that
LCA already has a sufficiently accurate regression on the
target. And there is an error in the prediction of the box
during inference, and ltrb may introduce the error of the
previous template into the prediction of the current frame.
When gauss with localization function is removed, the per-
formance degradation is more significant than removing ltrb.
It indicates that the importance of localization information is
higher in templates that contain background.

With or without Background. In Tab. 4 we compare the
two experimental setups using TATrack. the Only target
scheme removes the background from the previous template
and does not use box-embedding, which results in a signif-
icant drop in performance metrics for all datasets, but has
a faster speedup. Because the background is removed and
box-embedding information cannot be introduced, this sce-
nario is not a fair comparison. In the scenario where both
templates contain background, we add background to the
target and the target template does not use box-embedding
information. We can see that the template with the back-
ground is higher in all performance metrics than the template
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Figure 4: Visualization of the feature maps output from each layer of LCA in the Target-aware backbone network.

Method
GOT-10k TrackingNet LaSOT

AO AUC P AUC P

TATrack-S 74.3 81.8 79.7 68.1 72.2

Only target. 72.1 80.8 78.0 65.7 68.2

Both background. 74.7 82.2 80.1 68.5 72.5

Table 4: Comparison with the dual-template scheme with
only the target and the dual-template scheme with both in-
cluding the background.

Method
GOT-10k LaSOT

AO SR50 SR75 AUC Pnorm P

No Update 71.4 81.3 66.3 66.7 75.8 70.8

Update Last 68.3 77.7 63.8 61.0 68.5 64.2

Mean. 74.3 84.5 70.6 66.1 75.0 69.8

P-mean. 74.0 84.3 70.0 68.1 77.2 72.2

Table 5: Effects of different update strategies on long and
short series datasets.

without the background, even for the target template that is
not updated. Considering the performance flatness, we fi-
nally chose the compromise between the target-only tem-
plate and the previous template with the background, which
still shows the huge potential of introducing the background
in the template for performance improvement.

Update Experiment. We use a typical short sequence
dataset GOT-10k and a long sequence dataset LaSOT to val-
idate our experiments. As shown in Tab. 5, (1) no update
strategy is adopted and the initial frame is used as the previ-
ous template, and this scheme achieves an ordinary perfor-
mance. (2) is to take a fixed update of the previous frame as
the previous template, the performance shows a significant
drop, indicating that a low-quality template will be disas-
trous to the tracker. (3) We adopt the historical confidence
mean as the dynamic threshold method to update the tem-
plate, and we can see that better performance can be ob-
tained in GOT-10k which requires higher regression accu-
racy. This is because the mean value method as a threshold

can achieve a good balance of appropriately skipping low
quality templates and keeping the previous templates close
to the current frame. However, the threshold of the mean
value is too low to resist the long-time target disappearance
for long sequence datasets LaSOT. (4) Using the historical
mean with penalty will appropriately raise the criteria to re-
sist prolonged low-quality templates and the results are more
stable. P-mean shows good performance on LaSOT and has
no significant negative impact on short series datasets.

Visualization of LCA. To explore how LCA plays a
target-aware role in the backbone network, we visualize the
output feature maps of the LCA module in the TATrack-L
backbone network. We calculate the average of the target
features, previous features, and search features of the LCA
output on the C channel and adjust them into a response map
of RH×W . Through the visualization in Fig. 4, we can con-
clude that (1) LCA can determine the target location in the
previous template and search image layer by layer. (2) LCA
can exclude interfering objects layer by layer.

Limitations

The use of multiple templates, especially the previous tem-
plates containing background, makes our model run low.
TATrack-Small becomes less tiny after using Swin-Tiny pre-
training weights. we can see from the experiments that tem-
plates containing background have a greater potential to im-
prove the tracker performance. Therefore, in future work
we will consider using a transformer module that optimizes
the computational effort to better mine templates with back-
ground to achieve more powerful performance. Also, we
will continue to explore low-cost in new update methods.

Conclusion
We propose the Long-Term Contextual Attention module,
a fusion module for fusing target and background informa-
tion over multiple time frames. Taking advantage of LCA’s
ability to simultaneously extract features and compute cor-
relations across images, we propose TATrack with target-
awareness. to allow simple and efficient updating of tem-
plates, we propose an online update algorithm for dynamic
thresholding.
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