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Abstract

Recent studies have demonstrated that existing deep neu-
ral networks (DNNs) on 3D point clouds are vulnerable to
adversarial examples, especially under the white-box set-
tings where the adversaries have access to model parame-
ters. However, adversarial 3D point clouds generated by ex-
isting white-box methods have limited transferability across
different DNN architectures. They have only minor threats
in real-world scenarios under the black-box settings where
the adversaries can only query the deployed victim model.
In this paper, we revisit the transferability of adversarial
3D point clouds. We observe that an adversarial perturba-
tion can be randomly factorized into two sub-perturbations,
which are also likely to be adversarial perturbations. It mo-
tivates us to consider the effects of the perturbation and its
sub-perturbations simultaneously to increase the transferabil-
ity for sub-perturbations also contain helpful information. In
this paper, we propose a simple yet effective attack method
to generate more transferable adversarial 3D point clouds.
Specifically, rather than simply optimizing the loss of per-
turbation alone, we combine it with its random factorization.
We conduct experiments on benchmark dataset, verifying our
method’s effectiveness in increasing transferability while pre-
serving high efficiency. 1

Introduction
Deep neural networks (DNNs) have been widely adopted in
2D (Chen et al. 2018; He et al. 2021; Li et al. 2021b) and
3D vision tasks (Sung et al. 2017; Tu et al. 2020; Xie et al.
2020a). Since many applications are mission-critical, the se-
curity of DNNs is of great significance.

Recent studies revealed that DNNs designed for 3D point
clouds (Wang et al. 2020; Rao, Lu, and Zhou 2020; Xu et al.
2021) are also vulnerable to adversarial examples, similar
to that in 2D scenarios (Bai et al. 2020; Treu et al. 2021; Li
et al. 2022). This is probably because they all suffer from
the identical drawback that the decision-making processes
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of humans and DNNs are different. Currently, most existing
adversarial attacks (Hamdi et al. 2020; Tsai et al. 2020; Wen
et al. 2020) against 3D point clouds are under the white-
box settings, where the adversaries have complete access to
model source files. As such, they can easily generate adver-
sarial perturbations based on the model gradients. However,
in real-world scenarios, most victim models are deployed
and the adversaries can only query the model. Accordingly,
generating transferable adversarial 3D point clouds gener-
ated using one model can also fool others is a more realistic
threat and worth further consideration.

In this paper, we revisit the transferability of adversar-
ial 3D point clouds. Arguably, adversarial examples lying
close to the decision boundary are less transferable, for dif-
ferent DNNs may have relatively different boundaries. How-
ever, we can hardly regularize the distance between the ad-
versarial example and the decision boundary to generate
more transferable examples, for the boundary is complicated
and has no analytical form. Meanwhile, we observe that
an adversarial perturbation can be randomly factorized into
two sub-perturbations, which are also likely to be adversar-
ial perturbations. This phenomenon indicates that the sub-
perturbations may also contain helpful information about the
decision boundaries and, therefore, can help generate more
transferable adversarial examples.

Motivated by this understanding, we propose a simple yet
effective attack to increase the transferability of adversar-
ial 3D point clouds. Specifically, we propose to optimize
the loss of the perturbation and its sub-perturbations gener-
ated by randomized factorization instead of simply optimiz-
ing the perturbation alone. As such, the generated samples
are further away from the decision boundary and, therefore,
more transferable (as shown in Figure 1). Besides, we de-
velop a sampling-based method that only selects one random
factorization in each iteration for efficiency. The sequential
combination of the effects of different factorizations used in
different iterations serves as a ’bagging ensemble’, ensur-
ing effectiveness while preserving high efficiency. We hope
our work can inspire a deeper understanding of adversarial
transferability to help design more robust and secure DNNs.

In conclusion, our main contributions are three-fold:
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Figure 1: The illustration of our method and baseline attacks.
Our method requires that the sub-perturbations be adversar-
ial perturbations based on the victim model. We can generate
adversarial examples further away from the decision bound-
ary and successfully fool another model, even though the
slightly shifted decision surface. In this figure, different col-
ors represent different adversarial spaces and sample points.
The solid and dashed lines represent the decision boundaries
for the different models. The region to the left of the deci-
sion boundary represents the non-adversarial space, and to
the right represents the adversarial space.

• We reveal that the sub-perturbations of an adversarial
perturbation are also likely to be adversarial perturba-
tions containing useful information.
• We propose a simple yet effective attack method to gen-

erate more transferable adversarial 3D point clouds.
• Experiments on the benchmark dataset verify our attack

effectiveness and its resistance to potential defenses.

Related Work
DNNs for 3D Point Cloud Classification
Much of the current work has focused on 2D images (Yang
et al. 2020; Su et al. 2020; Xie et al. 2020b). It is worth not-
ing that 2D image data is ordered, whereas 3D point cloud
data is unordered, which is the most significant difference
between them. As a result, existing 2D methods are difficult
to use directly for 3D tasks.

Initially, there were several DNN models (Maturana and
Scherer 2015; Qi et al. 2016; Masci et al. 2015; Guo, Zou,
and Chen 2015) for 3D point cloud data processing, but most
suffered from over-computation, application domain limita-
tions, and information loss. To overcome these problems,
PointNet (Qi et al. 2017a) has been proposed, which is more
concise and efficient than previous methods. Specifically,
PointNet uses multiple multi-layer perceptrons (MLPs) to
extract features for each point cloud data, aligns these fea-
tures using T-Net, and then obtains global features through
max pooling. However, (Qi et al. 2017b) points out that
PointNet cannot capture local features. Therefore, Point-
Net++ (Qi et al. 2017b) is proposed to improve on this defi-
ciency. Specifically, PointNet++ can be subdivided into two
forms: single-scale (SSG) and multi-scale (MSG). DGCNN
(Wang et al. 2019) proposed the EdgeConv module, which
can extract local features of point clouds very well while
also achieving excellent performance. Since then, several
outstanding models (Ran et al. 2021; Goyal et al. 2021; Xi-
ang et al. 2021) have emerged. Also, as researchers con-
tinue to investigate the visual transformer, there are now
ways to migrate the structure of the visual transformer to
point cloud processing tasks. Also, some methods (Guo et al.
2021; Zhao et al. 2021; Engel, Belagiannis, and Dietmayer
2021) that migrate the structure of the vision transformer to
the point cloud processing task.

As the aforementioned point-based DNNs are widely used
in various mission-critical applications, the study of their se-
curity has become increasingly important.

Adversarial Attacks against Point-Based DNNs
The adversarial attack aims to mislead the DNN into making
the wrong decision. In 2D domain, existing attack methods
can be divided into white-box attack (Gu, Wu, and Tresp
2021) and black-box attack (Andriushchenko et al. 2020;
Dong et al. 2018; Jia et al. 2020). Most of the current re-
search has focused on 2D tasks (Wang et al. 2021; Gu et al.
2022; Fan et al. 2020). Due to the differences between 2D
and 3D data structures, these methods cannot be directly ap-
plied to 3D tasks.

3D-Adv (Xiang, Qi, and Li 2019) is the first work to in-
vestigate the production of adversarial point clouds. They
divided adversarial attacks on 3D point clouds into two cat-
egories: adversarial point perturbation and adversarial point
generation. Most of the subsequent research has been con-
ducted around these two categories (Ma et al. 2020; Zhou
et al. 2020; Li et al. 2021a). In this paper, only adversarial
point perturbation is discussed. KNN (Tsai et al. 2020) in-
corporates KNN distance into the loss term to generate rea-
sonably shaped adversarial point clouds and can mislead 3D
point cloud classifiers in physical world. GeoA3 proposes
a geometry-aware loss term to enhance the unpredictability
of adversarial point clouds to humans. In addition, they pro-
pose an iterative normal projection method to improve the
smoothness of the generated adversarial point clouds.

All of the above methods are white-box attacks. How-
ever, since white-box attacks require knowledge of all model
parameters and are rarely used in real scenarios, they are
less practical than black-box attacks. AdvPC (Hamdi et al.
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2020) makes adversarial point clouds easier to transfer by re-
constructing the perturbed inputs through point cloud auto-
encoders. AdvPC improves the transferability of adversar-
ial point clouds compared to previous methods. However,
the transferability of existing methods is still limited and de-
serves further investigation. We take an optimization-based
perspective to improve transferability.

Adversarial Defenses towards Point-Based DNNs
There has been some research on CNN (Jia et al. 2022, 2019;
Wu et al. 2021), capsule network (Gu, Tresp, and Hu 2021)
and Vision Transformer (Gu, Tresp, and Qin 2022; Wu et al.
2022) with regard to their robustness. Due to the different
data structure between 3D and 2D, most 2D defense meth-
ods cannot be directly used for 3D tasks. Zhou et al (Zhou
et al. 2019) proposed two defence methods, that is, statistical
outlier removal (SOR) and simple random sampling (SRS).
SOR determines the k-nearest neighbour of each point in
the point cloud and the distances between the neighbouring
points. By calculating the mean d̄ and standard deviation σ
of these distance values, points with distance values greater
than (d̄ + α · σ) must be eliminated, where α is the hyper-
parameter value. SRS removes certain points from the point
cloud with a specific probability.

Revisiting Adversarial 3D Point Clouds
In this section, we explore the properties of adversarial 3D
point clouds in the high-dimensional input space. In particu-
lar, we focus mainly on the adversarial perturbation since it
is closely related to the attack success rate and the transfer-
ability of adversarial examples.

Specifically, let P ∈ RN×3 denotes the benign 3D point
cloud with ground-truth label y. Given a model fθ, assume
that ∆ is the successfully adversarial perturbation of P , i.e.,
fθ(P +∆) ̸= y, each perturbation ∆ can be randomly fac-
torized into different sub-perturbations, as follows:

∆ = Γ⊙∆l + (1− Γ)⊙∆r, (1)

where Γ ∈ {0, 1}N×3 is a mask metric, ∆l and ∆r is
the left and right sub-perturbation, respectively. We explore
whether these sub-perturbations can also serve as the suc-
cessfully adversarial perturbation of P . If so, they will also
contain much useful information.
Settings. We adopt GeoA3 to generate adversarial pertur-
bations with a maximum perturbation size ϵ ∈ {0.18, 0.45}.
Specifically, the step size is 0.01, the victim model is Point-
Net, and the number of iterations is 200. We randomly se-
lect 250 samples in the ModelNet40 dataset (Wu et al. 2015)
that can be successfully attacked and generate their sub-
perturbations ∆l and ∆r according to equation 1. After-
ward, we calculate these sub-perturbations’ average attack
success rate (A-ASR).
Results. As shown in Table 1, most sub-perturbations can
still be used as successful adversarial perturbations when at-
tacking the model, regardless of the value of ϵ. These results
suggest that sub-perturbations also carry useful information
about the decision boundary and may be used to increase the
transferability of the adversarial point cloud.

ϵ 0.18 0.45

Adversarial Example P +∆l P +∆r P +∆l P +∆r

A-ASR 84.80 84.00 91.20 92.80

Table 1: The averaged attack success rate (A-ASR, %) of ad-
versarial examples with sub-perturbations generated by ran-
domized perturbation factorization.

The Proposed Method
Motivated by the above understanding, we propose to use
information from sub-perturbations to improve the trans-
ferability of the generated adversarial 3D point clouds. In-
tuitively, the transferability of adversarial examples close
to the decision boundary is lower, as different DNNs may
have relatively different boundaries. If most of the sub-
perturbations of an adversarial perturbation are also adver-
sarial, then this perturbation is more likely to be far from
the decision boundary and, therefore, more transferable. Ac-
cordingly, in this paper, we propose to optimize both the per-
turbation and its sub-perturbations. More technical details
are given in the following subsections.

Threat Model
In this paper, we focus on the untargeted adversarial at-
tack against DNNs designed for 3D point cloud classifiers.
Specifically, the adversaries intend to generate transferable
adversarial 3D point clouds based on a local victim model
under the white-box settings. The generated adversarial ex-
amples should be able to fool other victim models during the
inference process. This attack could happen in real-world
scenarios where the targeted model is deployed, and the ad-
versaries can only query the model.

Randomized Perturbation Factorization
Generate Perturbations Further Away from the Decision
Surface. Intuitively, if the model’s output is more similar to
a one-hot vector, the further the sample is from the decision
boundary. In this paper, we propose to optimize the victim
DNN according to its predicted probability. Specifically, let
y denotes the ground-truth label of 3D point cloud P and
g(P )y ∈ R indicate the predicted probability of the y-th
class predicted by the victim DNN. v (P ,∆) measures the
gap between the predicted probability of the ground-truth
class and the predicted probability of the top-1 but non-
ground-truth class, which can be calculated as follow.

v (P ,∆) =

(
max
y′ ̸=y

g(P +∆)y′ − g(P +∆)y

)2

. (2)

Attack with Randomized Perturbation Factorization.
Given a mask matrix Γ ∈ RN×3, the probability of an el-
ement in Γ having a value of 1 is p and the probability of a
value of 0 is 1− p. Then, the set S of matrices consisting of
all possible Γ can be expressed as:

S = {Γit|i ∈ {1, 2, . . . , N}, t ∈ {1, 2, 3}} .
The perturbation factorization function is defined as follows:
V (P ,∆) = E

Γ′∼S
[v (P ,Γ′ ⊙∆) + v (P , (1− Γ′)⊙∆)].

(3)
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Algorithm 1: The Main Process of Our PF-Attack.

Input: Benign point cloud P , Unit normal vector of benign
point cloud nP , number of iteration steps T , step size
η, coefficient of ℓ∞ norm ϵ;

1: Initialize Perturbation ∆0 ∼ N (0, 0.001);
2: P ′

0 ← P +∆0;
3: t← 0;
4: for t ≤ T do
5: ∆t+1 ←∆t − η · ∇ℓreg

(
P ′

t,P ,∆t

)
;

6: ∆′
t+1 ← ⟨∆t+1,nP ⟩ · nP ;

7: if
∣∣∆′

t+1

∣∣ ≤ ϵ then
8: P ′

t+1 ← P +∆′
t+1;

9: else
10: P ′

t+1 ← P +
∆′

t+1

∥∆′
t+1∥2

· ϵ;
11: end if
12: t← t+ 1;
13: end for
Output: P ′

t+1

For equation 3, the attacker needs to sample all possible
Γ′, which is computation-consuming. Instead, we propose a
sampling-based approach that performs multiple iterations,
sampling a pair of randomly factorized sub-perturbations
each time the perturbation is updated.
Overall Objective Function. We aim to produce adversarial
point clouds P ′ for f to misclassify them. The function we
are trying to minimize is as follows:
min
∆

ℓreg = −ℓcls
(
f
(
P ′) , ytrue)+ τ · ℓPF

(
P ′,P ,∆

)
s.t. ∥∆∥∞ ≤ ϵ,

(4)
where ℓcls denotes cross-entropy loss function, ϵ denotes co-
efficient of ℓ∞ norm and τ is a penalty parameter. The full
objective of ℓPF can be expressed as
ℓPF

(
P ′,P ,∆

)
= ℓCD

(
P ′,P

)
+ β · ℓpf (P ,∆) , (5)

where β is a hyper-parameter to balance the different con-
straints, ℓCD

(
P ′,P

)
denotes Chamfer loss and the expres-

sion for ℓpf (∆,P ) is shown below.
ℓpf = v (P ,Γ′ ⊙∆) + v (P , (1− Γ′)⊙∆) + v (P ,∆) .

(6)
For intuitive understanding, we show in Algorithm 1 how

our PF-Attack method generates an adversarial point cloud.
Before iteration, we generate an initial perturbation with a
mean of 0 and variance of 0.001 that conforms to a normal
distribution, i.e., ∆0 ∼ N (0, 0.001). Next, we update the
perturbation using gradient descent and use the projection
method to make the adversarial point cloud P ′

t+1 smoother.
Then, we limit the perturbation size using ℓ∞ norm.

Figure 2 shows some of the adversarial point clouds gen-
erated by our method.

Experiments
Experimental Setup
Dataset. We used ModelNet40 (Wu et al. 2015), a widely
used dataset, to train the model and evaluate the performance

bottle !
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bookshelf !

door"
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table !

desk"

vase !
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Figure 2: Visualization. Benign point clouds are in the top
row (shown in black) and adversarial point clouds are in the
bottom row (shown in red).

of each attack method. ModelNet40 has a total of 12,311
CAD models containing 40 different object categories, of
which 9,843 samples were used for training and 2,468 for
testing. Following prior works (Xiang, Qi, and Li 2019; Wen
et al. 2020; Hamdi et al. 2020), 25 samples were randomly
extracted from each of the ten object categories of Model-
Net40, using a total of 250 samples used to generate the ad-
versarial point cloud, each of which contained 1,024 points.
Models. Following prior works (Xiang, Qi, and Li 2019;
Wen et al. 2020; Hamdi et al. 2020), the models we attack
are PointNet (Qi et al. 2017a), PointNet++(SSG) (Qi et al.
2017b), PointNet++(MSG) (Qi et al. 2017b) and DGCNN
(Wang et al. 2019). Each model was trained normally.
Attack Settings. We use 3D-Adv (Xiang, Qi, and Li 2019),
KNN (Tsai et al. 2020), GeoA3 (Wen et al. 2020), AdvPC
(Hamdi et al. 2020) as the baselines for our experiments.
The hyper-parameters of the PF-Attack were set to: η =
0.01, τ = 10, β = 0.5, p = 0.5, T = 200, ϵ ∈ {0.18, 0.45}.
We use Adam optimizer (Kingma and Ba 2015). 3D-Adv,
KNN, AdvPC initialize the perturbation twice. Our method
and GeoA3 initialize the perturbation once.

Evaluation Metric
First, we give two definitions: ❶ A victim model is a model
used to generate adversarial point clouds; ❷ A transfer
model is a model that is attacked by adversarial point clouds,
but the transfer model is not used to generate adversarial
point clouds. Then, we will evaluate our experiments using
the following two metrics.
Attack Success Rate (ASR). Given N adversarial point
clouds xi, i ∈ {1, 2, . . . , N}, their ground-truth labels are
ytruei i ∈ {1, 2, . . . , N} respectively. For intuitively under-
standing, ASR can be expressed as follows.

ASR =
1

N
·

(
N∑
i=1

T (f (xi))

)
, (7)

where

T (f (xi)) =

{
0, iff (xi) = ytruei
1, iff (xi) ̸= ytruei

.

Notably, the higher the attack success rate on the transfer
model, the better the adversarial point cloud’s transferability.
Transferability Score. To evaluate the overall transferabil-
ity, following (Hamdi et al. 2020), we calculated the average
ASRs of the adversarial point clouds on all transfer models
and used this as the transferability score.
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Victim
Network

Attack
Method

ϵ = 0.18 ϵ = 0.45

PointNet PointNet++
(MSG)

PointNet++
(SSG) DGCNN PointNet PointNet++

(MSG)
PointNet++

(SSG) DGCNN

PointNet

3D-Adv 100* 8.4 10.4 6.8 100* 8.8 9.6 8.0
KNN 100* 9.6 10.8 6.0 100* 9.6 8.4 6.4
GeoA3 100* 20.0 19.6 7.2 100* 23.6 20.8 7.2
AdvPC 98.8* 20.4 27.6 22.4 98.8* 18.0 26.8 20.4

PF-Attack 100* 49.6 61.5 24.8 100* 59.3 64.8 28.8

PointNet++
(MSG)

3D-Adv 6.8 100* 28.4 11.2 7.2 100* 29.2 11.2
KNN 6.4 100* 22.0 8.8 6.4 100* 23.2 7.6
GeoA3 4.4 100* 14.4 6.4 4.4 100* 13.6 6.0
AdvPC 13.2 97.2* 54.8 39.6 18.4 98* 58.0 39.2

PF-Attack 17.2 100* 67.0 24.3 19.2 100* 75.0 27.5

PointNet++
(SSG)

3D-Adv 7.6 9.6 100* 6.0 7.2 10.4 100* 7.2
KNN 6.4 9.2 100* 6.4 6.8 7.6 100* 6.0
GeoA3 5.2 10.4 100* 2.2 4.8 9.2 100* 4.0
AdvPC 12.0 27.2 99.2* 22.8 14.0 30.8 99.2* 27.6

PF-Attack 13.9 47.4 100* 19.6 15.7 56.9 100* 23.0

DGCNN

3D-Adv 9.2 11.2 31.2 100* 9.6 12.8 30.4 100*
KNN 7.2 9.6 14.0 99.6* 6.8 10.0 11.2 99.6*
GeoA3 4.4 27.2 27.6 100* 4.4 26.8 25.6 100*
AdvPC 19.6 46.0 64.4 94.8* 32.8 48.8 64.4 97.2*

PF-Attack 21.3 60.9 74.8 100* 26.1 79.7 85.8 100*

Table 2: Transfer Attack on ModelNet40. Measure performance in terms of attack success rate (%). The results of 3D-Adv,
KNN and AdvPC are reported in (Hamdi et al. 2020). Number in bold indicates the best. * indicates the white-box model.

ϵ ↓ Transferability Score (%)

3D-Adv KNN GeoA3 AdvPC PF-Attack

0.18 12.2 9.7 12.4 30.8 40.2
0.45 12.6 9.2 12.5 33.3 46.8

Table 3: Transferability Score on ModelNet40.

Attack Method ↓ ϵ = 0.18 ϵ = 0.45

3D-Adv 7.5 7.47
GeoA3 21.6 23.6

PF-Attack 51.28 59.32

Table 4: Transfer Attack on Point Transformer. Measure per-
formance in terms of attack success rate (%). Adversarial
point clouds are generated on PointNet.

Attack Transferability
We conducted a series of comparative experiments to com-
pare the transferability of the adversarial point clouds gener-
ated by our method and baselines. The results are shown in
Table 2. In most cases, the adversarial point cloud generated
by our method achieves better transferability, i.e., higher
ASRs on the transfer models. As shown in Table 3, the over-
all metastability of our method outperforms the baseline. In
addition, we used the adversarial point cloud generated on
PointNet to attack the Point Transformer. as shown in Table

4, our method achieves better attack success rates.

Discussion
Ablation Studies
To investigate the effect of different loss terms and hyper-
parameters on the transferability of adversarial point clouds,
we conducted a series of ablation studies on loss terms, reg-
ularization coefficient β, and generation probability p.
Loss Term. We begin by conducting ablation studies by
deleting or replacing a single term in equation 5 and then
compare the attack success rates. In (Xiang, Qi, and Li 2019)
and (Wen et al. 2020), they only consider the non-symmetric
Hausdorff distance, and we do the same. Table 5 demon-
strates that, LPF , which containing perturbation factoriza-
tion method, plays a much larger role in transferability.
Regularization Coefficient β. We then study the impact of
the value of regularization coefficient β on the attack success
rates, and the β is selected in {0.1, 0.3, 0.5, 0.7, 0.9}. Figure
3 shows the results. When both ϵ and β are fixed, among
the three models of PointNet++ (SSG), PointNet++ (MSG),
and DGCNN, the attack success rate of the adversarial point
cloud generated by our method on PointNet is the highest
on PointNet++ (SSG), PointNet++ (MSG) comes next, and
DGCNN is the lowest. The β value can be likened to the step
size in the PGD method and we restrict it to change between
0 and 1, so it is reasonable that the β value has little effect on
the transferability of the adversarial point cloud. As shown
in Figure 3, β = 0.5 is a compromise value, so we chose it
in our comparison experiment.
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Adjustment of Loss Term
Attack Success Rate(%)

ϵ = 0.18 ϵ = 0.45

PointNet PointNet++
(MSG)

PointNet++
(SSG) DGCNN PointNet PointNet++

(MSG)
PointNet++

(SSG) DGCNN

with all two loss terms 100* 43.59 58.6 25.64 100* 55.93 63.14 30.08
LCD replaced by LHD 100* 36.17 52.8 23.83 100* 45.96 57.02 24.68

w/o Lpf 100* 10.92 12.6 3.78 100* 13.08 13.5 4.22

Table 5: Ablation studies of replacing or deleting single loss term. Measure performance in terms of attack success rate (%).
The attack success rate is reported by attacking other models using the replaced or deleted single loss term. The victim model
is PointNet. Number in bold indicates the best. * indicates the white-box model.

Attack Method
Attack Success Rate (%)

ϵ = 0.18 ϵ = 0.45

PointNet PointNet++
(MSG)

PointNet++
(SSG) DGCNN PointNet PointNet++

(MSG)
PointNet++

(SSG) DGCNN

3D-Adv 100* 8.4 10.4 6.8 100* 8.8 9.6 8.0
PF-3D-Adv 100* 17.0 20.9 6.5 100* 20.2 21.0 8.5

KNN 100* 9.6 10.8 6.0 100* 9.6 8.4 6.4
PF-KNN 100* 46.2 61.1 27.8 100* 60.0 68.9 28.9

GeoA3 100* 20.0 19.6 7.2 100* 23.6 20.8 7.2
PF-GeoA3 100* 37.9 47.4 24.1 100* 45.7 54.3 25.2

Table 6: Ablation Studies of Incorporating Existing Methods. Measure performance in terms of attack success rate (%). The
victim model is PointNet. * indicates the white-box model. The results of 3D-Adv, KNN are reported in (Hamdi et al. 2020).

ϵ∞ = 0.18 ϵ∞ = 0.45

No Defense SRS SOR No Defense SRS SOR

100.00 51.28 38.03 100.00 56.78 39.41

Table 7: Resistance to potential defense methods. Measure
performance in terms of attack success rate (%). The victim
model is PointNet. In SRS, 128 points were randomly re-
moved. In SOR, the value of α is 1.1, and k is 2.

Generation Probability p. Finally, we study the impact of
the value of generation probability p on the success rates,
and the p are selected in {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. Fig-
ure 4 shows the result. When the generation probability p
equals 0 or 1, the equation 6 does not consider the pertur-
bation factorization. Therefore, when the value of p is 0 or
1, the transferability of the generated adversarial point cloud
will be worse than when the value of p is 0.1, 0.3, 0.5, 0.7, or
0.9. When ϵ is equal to 0.18 and β is fixed, among the three
models of PointNet++ (SSG) (Qi et al. 2017b), PointNet++
(MSG) (Qi et al. 2017b), and DGCNN (Wang et al. 2019),
the attack success rate of the adversarial point cloud gener-
ated by our method on PointNet is the highest on PointNet++
(SSG), PointNet++ (MSG) comes next, and DGCNN is the
lowest. When ϵ is equal to 0.45 and p is equal to 0.9, the
adversarial point cloud generated by our method on Point-
Net has a higher attack success rate in PointNet++ (MSG)

than PointNet++ (SSG). We choose p = 0.5 as the hyper-
parameter value because the transferability of the adversar-
ial point cloud generated when p = 0.5 is worse than that of
0.1, 0.3, 0.7, 0.9. Even in this case, our method performance
is still better than baselines.

ϵ = 0.18 ϵ = 0.45

K 2 3 4 2 3 4
ASR 61.5 51.1 50.2 64.8 63.4 60.9

Table 8: Extending into K sub-perturbations. Measure per-
formance in terms of attack success rate (%). The victim
model is PointNet. The transfer model is PointNet++(MSG).

Attack Method 3D-Adv KNN GeoA3 PF-Attack

Running Time 0.18 0.16 0.24 0.3

Table 9: Time Comparison. The victim model is PointNet.
The number of iterations is 200. Running Time is the aver-
age time (in minutes) taken to attack each point cloud.

Incorporation with Existing Attacks
Following (Xie et al. 2019; Wang and He 2021; Dong et al.
2018), we not only pay attention to the transferability of
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Figure 3: Ablation studies in β. Measure performance in
terms of attack success rate (%). The value of p is fixed at
0.5. The adversarial point clouds are generated on PointNet.

the method itself but also pay attention to the attack trans-
ferability of our method incorporated with other methods.
We have used 3D-Adv, KNN, and GeoA3 to incorporate our
PF-Attack, which we called PF-3D-Adv, PF-KNN, and PF-
GeoA3, respectively. The results are shown in Table 6. It
is not difficult to find that the transferability of the adver-
saial point clouds that generated by original attack methods
have been improved to a certain extent after incorporating
with our method. It is worth mentioning that incorporated
method fails mainly because the original method failed, and
these adversarial examples may be located near the decision
surface (of the victim model), which may be different from
the decision surface of the transfer model.

Resistance to Potential Defenses
To investigate the resistance of our method to potential de-
fenses, we used two methods, SOR (Zhou et al. 2019) and
SRS (Zhou et al. 2019), with the victim model being Point-
Net. Table 7 shows the result. By observation, our method
maintained some ASR after SOR and SRS defense, suggest-
ing that they were both resistant to the defence mechanism.

Extension to K Sub-perturbations
Intuitively, we can extend our random factorization to the
case with more sub-perturbations by introducing more ran-
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Figure 4: Ablation studies in p. Measure performance in
terms of attack success rate (%). The value of β is fixed at
0.5. The adversarial point clouds are generated on PointNet.

dom variables. However, as Table 8 shows, the extension
doesn’t necessarily lead to better performance. This failure
is may be because the sub-perturbations are less likely to be
adversarial ones as K increases. We will explore how to find
the best K and its theoretical foundations in our future work.

Limitations
Firstly, the ASRs under transfer models are still lower than
100%, although our method has already significantly im-
proved. Secondly, as shown in Table 9, our method brings
additional computational and memory costs since we intro-
duce additional variables. These costs are negligible com-
pared to our performance improvement.

Conclusion
In this paper, we proposed a simple yet effective method
to generate more transferable adversarial 3D point clouds.
Specifically, we proposed to jointly optimize the perturba-
tion and its sub-ones, motivated by the understanding that
sub-perturbations also contain useful information about the
decision boundary. Our conducted experiments verified that
our method can generate more transferable examples com-
pared with all baseline attacks. Our method can be incorpo-
rated with existing attacks to increase their transferability.
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Liu, L. 2020. Dynamic group convolution for accelerating
convolutional neural networks. In ECCV.
Sung, M.; Su, H.; Kim, V. G.; Chaudhuri, S.; and Guibas,
L. J. 2017. Complementme: weakly-supervised component
suggestions for 3D modeling. ACM Trans. Graph.

771



Treu, M.; Le, T.-N.; Nguyen, H. H.; Yamagishi, J.; and
Echizen, I. 2021. Fashion-guided adversarial attack on per-
son segmentation. In CVPR.
Tsai, T.; Yang, K.; Ho, T.; and Jin, Y. 2020. Robust Adver-
sarial Objects against Deep Learning Models. In AAAI.
Tu, J.; Ren, M.; Manivasagam, S.; Liang, M.; Yang, B.; Du,
R.; Cheng, F.; and Urtasun, R. 2020. Physically Realiz-
able Adversarial Examples for LiDAR Object Detection. In
CVPR.
Wang, X.; and He, K. 2021. Enhancing the Transferability
of Adversarial Attacks Through Variance Tuning. In CVPR.
Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic Graph CNN for Learn-
ing on Point Clouds. ACM Trans. Graph.
Wang, Y.; Tan, D. J.; Navab, N.; and Tombari, F. 2020. Soft-
poolnet: Shape descriptor for point cloud completion and
classification. In ECCV.
Wang, Z.; Guo, H.; Zhang, Z.; Liu, W.; Qin, Z.; and Ren,
K. 2021. Feature importance-aware transferable adversarial
attacks. In ICCV.
Wen, Y.; Lin, J.; Chen, K.; Chen, C. L. P.; and Jia, K. 2020.
Geometry-Aware Generation of Adversarial Point Clouds.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Wu, B.; Gu, J.; Li, Z.; Cai, D.; He, X.; and Liu, W. 2022.
Towards efficient adversarial training on vision transform-
ers. In ECCV.
Wu, B.; Pan, H.; Shen, L.; Gu, J.; Zhao, S.; Li, Z.; Cai, D.;
He, X.; and Liu, W. 2021. Attacking adversarial attacks as a
defense. arXiv preprint arXiv:2106.04938.
Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.;
and Xiao, J. 2015. 3D ShapeNets: A deep representation for
volumetric shapes. In CVPR.
Xiang, C.; Qi, C. R.; and Li, B. 2019. Generating 3D Ad-
versarial Point Clouds. In CVPR.
Xiang, T.; Zhang, C.; Song, Y.; Yu, J.; and Cai, W. 2021.
Walk in the cloud: Learning curves for point clouds shape
analysis. In ICCV.
Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.; and
Yuille, A. L. 2019. Improving Transferability of Adversarial
Examples With Input Diversity. In CVPR.
Xie, S.; Gu, J.; Guo, D.; Qi, C. R.; Guibas, L.; and Litany,
O. 2020a. Pointcontrast: Unsupervised pre-training for 3d
point cloud understanding. In ECCV.
Xie, Z.; Zhang, Z.; Zhu, X.; Huang, G.; and Lin, S. 2020b.
Spatially adaptive inference with stochastic feature sampling
and interpolation. In ECCV.
Xu, M.; Ding, R.; Zhao, H.; and Qi, X. 2021. PAConv: Po-
sition Adaptive Convolution With Dynamic Kernel Assem-
bling on Point Clouds. In CVPR.
Yang, T.; Zhu, S.; Chen, C.; Yan, S.; Zhang, M.; and Willis,
A. 2020. Mutualnet: Adaptive convnet via mutual learning
from network width and resolution. In ECCV.
Zhao, H.; Jiang, L.; Jia, J.; Torr, P. H.; and Koltun, V. 2021.
Point transformer. In ICCV.

Zhou, H.; Chen, D.; Liao, J.; Chen, K.; Dong, X.; Liu,
K.; Zhang, W.; Hua, G.; and Yu, N. 2020. Lg-gan: La-
bel guided adversarial network for flexible targeted attack
of point cloud based deep networks. In CVPR.
Zhou, H.; Chen, K.; Zhang, W.; Fang, H.; Zhou, W.; and Yu,
N. 2019. DUP-Net: Denoiser and Upsampler Network for
3D Adversarial Point Clouds Defense. In ICCV.

772


