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Abstract

Social networks are essentially in a graph structure where
persons act as nodes and the edges connecting nodes denote
social relations. The prediction of social relations, therefore,
relies on the context in graphs to model the higher-order con-
straints among relations, which has not been exploited suf-
ficiently by previous works, however. In this paper, we for-
mulate the paradigm of the higher-order constraints in so-
cial relations into triangular relational closed-loop structures,
i.e., triangular constraints, and further introduce the triangu-
lar reasoning graph attention network (TRGAT). Our TR-
GAT employs the attention mechanism to aggregate features
with triangular constraints in the graph, thereby exploiting the
higher-order context to reason social relations iteratively. Be-
sides, to acquire better feature representations of persons, we
introduce node contrastive learning into relation reasoning.
Experimental results show that our method outperforms exist-
ing approaches significantly, with higher accuracy and better
consistency in generating social relation graphs.

Introduction
Social relations play a core role in social networks that ev-
eryone lives in. The prediction of social relations from im-
ages has emerged as an important topic in computer vision
(Kukleva, Tapaswi, and Laptev 2020; Yan et al. 2021; Goel,
Ma, and Tan 2019; Zhang et al. 2019), which has many vital
applications such as social event understanding, intelligent
robots, and intelligent personal assistants.

Social relation recognition is to classify the relations be-
tween persons given the input image and bounding boxes of
persons as shown in Figure 1. Usually, multiple persons ex-
ist in an image, and due to the transitivity of social relations,
potential connections, i.e., high-order relation constraints,
are common in their relations (Wang et al. 2022; Li et al.
2020). Most previous methods (Li et al. 2017; Wang et al.
2018; Goel, Ma, and Tan 2019) adopted the pairwise predic-
tion, where the features of two persons are extracted, fused,
and classified to predict between-person relations. These
methods handled multiple pairwise relations in the same
image independently, ignoring the higher-order constraints.
Recently, Li et al. (Li et al. 2020) tried to address this prob-
lem with graph neural networks, which constructed a social
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Figure 1: Images and corresponding annotations from (a) the
PIPA dataset and (b) the PISC dataset. For better visualiza-
tion, we omit some persons and their relations.

relation graph for each image and conducted joint reason-
ing through graph convolutional networks (GCN) (Kipf and
Welling 2016) and gated recurrent units (GRU) (Cho et al.
2014). This method exploits better the context information
than the independent prediction of pairwise relations, but
due to its message propagation mechanism from traditional
graph neural networks, it does not utilize higher-order con-
straints in graphs sufficiently. Although some other com-
puter vision tasks, such as scene graph generation (Xu et al.
2017; Yang et al. 2018; Zellers et al. 2018) and group ac-
tivity recognition (Ibrahim and Mori 2018; Wu et al. 2019;
Tang et al. 2019), achieved success in relation reasoning, the
relations they studied have weak logical constraints (Li et al.
2020). Thus most of their methods still employ simple mes-
sage propagation mechanisms without delving into higher-
order constraints.

To exploit the higher-order context in graphs, we take a
look back at how human beings reason about social rela-
tions. As shown in Figure 1(b), supposing that we do not
know the relation (the pink arrow) between node 1 (the man)
and node 2 (the woman), we will look for an intermediary
— node 3 (the child) — between them. Thereafter we pre-
dict the relation between the man and woman via their rela-
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tions with the child, naturally and interpretably. We call this
ternary constraint the triangular constraint. Obviously, tri-
angular constraints can assist relation reasoning. In case of
Figure 1(a), every two-node relation can be predicted within
a triangular relation by indirect reasoning. However, not all
triangular relations contain strong triangular constraints. For
example, node 4 in Figure 1(b) is not a good intermediary for
the pink relation because “no relation” is of little help to us.
Therefore, we conclude that higher-order constraints can be
utilized through triangular constraints and valid triangular
constraints are beneficial to social relation prediction.

Based on the above analysis, we propose a novel graph
neural network for social relation recognition, which we call
Triangular Reasoning Graph Attention neTwork (TRGAT).
To incorporate the triangular constraints into message prop-
agation for an edge, we first seek all triangular relations con-
taining the edge; then we generate attention coefficients by
evaluating the importance or validity of each triangular re-
lation to the edge; and finally, we perform weighted aggre-
gation of features in these triangular relations to obtain the
final edge features for classification. Such triangular relation
reasoning combines the direct reasoning from paired per-
sons and the indirect reasoning from triangular constraints,
encouraging more consistent and robust relation recognition
than pairwise prediction. Besides, to acquire better feature
representations of persons to enhance the reasoning abil-
ity of our TRGAT, we introduce contrastive learning (He
et al. 2020; Chen et al. 2020; Grill et al. 2020) into relation
reasoning. The proposed so-called node contrastive learning
can learn better representations of persons by designing con-
trastive loss between features of the same person or different
persons. Along with the supervised learning of social rela-
tions, the node contrastive learning enhances the learning
ability and improves the performance of our model.

To summarize, our contributions are in three folds:

• We propose the triangular reasoning graph attention net-
work based on the triangular constraints, which can in-
tegrate higher-order constraints efficiently and perform
social relation reasoning better.

• We propose node contrastive learning to guide our model
to acquire better feature representations of persons and
improve the final performance.

• Our proposed method outperforms existing methods sig-
nificantly, with higher accuracy and better consistency in
generating social relation graphs.

Related Work
Social Relation Recognition
Previous methods for social relation recognition can be di-
vided into two types based on their technical routes: pairwise
prediction methods (Li et al. 2017; Wang et al. 2018; Goel,
Ma, and Tan 2019; Zhang et al. 2019) and joint reasoning
methods (Li et al. 2020). Li et al. (Li et al. 2017) proposed
a dual-glance model based on pairwise prediction to explore
the image context. Zhang et al. (Zhang et al. 2019) intro-
duced additional pose cues of persons and adopted graph
convolutional networks (GCN) (Kipf and Welling 2016)

for pairwise prediction. Without considering the constraints
among relations, these methods did not achieve satisfactory
performance. To address this problem, Li et al. (Li et al.
2020) constructed a social relation graph for the entire in-
put image and proposed GR2N based on GCN and GRU for
joint relation reasoning. Despite great success made by this
method, it did not sufficiently exploit higher-order relation
constraints and integrate them into the message propagation
mechanism of graph networks.

Higher-Order Networks
Higher-order interaction is a vital issue in graph theory.
Since pairwise interaction networks are deemed insufficient
for many complex systems (Battiston et al. 2020, 2021),
many works (Iacopini et al. 2019; Wang et al. 2022) ex-
plored higher-order interaction by adopting higher-order
networks. Inspired by the Weisfeiler-Lehman algorithm,
Morris et al. (Morris et al. 2019) introduced a high-order
graph neural network and applied to molecular learning,
showing excellent performance. However, visual relation
reasoning works have not adopted well higher-order net-
works. Gao et al. (Gao et al. 2021) adopted high-order graph
networks but only for input feature fusion rather than con-
text aggregation. For social relations with strong high-order
constraints, an efficient high-order network is necessary.

Contrastive Learning
Contrastive learning is a self-supervised learning method to
learn general representations from datasets without labels.
Since remarkable advances (He et al. 2020; Oord, Li, and
Vinyals 2018; Chi et al. 2021) have been made, it has been
applied to a variety of downstream tasks. Recently, some
methods (Dai and Lin 2017; Ma et al. 2021; Li et al. 2021)
introduced contrastive learning to assist supervised training.
Dai et al. (Dai and Lin 2017) applied contrastive learning
to image captioning to encourage discriminativeness. Hu et
al. (Hu, Cui, and Wang 2021) proposed region-aware con-
trastive learning for supervised semantic segmentation. In-
spired by these methods, we deploy contrastive learning as
an auxiliary training method to guide the model to obtain
better feature representations for persons.

Triangular Relation Reasoning
In this section, we give a comprehensive explanation of how
the triangular relation reasoning of our TRGAT captures
higher-order constraints to perform indirect relation reason-
ing in theory.

Observation 1. Social relations in each image can be rep-
resented in a graph whose nodes stand for the persons and
edges stand for their relations. In the graph, higher-order
constraints always exist in relational closed loops.

Due to the transitivity of social relations, the chain-like
relations acquire information redundancy only after forming
a closed loop (Figure 2(b)), thus producing the high-order
constraints. In contrast, non-closed-loop structures do not
have information redundancy. As illustrated in Figure 2(a),
the red edge does not have external constraints, and the rela-
tion it represents depends only on its two endpoints.
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Figure 2: Several examples of graph structures. (a) a re-
lational non-closed-loop graph structure; (b) a relational
closed loop; (c) a case of decomposing the relational closed
loop into triangular relational closed loops.

Such kind of high-order relations is helpful as it provides
each of its edges with more robust contextual cues than vi-
sual features. In some cases, final relation result can even be
determined by indirect reasoning from its higher-order con-
straint as Figure 1(a). Unfortunately, it is hard to make full
use of all relational loops. In a fully connected graph, the
number of relational closed loops grows exponentially with
the number of nodes.

Observation 2. The closed-loop structure can be decom-
posed into a series of triangular loops by adding edges, and
its constraint information can also be transferred to them.

We denote these triangular loops as the triangular rela-
tional closed loops. The indirect relation reasoning from any
closed loops can be realized by a series of triangular rela-
tion reasoning on these triangular relational closed loops.
As a case shown in Figure 2(c), to get E3 during reason-
ing, we can first get E1 via loop ➀, then E2 via loop ➁, and
finally E3 via loop ➂. Through such iterations, the higher-
order constraint of the entire closed loop can be perceived
by its every edge member. Moreover, the amount of com-
putation is reduced to a polynomial level. Theoretically, the
more iterations, the higher order constraints can be captured.

Method
The overview of our framework is diagrammed in Figure 3.
Given the input image and bounding boxes of persons, first,
a backbone network (CNN+FPN) is used to extract features
for the entire image, then visual features are extracted by
RoIAlign (He et al. 2017) and spatial maps are generated
from bounding boxes. The extracted visual and spatial fea-
tures are fused into the input graph to perform relation rea-
soning through our TRGAT.

Graph Construction
We model the persons and social relations into a relational
graph. To acquire the feature representations of nodes and
edges, we first extract visual features of the entire image
using a convolutional neural network (CNN), followed by
a feature pyramid network (FPN) (Lin et al. 2017a) to fuse
high-level semantic and low-level textural information. Thus
we get the backbone feature Fb.

Node Features. For persons, we employ RoIAlign (He
et al. 2017) to extract features from Fb based on their
bounding boxes and scale these features to a fixed size

Cv × Sv × Sv , where Cv is the original channels of the fea-
tures and Sv denotes width and height of the scaled visual
features. We call these features visual features of persons
Fpv . Considering that the diverse pose of persons incurs a
lot of background inside many bounding boxes, we apply
the spatial attention mechanism, which is composed of con-
volutional and activation layers, to focus on salient regions.
At last, we use ReLU (Glorot, Bordes, and Bengio 2011) for
attention coefficient truncation. This process can be formu-
lated as:

F̂pv = Fpv ⊙ReLU (RA (Fpv)) , (1)

where F̂pv is the visual feature of a person after re-
gion attention; ⊙ stands for element-wise product; RA :
RCv×Sv×Sv → R1×Sv×Sv is our region attention network.

To fuse spatial information, we generate spatial map fea-
tures from bounding boxes of persons. The spatial location
of a particular person in the entire image is mapped into a
feature map sized Ss × Ss, with value 1 inside the mapped
bounding box and 0 outside it, where Ss denotes the width
and height of spatial maps. We call these features the spatial
features of persons Fps ∈ RSs×Ss . Then the final node fea-
tures FN are obtained from the sum of transformed V̂pv and
Vps, both of which are 1D vectors stretched from F̂pv and
Fps respectively.

FN = fpv

(
V̂pv

)
+ fps (Vps) , (2)

where fpv : RCvS
2
v → RD and fps : RS2

s → RD are fully
connected layers.

Edge Features. For the relation between two persons, we
materialize it as the region of the union box of the two per-
sons. The features are also extracted from Fb by RoIAlign.
We call them relational visual features Frv ∈ RCv×Sv×Sv .
The relational spatial features Frs ∈ RSs×Ss are defined and
generated in the same manner as the persons. For relational
visual features, we do not employ the spatial attention mech-
anism. The edge features can be generated by the sum of
the transformed Vrv and Vrs, both of which are 1D vectors
stretched from Frv and Frs respectively:

FE = frv (Vrv) + frs (Vrs) , (3)

where frv : RCvS
2
v → RD; frs : RS2

s → RD.
Graph Structure. We build a fully connected graph as

the input graph because we require fully connected graphs to
decompose all relational closed loops and transfer relation
constraints to them. In our graph, each undirected edge is
represented by two oppositely directed edges with the same
initial features. When testing, we average the features of the
two edges and then classify them.

Triangular Reasoning GAT
Based on the proposed triangular relation reasoning and
principle of graph attention network (GAT) (Veličković et al.
2018), we design a novel graph neural network called Trian-
gular Reasoning Graph Attention neTwork (TRGAT). The
main differences from GAT lie in two update steps of each
layer in TRGAT: node aggregation and edge aggregation.
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Figure 3: The overview of our framework.

Node Aggregation. We denote node features before node
aggregation as FN ∈ RD and edge features as FE ∈ RD,
while denote the node features after aggregation as F

′

N ∈
RD, where D is the dimension of node and edge feature
vectors. During the aggregation, multi-head attention mech-
anism is deployed for a weighted sum of inflow edge fea-
tures. For clarity, we adopt one-head attention to explain.
The attention coefficient between i-th node Ni and inflow
edge Eji from j-th node Nj can be calculated by:

αji =
exp

(
σ
(
fA

(
FEji ∥ FNi

)))∑
k∈Ni

exp (σ (fA (FEki
∥ FNi

)))
, (4)

where we use leaky ReLU (Maas et al. 2013) as the activa-
tion function σ(∗); fA : R2D → R is a fully connected layer
for the attention mechanism between node and edge; ∥ is the
concatenation operation; Ni stands for the neighbor of Ni.

Then we perform weighted aggregation through the atten-
tion coefficients. This process can be explained as follows:

F
′

Ni
= σ

fN

∑
j∈Ni

αjiFEji

 ∥ FNi

 , (5)

where fN : R2D → RD is a fully connected layer to trans-
form node features.

Edge Aggregation. Edge aggregation first adopts the
multi-head attention mechanism to fuse the two endpoint
features of a specific edge. The fused features, represented
by F

′

E , can be calculate by:

F
′

Eji
= σ

(
fE

((
αijFNj

+ αjiFNi

)
∥ FEji

))
, (6)

where fE : R2D → RD is a fully connected layer to trans-
form edge features; αji and αij are the same to the ones
in node aggregation. The above aggregation is inspired by
(Li, Yin, and Liu 2020; Ye et al. 2019), which combines the
source node information and the target node information of
the edge, but ours is more concise.

Then we fuse features of triangular relational closed loops
into each edge. For a specific edge Eji, its triangular re-
lational closed loops can be obtained by enumerating all
common neighboring nodes of its two endpoints Nj and Ni.

Each of these nodes forms a triangular relational closed loop
with the two endpoints. Coefficients of multi-head attention
are calculated by evaluating the importance of a specific tri-
angular relational closed loop △ jki to the edge Eji:

β△jki =
exp

(
σ
(
fTRA

(
F

′
Ejk

∥ F
′
Eki

∥ F
′
Eji

)))
∑

△jhi∈Ωji

exp
(
σ
(
fTRA

(
F

′
Ejh

∥ F
′
Ehi

∥ F
′
Eji

))) ,
(7)

where △ jhi demonstrates the triangular relational closed
loop composed by Ejh, Ehi, and Eji; fTRA : R3D → RD

is a fully connected layer for the attention mechanism be-
tween the edge and its triangular relational closed loop; Ωji

is a set of all triangular relational closed loops of Eji.
Finally, the aggregation procedure is achieved by per-

forming an attention-weighted summation of all relational
bypass features in triangular relational closed loops, con-
catenating with the original edge feature, and transforming
it via a fully connected layer.

F
′′
Eji

= σ

fTR

 ∑
△jki∈Ωji

β△jki

(
F

′
Ejk

∥ F
′
Eki

)
∥ F

′
Eji

 ,

(8)

where fTR : R3D → RD is a fully connected layer to
transform the concatenated features; F

′′

Eji
is the final feature

of Eji after edge aggregation.
Reasoning in Graph. The above aggregations integrate

triangular constraints in triangular closed loops into each
edge of the graph. To obtain higher-order constraints, we
stack multiple these above layers for iterative reasoning. As
explained previously, the more layers we stack, the higher
order constraints our network can capture.

To acquire final relation results, we adopt a C-way linear
classifier CLS with a binary focal loss (Lin et al. 2017b) lf
for edge classification. C is the number of relation classes.
This process can be formulated by:

Lrel =
1

C

C∑
i=1

lf
(
CLSi (FE) , T

i
E

)
, (9)

where CLSi is the i-th way in CLS; FE is the output edge
feature of our TRGAT; T i

E is a boolean denoting whether the
edge is in the class i.
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Node Contrastive Learning
Contrastive learning is a way of self-supervised learning,
which does not require annotations for supervising. Con-
trastive learning has been widely used in computer vision
(Hu, Cui, and Wang 2021; Wu et al. 2018; Dai and Lin
2017). But most methods use contrastive learning as a pre-
training approach. In this paper, we introduce contrastive
learning as an auxiliary training method to provide a cheap
supervision for nodes.

In relation reasoning, we hope that the graph neural net-
work can learn the characteristic of each person. Since
bounding boxes of persons may have serious overlapping,
and many bounding boxes contain two or even more persons,
a good relation reasoning network is expected to distinguish
the dominant person from others within the bounding box.
Node contrastive learning provides us with a usable way to
guide our graph neural network to obtain better and more
discriminative feature representations of persons.

The procedure of node contrastive learning is illustrated
in Figure 4. For an input image I , we first perform pairwise
augmentation, involving random flipping, small-angle tilt-
ing, and random blurring, to get two forms of a single image
I1 and I2. This pair of images are input into our framework
and finally output a pair of graphs G1 and G2 with the same
structure. In the end, we employ a MultiLayer Perception
(MLP) as a node mapper to map the nodes of the two graphs
into output space. Here we define the number of nodes in G1

or G2 as n, the union set of nodes in G1 and G2 as U , whose
length is 2n. Then we take the nodes representing the same
person, e.g., Ni in G1 and Ni∗ in G2, as positive samples
for each other, while the nodes denoting different persons
are negative samples, whether they are in the same graph.
Contrastive loss (Wu et al. 2018) is exploited to achieve the
effect that the features of the same person are more simi-
lar and features of different persons are more differentiated.
This loss Lcontr can be expressed as follows:

Lcontr = − 1

n

n∑
i=1

log lcontr (Ni, Ni∗), (10)

lcontr (Ni, Nj) =
exp

(
SIM

(
FNi

, FNj

)
/τ

)∑
Nk∈U,k ̸=i

exp (SIM (FNi
, FNk

) /τ)
,

(11)

where FN is the output node feature from MLP; τ is a hyper-
parameter representing the temperature coefficient; SIM is
the similarity measure function, where we adopt cosine sim-
ilarity. Notably, we extend the above loss to a batch, where
the nodes of graphs generated by different images are nega-
tive samples of each other.

The total loss is a weighted sum of relation loss Lrel and
node contrastive loss Lcontr with a hyperparameter λ.

Ltotal = Lrel + λLcontr. (12)

Experiments
To evaluate the performance of the proposed method, we
conduct extensive experiments on the two popular bench-
mark datasets: PISC (Li et al. 2017) and PIPA (Sun, Schiele,
and Fritz 2017).

Experiment Setting
Dataset. The People in Social Context (PISC) dataset (Li
et al. 2017) is a large-scale social relation dataset with 22670
images. The average number of persons per image is 3.11.
It has two types of social relation categories: 3 coarse re-
lations and 6 fine relations. The coarse setting has a train/-
val/test split of 13142, 4000 and 4000 images while the fine
is 16828, 500 and 1250 images. The evaluation metrics are
to calculate the per-class recall for each relation and the
mean average precision (mAP) over all relations. The Peo-
ple in Photo Album (PIPA) (Sun, Schiele, and Fritz 2017)
dataset contains 8570 images. The average number of per-
sons per image is 2.56. The relations it defines have 16 cat-
egories covering 6 domains. For fair comparisons, we adopt
the standard train/val/test split introduced by (Sun, Schiele,
and Fritz 2017), which has a train/val/test split of 5857, 261,
and 2452 images. The top-1 classification accuracy of all re-
lation pairs is the final metric.

Implementation Details. Our implementation is based
on PyTorch (Paszke et al. 2019) and MMDetection (Chen
et al. 2019) framework. Following other methods’ backbone
setting (Li et al. 2020), our stem network adopts ResNet-101
(He et al. 2016) inheriting parameters pre-trained on Ima-
geNet dataset (Krizhevsky, Sutskever, and Hinton 2012). To
balance the performance and speed, we set the layer number
of our TRGAT to 2. Features representing persons and rela-
tions are set to 2048-D vectors. In training, we scale the long
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Method PISC-Coarse PISC-Fine PIPA

Int Non NoR mAP Fri Fam Cou Pro Com NoR mAP Acc

Pair CNN (Li et al. 2017) 70.3 80.5 38.8 65.1 30.2 59.1 69.4 57.5 41.9 34.2 48.2 58.0
Dual-Glance (Li et al. 2017) 73.1 84.2 59.6 79.7 35.4 68.1 76.3 70.3 57.6 60.9 63.2 59.6

GRM (Wang et al. 2018) 81.7 73.4 65.5 82.8 59.6 64.4 58.6 76.6 39.5 67.7 68.7 62.3
MGR (Zhang et al. 2019) - - - - 64.6 67.8 60.5 76.8 34.7 70.4 70.1 64.4

SRG-GN (Goel, Ma, and Tan 2019) - - - - 25.2 80.0 100.0 78.4 83.3 62.5 71.6 53.6
GR2N (Li et al. 2020) 81.6 74.3 70.8 83.1 60.8 65.9 84.8 73.0 51.7 70.4 72.7 64.3

TRGAT 82.2 75.2 73.0 86.1 50.1 69.4 78.9 72.4 79.1 71.2 76.2 64.8

GR2N-NCL 80.4 76.1 74.6 85.5 55.4 70.2 78.9 71.5 70.9 70.7 75.5 64.9
TRGAT-NCL 81.4 76.6 75.3 87.6 58.2 73.1 78.9 76.7 70.6 73.6 78.2 65.3

Table 1: Comparison with other methods on the PISC and PIPA dataset. The results of PISC include per-class recall and
mean Average Precision (mAP) and the results of PIAP are top-1 accuracy, all of which are in %. “NCL” stands for our node
contrastive learning. (The abbreviations and corresponding full names of relation types are as follows. Int: Intimate, Non: Non-
Intimate, NoR: No Relation, Fri: Friends, Fam: Family, Cou: Couple, Pro: Professional, Com: Commercial)

edge of input images to 600, 720, or 960 randomly while
keeping the aspect ratio and 720 in testing. We train our
model with the stochastic gradient descent method (SGD).
All the experiments are conducted with a batch size of 16
on 2 GPUs. The implementation is on a workstation with a
2.40GHz 56-core CPU, 256G RAM, GTX Titan RTX, and
64-bit CentOS.

Comparison with the State-of-the-Art
To prove the superiority of our model, we compare it with
several existing state-of-the-art methods. As shown in Ta-
ble 1, the first five methods are based on pairwise input of
persons and pairwise prediction. Our experimental results in
Table 1 show that our method, with higher-order knowledge,
surpasses these five methods significantly — nearly 7% of
fine relations on PISC. Since most of the images in the PIPA
test set have only two persons and additional annotations are
utilized by most of these methods, the 1% improvement is
not so obvious.

GR2N tries to grasp the logical constraints between dif-
ferent types of social relations through joint reasoning in a
social relation graph. But due to its simple way of message
passing, it fails to exploit higher-order constraints among
relations sufficiently, while our model successfully incor-
porates the triangular constraints into message propagation
of edges, takes full use of higher-order context in graphs,
and achieves better performance. As shown in Table 1, our
method surpasses GR2N by 4.5% on coarse relations, 5.5%
on fine relations of PISC, and 1% on PIPA, which shows our
model’s superiority.

Ablation Studies
We conduct some ablation studies to verify the effectiveness
of our framework, including comparison with vanilla GAT
(Veličković et al. 2018) and the use of region attention, spa-
tial features, reweighting, and node contrastive learning. The
reweighting is to relieve the imbalance in the fine relations
of PISC dataset. Concretely, we first freeze all the weight
parameters except the linear classification layer, and then
reweight the loss function with the coefficients calculated
from the training set to refine the linear classification layer.

Method RAtt Spa RW C-mAP F-mAP

GAT # # # 81.3 69.3
TRGAT # # # 85.7 74.6
TRGAT ! # # 85.8 74.9
TRGAT ! ! # 86.1 75.5
TRGAT ! ! ! 86.1 76.2

Table 2: Ablation studies on PISC dataset. (RAtt: Region
Attention; Spa: Spatial features; RW: Reweighting method;
C/F-mAP: mAP (in %) of coarse/fine relations.

Figure 5: Variation of mAP (in %) with the number of per-
sons in a image.

Comparison with GAT. We implement the original GAT
on the PISC dataset. Following our backbone network, fea-
tures of persons are extracted and embedded as nodes in the
input graph. Then the input graph is sent to the GAT for re-
finement. Finally, we fuse the features of paired persons for
joint reasoning of relations. Beyond that, all training and test
settings are consistent with TRGAT.

The performance of GAT on the PISC dataset is shown in
Table 2, lower than our method by 4.4% on coarse relations
and 5.3% on fine relations. The reason is that the vanilla
GAT can only aggregate the information from neighboring
nodes in message propagation. Lacking the incorporation
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Figure 6: Visualization of qualitative results. The graph below each image is the social relation graph generated by our TRGAT.

Method Number of Layers F-mAP (in %) FPS

TRGAT 1 77.4 19.2
TRGAT 2 78.2 15.5
TRGAT 3 78.1 12.7

GAT 3 69.3 19.1

Table 3: Ablation studies about setting of layers of our TR-
GAT on the PISC dataset.

of triangular relation features makes it hard to perceive the
higher-order context. A more intuitive experiment is con-
ducted and shown in Figure 5. We split the test set of coarse
relations according to the number of persons existing in each
image, and then test our TRGAT and GAT on images with
different person numbers separately. Since the difficulty of
relation reasoning is positively correlated with the number
of persons, the reasoning ability of these models shows a
downward tendency with the increase of persons. However,
compared with GAT, our TRGAT drops more slowly. This il-
lustrates the effectiveness of TRGAT for modeling relations
between multiple persons with higher-order constraints.

RAtt & Spa & RW. The region attention mechanism
weights the features after RoIAlign to make the model fo-
cus on some salient regions to acquire higher-quality feature
representations of persons. Spatial features also exert their
power in relation reasoning because two persons that are far
apart in space are less likely to be intimate. Reweighting
overcomes the imbalance in relations of the PISC dataset.
These methods are simple but effective. Our model obtains
a gain of 0.4% on coarse relations and 1.6% on fine relations.

Node Contrastive Learning. Our node contrastive learn-
ing aims at better feature representation of persons, thus con-
duce to relation reasoning. Here we compare the final per-
formance of our model with and without node contrastive
learning. As shown in Table 1, node contrastive learning
brings 1.5% and 2.0% improvement to our model on coarse
and fine relations respectively, which proves its effectiveness
and significance. More importantly, our node contrast learn-
ing is general enough. We apply it to another graph-based
social relation recognition network GR2N, which can also

bring 2.4% improvement in coarse relations, 2.8% in fine
relations in the PISC dataset, and 0.6% on the PIPA dataset.

Setting of layers and Speed. We display the layer num-
ber setting, performance, and reasoning speed on the PISC
dataset in Table 3. Since the relation annotations of PISC
are dense enough, two layers are sufficient for capturing the
higher-order constraints. Therefore, to balance performance
and speed, we adopt a two-layer structure.

Qualitative Analyses
We visualize the results reasoned by our model in the two
popular datasets. As is shown in Figure 6, our model is able
to utilize the higher-order context by incorporating the trian-
gular constraints, thus avoiding some unreasonable and con-
tradictory relations and obtaining a consistent social relation
graph. For example, in the first family image, all relations
between family members should be intimate.

Conclusion
In this paper, we formulate the higher-order constraints in
social relations into closed-loop structures, further incorpo-
rate the triangular relation reasoning into graph neural net-
works and propose TRGAT. Our TRGAT performs weighted
aggregation of triangular relation features by introducing the
attention mechanism, so as to perceive higher-order context
in graphs and provide accurate reasoning results. To improve
the learning ability of our TRGAT, we propose node con-
trastive learning that enables our TRGAT to grasp a better
feature representation of each person. Experimental results
show that our method outperforms existing methods signif-
icantly, with higher accuracy and better consistency in gen-
erating social relation graphs.
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