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Abstract
As few-shot object detectors are often trained with abundant
base samples and fine-tuned on few-shot novel examples, the
learned models are usually biased to base classes and sensi-
tive to the variance of novel examples. To address this issue,
we propose a meta-learning framework with two novel fea-
ture aggregation schemes. More precisely, we first present a
Class-Agnostic Aggregation (CAA) method, where the query
and support features can be aggregated regardless of their cat-
egories. The interactions between different classes encourage
class-agnostic representations and reduce confusion between
base and novel classes. Based on the CAA, we then propose
a Variational Feature Aggregation (VFA) method, which en-
codes support examples into class-level support features for
robust feature aggregation. We use a variational autoencoder
to estimate class distributions and sample variational features
from distributions that are more robust to the variance of sup-
port examples. Besides, we decouple classification and re-
gression tasks so that VFA is performed on the classifica-
tion branch without affecting object localization. Extensive
experiments on PASCAL VOC and COCO demonstrate that
our method significantly outperforms a strong baseline (up to
16%) and previous state-of-the-art methods (4% in average).

Introduction
This paper studies the problem of few-shot object detection
(FSOD), a recently-emerged challenging task in computer
vision (Yan et al. 2019; Kang et al. 2019). Different from
generic object detection (Girshick et al. 2014; Redmon et al.
2016; Ren et al. 2017), FSOD assumes that we have abun-
dant samples of some base classes but only a few exam-
ples of novel classes. Thus, a dynamic topic is how to im-
prove the recognition capability of FSOD on novel classes
by transferring the knowledge of base classes to novel ones.

In general, FSOD follows a two-stage training paradigm.
In stage-I, the detector is trained with abundant base sam-
ples to learn generic representations required for the ob-
ject detection task, such as object localization and classifica-
tion. In stage-II, the detector is fine-tuned with only K shots
(K=1, 2, 3, . . . ) novel examples. Despite the great success
of this paradigm, the learned models are usually biased to
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Figure 1: Comparisons of different support feature encoding
methods. Previous methods use plain fully-connected (FC)
layers to encode support features and obtain class prototypes
by averaging these features: xp = Avg(x1,x2, . . . ). In con-
trast, our method uses variational autoencoders (VAEs) pre-
trained on abundant base examples to estimate the distribu-
tions of novel classes. Since intra-class variance is shared
across classes and can be modeled with common distribu-
tions (Lin et al. 2018), we use a shared VAE to transfer the
distributions of base classes to novel classes. Finally, we can
sample class prototypes xp from the distributions N (µ, σ)
that are robust to the variance of few-shot examples. rm.: re-
move.

base classes due to the imbalance between base and novel
classes. As a result, the model will confuse novel objects
with similar base classes. See Fig. 5 (top) for an instance,
the novel class, cow, has high similarities with several base
classes such as dog, horse and sheep. Besides, the model is
sensitive to the variance of novel examples. Since we only
have K shots examples per class, the performance highly de-
pends on the quality of the support sets. As shown in Fig. 1,
appearance variations are common in FSOD. Previous meth-
ods (Yan et al. 2019) consider each support example as a
single point in the feature space and average all features as
class prototypes. However, it is difficult to estimate the real
class centers with a few examples.

In this paper, we propose a meta-learning framework to
address this issue. Firstly, we build a strong meta-learning
baseline based on Meta R-CNN (Yan et al. 2019), which
even outperforms a representative two-stage fine-tuning ap-
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proach TFA (Wang et al. 2020). By revisiting the feature ag-
gregation module in meta-learning frameworks, we propose
Class-Agnostic Aggregation (CAA) and Variational Feature
Aggregation (VFA) to reduce class bias and improve the ro-
bustness to example’s variances, respectively.

Feature aggregation is a crucial design in FSOD, which
defines how query and support examples interact. Previous
works such as Meta R-CNN adopt a class-specific aggrega-
tion scheme (Fig. 2 (a)), i.e., query features are aggregated
with support features of the same class, ignoring cross-class
interactions. In contrast, we propose CAA (Fig. 2 (b)) which
allows feature aggregation between different classes. Since
CAA encourages the model to learn class-agnostic represen-
tations, the bias towards base classes is reduced. Besides, the
interactions between different classes simultaneously model
class relations so that novel classes will not be confused with
base classes.

Based on CAA, we propose VFA which encodes sup-
port examples into class-level support features. Our mo-
tivation is that intra-class variance (e.g. appearance varia-
tions) is shared across classes and can be modeled with
common distributions (Lin et al. 2018). So we can use base
classes’ distributions to estimate novel classes’ distributions.
We achieve this by modeling each class as a common dis-
tribution with variational autoencoders (VAEs). We firstly
train the VAE on abundant base examples and then fine-tune
it on few-shot novel examples. By transferring the learned
intra-class variance to novel classes, our method can esti-
mate novel classes’ distributions with only a few examples
(Fig. 1). Finally, we sample support features from distri-
butions and aggregate them with query features to produce
more robust predictions.

We also propose to decouple classification and regression
tasks so that our feature aggregation module can focus on
learning translation-invariant features without affecting ob-
ject localization. We conduct extensive experiments on two
FSOD datasets, PASCAL VOC (Everingham et al. 2010)
and COCO (Lin et al. 2014) to demonstrate the effectiveness
of our method. We summarize our contributions as follows:

• We build a strong meta-learning baseline Meta R-
CNN++ and propose a simple yet effective Class-
Agnostic Aggregation (CAA) method.

• We propose Variational Feature Aggregation (VFA),
which transforms instance-wise features into class-level
features for robust feature aggregation. To our best
knowledge, we are the first to introduce variational fea-
ture learning into FSOD.

• Our method significantly improves the baseline Meta R-
CNN++ and achieves a new state-of-the-art for FSOD.
For example, we outperform the strong baseline by
9%∼16% and previous best results by 3%∼7% on the
Novel Set 1 of PASCAL VOC.

Related Work
Generic Object Detection. Object detection has witnessed
significant progress in the past decade, which can be roughly
divided into two groups: one-stage and two-stage detectors.

One-stage detectors predict bounding boxes and class la-
bels by presetting dense anchor boxes (Redmon et al. 2016;
Liu et al. 2016; Lin et al. 2017), points (Law and Deng
2018; Zhou, Wang, and Krähenbühl 2019), or directly out-
put sparse predictions (Carion et al. 2020; Chen et al. 2021).
Two-stage detectors (Girshick et al. 2014; Girshick 2015;
Ren et al. 2017) first generate a set of object proposals
with Region Proposal Network (RPN) and then perform
proposal-wise classification and regression. However, most
generic detectors are trained with abundant samples and not
designed for data-scarce scenarios.
Few-Shot Object Detection. Early attempts (Kang et al.
2019; Yan et al. 2019; Wang, Ramanan, and Hebert 2019)
in FSOD adopt meta-learning architectures. FSRW (Kang
et al. 2019) and Meta R-CNN (Yan et al. 2019) aggregate
image/RoI-level query features with support features gen-
erated by a meta learner. Following works explore different
designs of meta-learning architectures, e.g., feature aggrega-
tion scheme (Xiao and Marlet 2020; Fan et al. 2020; Hu et al.
2021; Zhang et al. 2021; Han et al. 2021) and feature space
augmentation (Li et al. 2021a; Li and Li 2021). Different
from meta-learning, Wang et al. propose a simple two-stage
fine-tuning approach, TFA (Wang et al. 2020). TFA shows
that only fine-tuning the last layers can significantly improve
the FSOD performance. Due to the simple structure of TFA,
a line of works (Sun et al. 2021; Zhu et al. 2021; Qiao et al.
2021; Cao et al. 2021) following TFA are proposed. In this
work, we build a strong meta-learning baseline that even
surpasses the fine-tuning baseline TFA. Then we revisit the
feature aggregation scheme and propose two novel feature
aggregation methods, CAA and VFA, achieving a new state-
of-the-art in FSOD.
Variational Feature Learning. Given an input image/fea-
ture, we can transform it into a distribution with VAEs. By
sampling features from the distribution, we can model intra-
class variance that defines the class’s character. The varia-
tional feature learning paradigm has been used in various
tasks, e.g., zero/few-shot learning (Zhang et al. 2019; Xu
et al. 2021; Kim et al. 2019), metric learning (Lin et al.
2018) and disentanglement learning (Ding et al. 2020). In
this work, we use VAEs trained on abundant base examples
to estimate novel classes’ distributions with only a few ex-
amples. Besides, we also propose a consistency loss to make
the model produce class-specific distributions. To our best
knowledge, we are the first to introduce variational feature
learning into FSOD.

Background and Meta R-CNN++
Preliminaries
Problem Definition. We follow the FSOD settings in previ-
ous works (Yan et al. 2019; Wang et al. 2020). Assume we
have a dataset D = {(x, y), x ∈ X, y ∈ Y } with a set of
classes C, where x is the input image and y = {ci,bi}Ni=1
is the corresponding class label c and bounding box b an-
notations. We then split the dataset into base classes Cb and
novel classes Cn where Cb ∪ Cn = C and Cb ∩ Cn = ∅.
Generally, we have abundant samples of Cb and K shots
samples of Cn (K=1, 2, 3, . . . ). The goal is to detect objects
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setting TFA Meta R-CNN∗ Meta R-CNN++

param freeze ✓ ✗ ✓ ✓ ✓
cosine cls. ✓ ✗ ✗ ✓ ✓
last layer init. copy rand rand rand copy

bAP (stage-I) 80.8 72.8 77.6 77.6 77.6
bAP (stage-II) 79.6 47.4 64.9 68.2 76.8
nAP 39.8 20.7 42.0 40.5 41.6

Table 1: Difference analysis between Meta R-CNN and
TFA. The results are evaluated under the 1 shot setting of
PASCAL VOC Novel Set 1. stage-I and stage-II: base train-
ing and fine-tuning stages. ∗: Our re-implemented results.

of Cn with only K shots annotated instances. Existing few-
shot detectors usually adopt a two-stage training paradigm:
base training and few-shot fine-tuning, where the representa-
tions learned from Cb are transferred to detect novel objects
in the fine-tuning stage.
Meta-Learning Based FSOD. We take Meta R-CNN (Yan
et al. 2019) for an example. As shown in Fig. 3, the main
framework is a siamese network with a query feature en-
coder FQ, a support feature encoder FS , a feature aggre-
gator A and a detection head FD. Typically, FQ and FS

share most parameters and A refers to the channel-wise
product operation. Meta R-CNN follows the episodic train-
ing paradigm (Vinyals et al. 2016). Each episode is com-
posed of a set of support images and binary masks of an-
notated objects, {xi,Mi}Ni=1, where N is the number of
training classes. Specifically, we first feed the support set
{xi,Mi}Ni=1 to FS to generate class-specific support fea-
tures {Si}i∈C , and the query image to FQ to generate a set
of RoI features {Qm} (m is the index of RoIs). Then we
aggregate each Qm and Si with the feature aggregator A.
Finally, the aggregated features Q̃m

i are fed to the detection
head FD to produce final predictions.

Meta R-CNN++: Stronger Meta-Learning Baseline
Meta-learning has proved a promising approach, but the
fine-tuning based approach receives more and more atten-
tion recently due to its superior performance. Here we aim
to bridge the gap between the two approaches. We choose
Meta R-CNN and TFA as baselines and explore how to build
a strong FSOD baseline with meta-learning.

Although both methods follow a two-stage training
paradigm, TFA optimizes the model with advanced tech-
niques in the fine-tuning stage: (a) TFA freezes most net-
work parameters, and only trains the last classification and
regression layers so that the model will not overfit to few-
shot examples. (b) Instead of randomly initializing the clas-
sification layer, TFA copies pre-trained weights of base
classes and only initializes the weights of novel classes. (c)
TFA adopts cosine classifier (Gidaris and Komodakis 2018)
rather than a linear classifier.

Considering the success of TFA, we build Meta R-
CNN++, which follows the architecture of Meta R-CNN
but aligns most hyper-parameters with TFA. Here we ex-
plore different design choices to mitigate the gap between
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Figure 2: Illustration of two feature aggregation methods.
Si/Qi: support and query features of class i. A: feature ag-
gregation. L: loss functions.

the two approaches, shown in Tab. 1. (a) Parameter freeze.
By adopting the same parameter freezing strategy, Meta R-
CNN++ significantly outperforms Meta R-CNN and even
achieves higher novel AP than TFA. (b) Cosine classifier.
Different from TFA, Meta R-CNN++ with the cosine classi-
fier does not surpass the linear classifier in nAP (41.6 vs.
42.0), but its performance on base classes is better than
the linear classifier (68.2 vs. 64.9). (c) Alleviate base for-
getting. We follow TFA and copy the pre-trained classifier
weights of base classes. We find Meta R-CNN++ can also
maintain the performance on base classes (76.8 vs. 77.6).

The above experiments indicate that meta-learning re-
mains a promising approach for FSOD as long as we care-
fully handle the fine-tuning stage. Therefore, we choose
Meta R-CNN++ as our baseline in the following sections.

The Proposed Approach
Class-Agnostic Aggregation
Feature aggregation is an important module in meta-learning
based FSOD (Kang et al. 2019; Yan et al. 2019). Many
works adopt a class-specific aggregation (CSA) scheme.
Let us assume that a query image has an object of class
CQ = {i} and the corresponding RoI features {Qm

i }. In the
training phase, as shown in Fig. 2 (a), CSA aggregates each
RoI feature Qm

i with the support features Si of the same
class: Q̃m

ii = A(Qm
i , Si). In the testing phase, CSA aggre-

gates the RoI feature with support features of all classes:
Q̃m

ij = A(Qm
i , Sj), j ∈ C, and each support feature Sj

is to predict objects of its corresponding class. Notably,
if the query image contains multiple classes, CSA aggre-
gates the query features with each support feature in CQ:
Q̃m

ij = A(Qm
i , Sj), j ∈ CQ. But CSA still follows the class-

specific way, as support features not belonging to CQ will
never be aggregated with the query feature.

As discussed before, the learned models are usually bi-
ased to base classes due to the imbalance between base
and novel classes. Therefore, we revisit CSA and propose
a simple yet effective Class-Agnostic Aggregation (CAA).
See Fig. 2 (b) for an instance, CAA allows feature ag-
gregation between different classes, which encourages the
model to learn class-agnostic representations and thereby re-
duces the class bias. Besides, the interactions between differ-
ent classes can simultaneously model class relations so that
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Figure 3: Overview of our framework. FQ and FS denote query and support feature extractors, respectively. Fenc and Fdec are
the variational feature encoder and decoder. FD: the detection head. A: feature aggregation. Note that we do not visualize RPN
and the regression branch for simplicity.

novel classes will not confuse with base classes. Formally,
for each RoI feature Qm

i of class i ∈ C and a set of support
features {Sj}j∈C , we randomly select a support feature Sj∗

of class j∗ to aggregate with the query feature,

Q̃m
ij∗ = A(Qm

i , Sj∗), j
∗ ∈ C. (1)

Then we feed the aggregated feature Q̃m
ij∗ to the detection

head FD to output classification scores p = FD(Q̃m
ij∗),

which is supervised with the label of class i. Note that CAA
is used for training; the testing phase still follows CSA.

Variational Feature Aggregation
Prior works usually encode support examples into single fea-
ture vectors that are difficult to represent the whole class dis-
tribution. Especially when the data is scarce and example’s
variations are large, we cannot make an accurate estimation
of class centers. Inspired by recent progress in variational
feature learning (Lin et al. 2018; Zhang et al. 2019; Xu et al.
2021), we transform support features into class distributions
with VAEs. Since the estimated distribution is not biased to
specific examples, features sampled from the distribution are
robust to the variance of support examples. Then we can
sample class-level features for robust feature aggregation.
The framework of VFA is shown in Fig. 3.
Variational Feature Learning. Formally, we aim to trans-
form the support feature S into a class distribution N , and
sample the variational feature z from N for feature aggre-
gation. We optimize the model in a similar way to VAEs,
but our goal is to sample the latent variable z instead of the
reconstructed feature S

′
. Following the definition of VAEs,

we assume z is generated from a prior distribution p(z) and
S is generated from a conditional distribution p(S|z). As the
process is hidden and z is unknown, we model the posterior
distribution with variational inference. More specifically,
we approximate the true posterior distribution p(z|S) with

another distribution q(z|S) by minimizing the Kullback-
Leibler (KL) divergence:

DKL(q(z|S)||p(z|S)) =
∫

q(z|S) log q(z|S)
p(z|S)

, (2)

which is equivalent to maximizing the evidence lower bound
(ELBO):
ELBO = Eq(z|S)[log p(S|z))]−DKL(q(z|S)||p(z)). (3)
Here we assume the prior distribution of z is a centered

isotropic multivariate Gaussian, p(z) = N (0, I), and set the
posterior distribution q(z|S) to be a multivariate Gaussian
with diagonal covariance: q(z|S) = N (µ, σ). The parame-
ters µ and σ can be implemented by a feature encoder Fenc:
µ, σ = Fenc(S). Then we obtain the variational feature
z with the reparameterization trick (Kingma and Welling
2013): z = µ + σ · ϵ, where ϵ ∼ N (0, I). The first term of
Eq. 3 can be simplified to a reconstruction loss Lrec which
is usually defined as the L2 distance between the input S and
the reconstructed target S

′
,

Lrec = ∥S − S
′
∥ = ∥S −Fdec(z)∥, (4)

where Fdec denotes a feature decoder. As for the second
term of Eq. 3, we directly minimize the KL divergence of
q(z|S) and p(z),

LKL = DKL(q(z|S)||p(z)), (5)
which forces the variation feature z to follow a normal dis-
tribution.

By optimizing the two objectives, Lrec and LKL, we trans-
form the support feature S into a distribution N . Then we
can sample the variational feature z from N . Since z still
lacks class-specific information, we apply a consistency loss
Lcons to the reconstructed feature S

′
, which is defined as the

cross-entropy between S
′

and its class label c,

Lcons = LCE(FS
′

cls(S
′
), c), (6)
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Method / Shots Backbone Novel Set 1 Novel Set 2 Novel Set 3 Avg.1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW (Kang et al. 2019) YOLOv2 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9 28.4
MetaDet (Wang et al. 2019) VGG16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1 31.0
Meta R-CNN (Yan et al. 2019) ResNet-101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1 31.1
TFA w/ cos (Wang et al. 2020) ResNet-101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 39.9
MPSR (Wu et al. 2020) ResNet-101 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7 -
Retentive (Fan et al. 2021) ResNet-101 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1 41.1
Halluc (Zhang and Wang 2021) ResNet-101 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6 43.2
CGDP+FSCN (Li et al. 2021b) ResNet-101 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6 43.8
CME (Li et al. 2021a) ResNet-101 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5 44.4
SRR-FSD (Zhu et al. 2021) ResNet-101 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4 44.8
FSOD-UP (Wu et al. 2021) ResNet-101 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5 45.0
FSCE (Sun et al. 2021) ResNet-101 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5 46.6
QA-FewDet (Han et al. 2021) ResNet-101 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5 48.0
FADI (Cao et al. 2021) ResNet-101 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6 49.2
Zhang et al. (Zhang et al. 2021) ResNet-101 48.6 51.1 52.0 53.7 54.3 41.6 45.4 45.8 46.3 48.0 46.1 51.7 52.6 54.1 55.0 49.8
Meta FR-CNN (Han et al. 2022) ResNet-101 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 40.6 46.4 53.4 59.9 58.6 50.5
DeFRCN (Qiao et al. 2021) ResNet-101 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4 51.9
VFA (Ours) ResNet-101 57.7 64.6 64.7 67.2 67.4 41.4 46.2 51.1 51.8 51.6 48.9 54.8 56.6 59.0 58.9 56.1

Table 2: Results on PASCAL VOC. The results are sorted by the averaged score (Avg.). See our appendix for the generalized
FSOD results.

where FS
′

cls denotes a linear classifier. The introduction of
Lcons transforms the learned distributions into class-specific
distributions. The support feature Si is forced to approxi-
mate a parameterized distribution N (µi, σi) of class i, so
that the sampled z can preserve class-specific information.
Variational Feature Aggregation. Since the support fea-
tures are transformed into class distributions, we can sample
features from the distribution and aggregate them with query
features. Compared with the original support feature S and
reconstructed feature S

′
, the latent variable z contains more

generic features of the class (Zhang et al. 2019; Lin et al.
2018), which is robust to the variance of support examples.

Specifically, VFA follows the class-agnostic approach in
CAA but aggregates the query feature Q with a variational
feature z. Given a query feature Qi of class i and support
feature Sj of class j, we firstly approximate the class dis-
tribution N (µj , σj) and sample a variational feature zj =
µj + σj from N (µj , σj). Then we aggregate them together
with the following equation:

Q̃ij = A(Qi, zj) = Qi ⊙ sig(zj), (7)

where ⊙ means channel-wise multiplication and sig is short
for the sigmoid operation. In the training phase, we ran-
domly select a support feature Sj (i.e., one support class j)
for aggregation. In the testing phase (especially K > 1),
we average K support features of class j into one S̄j , and
approximate the distribution N (µj , σj) with the averaged
feature, µj , σj = Fenc(S̄j). Instead of adopting complex
distribution estimation methods, we find the averaging ap-
proach works well in our method.
Network and Objective. VFA only introduces a light en-
coder Fenc and decoder Fdec. Fenc contains a linear layer
and two parallel linear layers to produce µ and σ, respec-
tively. Fdec consists of two linear layers to generate the re-
constructed feature S

′
. We keep all layers the same dimen-

sion (2048 by default). VFA is trained in an end-to-end man-

ner with the following multi-task loss:

L = Lrpn + Lreg + Lcls + Lcons + Lrec + αLKL, (8)

where Lrpn is the total loss of RPN, Lreg is the regression
loss, and α is a weight coefficient (α=2.5×10−4 by default).

Classification-Regression Decoupling
Generally, the detection head FD contains a shared fea-
ture extractor Fshare and two separate network Fcls and
Freg for classification and regression, respectively. In previ-
ous works, the aggregated feature is fed to FD to produce
both classification scores and bounding boxes. However,
the classification task requires translation-invariant features,
while regression needs translation-covariant features (Qiao
et al. 2021). Since support features are always translation-
invariant to represent class centers, the aggregated feature
harms the regression task. Therefore, we decouple the two
tasks in the detection head. Let Q and Q̃ denote the origi-
nal and aggregated query features. Previous methods take Q̃
for both tasks, where the classification score p and predicted
bounding boxes b are defined as:

p = Fcls(Fshare(Q̃)),b = Freg(Fshare(Q̃)). (9)

To decouple these tasks, we adopt separate feature extractors
and use the original query feature Q for regression,

p = Fcls(Fcls
share(Q̃)),b = Freg(Freg

share(Q)), (10)

where Fcls
share and Freg

share are the feature extractor for clas-
sification and regression, respectively.

Experiments and Analysis
Experimental Setting
Datasets. We evaluate our method on PASCAL VOC (Ever-
ingham et al. 2010) and COCO (Lin et al. 2014), following
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Method / Shots 10 30

Fine-tuning
MPSR (Wu et al. 2020) 9.8 14.1
TFA w/ cos (Wang et al. 2020) 10.0 13.7
Retentive (Fan et al. 2021) 10.5 13.8
FSOD-UP (Wu et al. 2021) 11.0 15.6
SRR-FSD (Zhu et al. 2021) 11.3 14.7
CGDP+FSCN (Li et al. 2021b) 11.3 15.1
FSCE (Sun et al. 2021) 11.9 16.4
FADI (Cao et al. 2021) 12.2 16.1
DeFRCN (Qiao et al. 2021) 18.5 22.6

Meta-learning
FSRW (Kang et al. 2019) 5.6 9.1
MetaDet (Wang, Ramanan, and Hebert 2019) 7.1 11.3
Meta R-CNN (Yan et al. 2019) 8.7 12.4
QA-FewDet (Han et al. 2021) 11.6 16.5
FSDetView (Xiao and Marlet 2020) 12.5 14.7
Meta FR-CNN (Han et al. 2022) 12.7 16.6
DCNet (Hu et al. 2021) 12.8 18.6
CME (Li et al. 2021a) 15.1 16.9
VFA (Ours) 16.2 18.9

Table 3: Results on COCO. The backbone is the same as
Tab. 2. The results are sorted by 10-shot nAP. See our ap-
pendix for the generalized FSOD results.

previous works (Kang et al. 2019; Wang et al. 2020). We use
the data splits and annotations provided by TFA (Wang et al.
2020) for a fair comparison. For PASCAL VOC, we split
20 classes into three groups, where each group contains 15
base classes and 5 novel classes. For each novel set, we have
K={1, 2, 3, 5, 10} shots settings. For COCO, we set 60 cat-
egories disjoint with PASCAL VOC as base classes and the
remaining 20 as novel classes. We have K={10, 30} shots
settings.
Evaluation Metrics. For PASCAL VOC, we report the
Average Precision at IoU=0.5 of base classes (bAP) and
novel classes (nAP). For COCO, we report the mean AP at
IoU=0.5:0.95 of novel classes (nAP).
Implementation Details. We implement our method with
Mmdetection (Chen et al. 2019). The backbone is ResNet-
101 (He et al. 2016) pre-trained on ImageNet (Russakovsky
et al. 2015). We adopt SGD as the optimizer with batch size
32, learning rate 0.02, momentum 0.9 and weight decay 1e-
4. The learning rate is changed to 0.001 in the few-shot fine-
tuning stage. We fine-tune the model with {400, 800, 1200,
1600, 2000} iterations for K={1, 2, 3, 5, 10} shots in PAS-
CAL VOC, and {10000, 20000} iterations for K={10, 30}
shots in COCO. We keep other hyper-parameters the same
as Meta R-CNN (Yan et al. 2019) if not specified.

Main Results
PASCAL VOC. As shown in Tab. 2, VFA significantly out-
performs existing methods. VFA achieves the best (13/16)
or second-best (3/16) results on all settings. In Novel Set
1, VFA outperforms previous best results by 3.2%∼7.1%.
Our 2-shot result even surpasses previous best 10-shot re-
sults (64.6% vs. 63.4%), which indicates that our method is

Method CRD CAA VFA Shots
1 3 5

Meta R-CNN++ 42.0 56.5 58.3

Ours
✓ 46.0 61.7 62.3
✓ ✓ 51.3 62.8 66.4
✓ ✓ ✓ 57.7 64.7 67.2

Table 4: Effect of different modules.
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Figure 4: Comparisons of recall without/with CRD.

more robust to the variance of few-shot examples. Besides,
we notice that our gains are stable and consistent. This phe-
nomenon demonstrates that VFA is not biased to specified
class sets and can be generalized to more common scenarios.
Furthermore, VFA obtains a 56.1% average score and sur-
passes the second-best result by 4.2%, which further demon-
strates its effectiveness.
COCO. As shown in Tab. 3, VFA achieves the best nAP
among meta-learning based methods and second-best re-
sults among all methods. We notice that a fine-tuning
based method, DeFRCN (Qiao et al. 2021), outperforms our
method in nAP. To concentrate on the feature aggregation
module in meta-learning, we do not utilize advanced tech-
niques, e.g., the gradient decoupled layer (Qiao et al. 2021)
in DeFRCN. We believe the performance of VFA can be fur-
ther boosted with more advanced techniques.

Ablation Studies
We conduct a series of ablation experiments on Novel Set 1
of PASCAL VOC.
Effect of different modules. As shown in Tab. 4, we eval-
uate the effect of different modules by gradually applying
the proposed modules to Meta R-CNN++. Although Meta
R-CNN++ is competitive enough, we show CRD improves
the performance on nAP, where the absolute gains exceed
4%. Besides, we find CRD significantly improves the re-
call on all classes (Fig. 4) and narrows the gap between base
and novel classes because it uses separate networks to learn
translation-invariant and -covariant features. Then, we ap-
ply CAA to the model and obtain further improvements.
The confusions between different classes are reduced. Fi-
nally, we build VFA and achieve a new state-of-the-art. The
1-shot performance is even comparable with 5-shot Meta R-
CNN++ in nAP, indicating that VFA is robust to the variance
of support examples especially when the data is scarce.
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Figure 5: Similarity matrix visualization. We calculate co-
sine similarities of support features in the 5-shot setting of
PASCAL VOC Novel Set 1. sofa, motorbike, cow, bus and
bird are novel classes. Warmer color denotes higher similar-
ity. Zoom in for details.
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Figure 6: The distance from the estimated prototype of K-
shot examples to the real class center. For each novel class,
we take the mean feature of all training examples as its real
class center. Our 10-shot result is the reference distance,
while other results are relative distances. We only report the
averaged distance of all novel classes for simplicity.

Visual analysis of different feature aggregation. Fig. 5
gives a visual analysis of different feature aggregation meth-
ods. Due to the imbalance between base and novel classes,
some novel classes are confused with base classes in Meta
R-CNN++ (with CSA), e.g., a novel classe, cow have higher
similarity (>0.8) with horse and sheep. In contrast, CAA
reduces class bias and confusion by learning class-agnostic
representations. The inter-class similarities are also reduced
so that a novel example will not be classified to base classes.
Finally, we use VFA to transforms support examples into
class distributions. By learning intra-class variances from
abundant base examples, we can estimate novel classes’ dis-
tributions even with a few examples. In Fig. 5 (bottom), we
can see VFA significantly improves intra-class similarities.
Robust and accurate class prototypes. In the testing phase,
detectors take the mean feature of K-shot examples as the
class prototype. As shown in Fig. 6, our estimated class pro-
totypes are more robust and accurate than the baseline. The
distances to real class centers do not increase much as the

Features S S
′

µ σ z̃ z

bAP 78.8 78.1 78.6 78.3 78.0 78.6

nAP

1 55.2 54.4 56.6 55.4 53.0 57.7
3 63.7 63.6 63.7 64.9 63.2 64.7
5 66.6 66.9 66.7 66.9 66.3 67.2

avg. 61.8 61.6 62.3 62.4 60.8 63.2

Table 5: Comparisons of different support features. S and S
′

are the original and reconstructed features. µ, σ, z̃ = µ+ϵ·σ
and z = µ+ σ are latent variables. avg.: The average score.

Setting / Shots 1 3 5

w/o VFA 51.3 62.8 66.4

w/ VFA
w/o Lcons 53.6 64.3 66.7
Lcons on S 52.9 64.1 67.3
Lcons on S

′
57.7 64.7 67.2

Table 6: Effect of Lcons. w/o: without. Lcons on S/S
′
: apply

Lcons to S or S
′
. The results are averages of multiple runs.

shot decreases, because our method can fully leverage base
classes’ distributions to estimate novel classes’ distributions.
The prototypes sampled from distributions are robust to the
variance of support examples. While the baseline is sensitive
to the number of support examples.
Which feature to aggregate? In Tab. 5, we explore differ-
ent features for aggregation. All types of features achieve
comparable performance on base classes but vary on novel
classes. The performance of original feature S and recon-
structed feature S

′
lag behind the latent encoding µ, σ and

z. We hypothesize that the latent encoding contains more
class-generic features. Besides, z̃ = µ+ ϵ ·σ performs worst
among these features due to its indeterminate inference pro-
cess. Instead, a simplified version z = µ+ σ achieves satis-
factory results, which is the default setting of VFA.
Effect of Lcons. We use a shared VAE to encode support
features but still need to preserve class-specific information.
Therefore, we add a consistency loss Lcons to produce class-
wise distributions. Tab. 6 shows that Lcons is important for
VFA. Lcons applied to S

′
forces the model to produce class-

conditional distributions so that the latent variable z can re-
train meaningful information to represent class centers.
Design of VFA. The variational feature encoder Fenc and
decoder Fdec are not sensitive to the number and dimension
of hidden layers. Please see our appendix for details.

Conclusion
This paper revisits feature aggregation schemes in meta-
learning based FSOD and proposes Class-Agnostic Aggre-
gation (CAA) and Variational Feature Aggregation (VFA).
CAA can reduce class bias and confusion between base
and novel classes; VFA transforms instance-wise support
features into class distributions for robust feature aggrega-
tion. Extensive experiments on PASCAL VOC and COCO
demonstrate our effectiveness.
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Points. arXiv preprint arXiv:1904.07850.
Zhu, C.; Chen, F.; Ahmed, U.; Shen, Z.; and Savvides, M.
2021. Semantic relation reasoning for shot-stable few-shot
object detection. In CVPR, 8782–8791.

763


