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Abstract

In this paper, we present a ranking-based underwater image
quality assessment (UIQA) method, abbreviated as URanker.
The URanker is built on the efficient conv-attentional image
Transformer. In terms of underwater images, we specially de-
vise (1) the histogram prior that embeds the color distribution
of an underwater image as histogram token to attend global
degradation and (2) the dynamic cross-scale correspondence
to model local degradation. The final prediction depends on
the class tokens from different scales, which comprehensively
considers multi-scale dependencies. With the margin rank-
ing loss, our URanker can accurately rank the order of un-
derwater images of the same scene enhanced by different
underwater image enhancement (UIE) algorithms according
to their visual quality. To achieve that, we also contribute a
dataset, URankerSet, containing sufficient results enhanced
by different UIE algorithms and the corresponding percep-
tual rankings, to train our URanker. Apart from the good
performance of URanker, we found that a simple U-shape
UIE network can obtain promising performance when it is
coupled with our pre-trained URanker as additional supervi-
sion. In addition, we also propose a normalization tail that
can significantly improve the performance of UIE networks.
Extensive experiments demonstrate the state-of-the-art per-
formance of our method. The key designs of our method are
discussed. Our code and dataset are available at https://li-
chongyi.github.io/URanker files/.

Introduction
Underwater images commonly suffer from quality degrada-
tion issues such as color cast, low contrast, blurred details,
etc. The wavelength- and distance-dependent light attenua-
tion and scattering are the culprits of these issues (Akkaynak
et al. 2017). To improve the visual quality of underwater im-
ages, underwater image enhancement (UIE) techniques have
been widely studied. With the rapid development of UIE, un-
derwater image quality assessment (UIQA) plays a more and
more critical role. A good UIQA approach not only fairly
evaluates the visual quality of underwater images, but also
further motivates better UIE algorithms.
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Figure 1: (a) illustrates our URanker that is trained on well-
sorted image groups and optimized by margin ranking loss.
The right part shows the predicted scores of the proposed
URanker and two widely-used non-reference UIQA meth-
ods, UCIQE and UIQM. The ratio of the height of the rect-
angle represents the ratio of the quality score of the corre-
sponding image, and higher, better. Only our URanker pro-
duces the scores in decreasing order (align with the ground
truth rankings). (b) shows the overview of a simple UIE
model equipped with our pre-trained URanker as additional
supervision which helps a UIE model obtain better visual
quality.

While existing UIQA approaches show good perfor-
mance, they still have some limitations. Although full-
reference IQA can objectively evaluate image quality, it is
almost impossible to simultaneously obtain both underwater
images and the ground truths in situ. To bypass this issue, Li
et al. (Li et al. 2019) proposed a paired underwater image
dataset, named UIEB. UIEB contains real-world underwater
images and their reference counterparts. The reference im-
age is obtained by manually selecting the best enhancement
among the results enhanced by different UIE algorithms.
The advent of UIEB allows one to use full-reference IQA
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such as PSNR and SSIM to evaluate the quality of under-
water images. However, the provided reference images are
not always ideal, leading to inaccurate assessment. There
are several non-reference UIQA methods. However, they
use fixed hand-crafted metrics to evaluate different under-
water scenes, which is inappropriate for underwater images
with diverse degradations and captured in different scenes.
For instance, as shown in Figure 1(a), existing non-reference
UIQA methods like UCIQE (Yang and Sowmya 2015) and
UIQM (Panetta, Gao, and Agaian 2015) cannot accurately
reflect the quality of underwater images.

To address these problems, we propose a ranking-based
UIQA method, abbreviated as URanker. Instead of design-
ing the hand-crafted metrics or fitting the visual scores, we
attempt to rank the order of different underwater images of
the same scene according to their visual quality. The benefit
of using the ranker-learning technique (Liu, Van De Weijer,
and Bagdanov 2017; Zhang et al. 2019) is to avoid the inter-
ference caused by different degradation and scenes, which
are especially obvious in underwater images. Besides, in
contrast to fitting the visual scores, the relative quality order
is easier to be learned for an IQA network. Although there
are some ranking-based IQA methods (Liu, Van De Weijer,
and Bagdanov 2017; Ou et al. 2021), they either are origi-
nally designed for generic images or ignore the unique char-
acteristics of underwater images.

Different from previous methods, our URanker is built on
the efficient conv-attentional image Transformer (Xu et al.
2021). Taking the characteristics of underwater images into
account, we specially devise two key designs. Considering
that the degrees of color casts significantly influence the vi-
sual quality of underwater images, we propose a histogram
prior that embeds the color distribution of an underwater im-
age as histogram token to attend global degradation. Inspired
by the multi-scale features based IQA (Ke et al. 2021), we
introduce the dynamic cross-scale correspondence to model
local degradation. Besides, we obtain the final prediction by
considering multi-scale dependencies according to the class
tokens from different scales. To achieve that, we contribute a
dataset, URankerSet, containing sufficient results enhanced
by different UIE algorithms and the corresponding percep-
tual rankings. To rank the order of different results, we adopt
Bubble Sort with the help of volunteers, which effectively
reflects the human visual perception. With the URankerSet,
we optimize our URanker using margin ranking loss. Be-
sides the good performance of URanker for UIQA, since all
operations in our URanker are differentiable, its feedback
can be further used as a loss to optimize UIE networks, as il-
lustrated in Figure 1(b). Further, we propose a simple but ef-
fective accessory, normalization tail, for UIE networks, pro-
ducing significant performance improvements.

Overall, our contributions can be summarized as follows:

1. We present a Transformer network, URanker, for UIQA
with novel histogram prior and dynamic cross-scale cor-
respondence.

2. We contribute an underwater image with ranking dataset,
URankerSet, that contains underwater images enahnced
by different UIE algorithms and the corresponding visual

perceptual rankings.
3. Apart from the good performance in UIQA, our URanker

also improves the performance of UIE networks. The
performance can be further improved using our proposed
normalization tail.

Related Work
Underwater Image Quality Assessment
Due to the unique characteristics of underwater images, the
commonly used IQA metrics (Mittal, Moorthy, and Bovik
2012; Talebi and Milanfar 2018; Mittal, Soundararajan, and
Bovik 2012) are not suitable. Therefore, several IQA spe-
cially designed for underwater images have been proposed.
Yang et al. (Yang and Sowmya 2015) proposed the UCIQE,
which is a linear combination of image chroma, bright-
ness, and saturation. From the perspective of the human vi-
sual system, UIQM (Panetta, Gao, and Agaian 2015) was
proposed, which quantifies the colorfulness, sharpness, and
contrast of the underwater image, respectively. UIQM score
is calculated by the weighted sum of these three compo-
nents. Recently, the Frequency Domain Underwater Met-
ric (FDUM) (Yang et al. 2021) was proposed, which takes
the frequency domain features and DCP (He, Sun, and Tang
2010) into consideration. Jiang et al. (Jiang et al. 2022) pro-
posed to extract the features of chromatic and luminance and
train an SVM for UIQA. These UIQA methods achieve good
performance in most cases. Nevertheless, the methods based
on hand-craft features (Yang and Sowmya 2015; Panetta,
Gao, and Agaian 2015) and statistic regression (Yang et al.
2021; Jiang et al. 2022) do not always hold for diverse un-
derwater images. More recently, Fu et al. (Fu et al. 2022)
provided a Twice-Mixing framework for UIQA. It gener-
ates a set of mid-quality images by mixing up the original
images and the corresponding reference version with differ-
ent degrees. Then, a siamese network is adopted to learn
their quality rankings. However, the human visual system
is not uniform and the mixing-up manner cannot cover the
over-enhanced cases. In our study, we manually sort the im-
ages enhanced by different UIE algorithms, which generates
more comprehensive results compared to the mixing-up op-
eration. Besides, we specially design a UIQA method for
modeling the global and local degradation of underwater im-
ages. Moreover, our method models the multi-scale depen-
dencies via class tokens from different scales.

Underwater Image Enhancement
As a key step for improving the visual quality of underwa-
ter images, UIE has attracted widespread attention. Exist-
ing UIE algorithms can be generally divided into three cat-
egories: non-physical model-based, physical model-based
methods, and data-driven methods. Non-physical model-
based methods (Iqbal et al. 2010; Ancuti et al. 2012; Fu et al.
2017) were proposed to adjust pixel values from the per-
spective of color balance and contrast. For physical model-
based methods, one line is to modify the Dark Channel Prior
(DCP) (He, Sun, and Tang 2010) to make it fit the underwa-
ter scenes (Drews et al. 2016; Li et al. 2017a; Peng, Cao, and
Cosman 2018). Another line is to solve an underwater image
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formation model (Galdran et al. 2015; Li et al. 2016; Peng
and Cosman 2017). Recently, with the fast development of
deep learning, many data-driven methods (Li et al. 2017b;
Li, Anwar, and Porikli 2020; Li, Guo, and Guo 2018; Li
et al. 2019, 2021) have been proposed. The promising results
they achieved show their tremendous potential for UIE. In
this study, we demonstrate that a simple UIE network such
as U-shape network (Ronneberger, Fischer, and Brox 2015)
can achieve state-of-the-art performance when it is equipped
with our pre-trained URanker as additional supervision and
our proposed normalization tail.

Proposed URankerSet
To train the ranking-based UIQA network, we construct
an underwater image with rank dataset, called URankerSet.
Following the prototype of Li et al. (Li et al. 2019), we
use the same UIE algorithms including fusion-based (An-
cuti et al. 2012), two-step-based (Fu et al. 2017), retinex-
based (Fu et al. 2014), UDCP (Drews et al. 2016),
regression-based (Li et al. 2017a), GDCP (Peng, Cao,
and Cosman 2018), Red Channel (Galdran et al. 2015),
histogram prior (Li et al. 2016), blurriness-based (Peng
and Cosman 2017), DCP (He, Sun, and Tang 2010),
MSCNN (Ren et al. 2016), and dive+1 to process 890 raw
underwater images provided in Li et al.’s work. We dis-
card three of twelve UIE algorithms used in Li et al.’ s
work as these algorithms produce similar outputs with one
of the nine selected UIE algorithms. Otherwise, similar out-
puts may affect the accuracy of visual quality ranking.

Specifically, for each raw underwater image and the nine
enhanced results, we invite eleven volunteers with image
processing experience to perform pairwise comparisons us-
ing the monitors with the same model and settings. We per-
form Bubble Sort in descending order that is originally de-
signed for arranging a string of numbers in the correct order
to rank the visual quality of each set of underwater images
(i.e., a raw underwater image and nine results enhanced by
nine different UIE algorithms). First, the ten underwater im-
ages are randomly arranged from left to right. Then, the vol-
unteers are required to compare two adjacent images at a
time in left to right order. In each comparison, the image of
the two adjacent images which receive the minority votes
is rearranged in descending order from left to right. Then,
the volunteers continue to cycle through the entire sequence
until it completes a pass without switching any images.

Proposed URanker
Recent work has demonstrated that multi-scale features and
Transformer structure can boost the performance of IQA (Ke
et al. 2021). Inspired by this insight, our URanker is built on
the efficient conv-attentional image Transformer (Xu et al.
2021), which adopts the conv-attention mechanism to re-
place the multi-head self-attention mechanism for reducing
computational complexity.

The overview of the proposed URanker is illustrated in
Figure 2(a). Firstly, the input image is fed to a series of serial

1https://itunes.apple.com/us/app/dive-video-color-correction/
id1251506403?mt=8

blocks, in which each serial block mainly contains a conv-
attentional image Transformer, as shown in Figure 2(b). In
each serial block, the input features are first downsampled
2× by a patch embedding operation and are flattened into a
group of tokens. These tokens are concatenated with a learn-
able class token that represents the features from the current
scale and a histogram token produced by the proposed His-
togram Prior Module (HPM). Then, the conv-attention layer
and the feed-forward layer alternately attend all tokens. Af-
ter self-attention, the image tokens are reshaped to their orig-
inal shape and used as input for the next serial block. In ad-
dition, the multi-scale outputs sequentially produced by the
serial blocks are sent to the Dynamic Connection Parallel
Block (DCPB). The DCPBs are responsible for integrating
cross-scale features in a parallel manner. Besides, the class
tokens from different scales of the DCPB are sent to the cor-
responding Linear layer for predicting the scores of different
scales. The final prediction is the average of these scores. In
what follows, the key components of the proposed URanker
are introduced.

Histogram Prior Module
Empirically, the color distribution of high-quality images
tends to be uniform. Based on this observation, we utilize
the color histograms of the underwater image as a prior and
design a simple yet effective module to embed this prior into
the proposed URanker. Figure 3 presents the overview of the
proposed HPM. Specifically, for an input underwater image,
we first calculate the histogram of each channel H ∈ RB×3,
where B is the number of bins and is set to 64. Then H is
flattened into a vector of length 3B and fed to a Linear layer
to generate the histogram token.

Dynamic Connection Parallel Block
We design the DCPB to introduce the cross-scale correspon-
dence into the URanker. The parallel blocks in the same
group communicate with each other through the proposed
dynamic connection mechanism, as shown in Figure 4(d).
This mechanism can adaptively integrate multi-scale fea-
tures. Different from the commonly used connection man-
ners such as direct, neighbour, and dense as illustrated in
Figure 4(a)-(c), this mechanism avoids the underutilization
of multi-scale features and, conversely, prevents the pollu-
tion of the original-scale features by overusing other scale
features. More discussions about different connection man-
ners are provided in our ablation studies. The details of the
DCPB are described as follows.

The features of different scales are first passed through
a conv-attention layer independently to keep the channel
number consistent. Then, the features from other scales are
down-sampled or up-sampled by bilinear interpolation to
align the feature size. Given F1, F2, and FO from different
scales, the dynamic connection mechanism can be written
as:

Fcross = FO + α1F1 + α2F2, (1)
where Fcross denotes the output cross-scale features, α1 and
α2 are two learnable parameters to adjust the amplitude. At
last, the Fcross is processed by a feed-forward layer and fed
to the next DCPB.
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Figure 3: Illustration of our histogram prior module (HPM).
The input image is first quantified into histograms, and the
results are reshaped into a vector. Then, a Linear layer is
followed to generate a histogram token.

Learning to Rank
The ranker learning technique (Liu, Van De Weijer, and Bag-
danov 2017; Zhang et al. 2019) is employed to optimize the
URanker. It drives the URanker to learn to rank the visual
quality of the enhanced results for the same input.

During the training stage, an image pair {In, Im}
is selected from a set of well-sorted images I =
{I1, I2, . . . , IN}. The URanker predicts the correspondence
scores {sn, sm}. Then the scores are fed to margin-ranking
loss to constrain the URanker to generate scores that match
the ranking relationship. The margin-ranking loss can be for-
mulated as:

L(sn, sm) =

{
max(0, (sm − sn) + ϵ), qn > qm
max(0, (sn − sm) + ϵ), qn < qm

, (2)
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Figure 4: Different connection manners for parallel blocks.
(d) illustrates the proposed dynamic connection and (a)-(c)
are three variants of it.

where qn and qm represent the visual quality of In and Im,
respectively. ϵ is a parameter, which prevents the scores from
getting too close. ϵ is set to 0.5 in our method.

Proposed UIE Network

The more far-reaching significance of the UIQA approach
is to promote the performance of UIE algorithms. Based on
this motivation, we investigate whether the proposed UIQA
network, URanker, can achieve merit when it is used as the
additional supervision to train a UIE network.
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Figure 5: Overall of the proposed NU2Net. It is a residual
network consisting of a stack of Conv-IN-ELU blocks. The
normalization tail is followed at the end of the network.

Pre-trained URanker Loss
Since our URanker is differentiable, the pre-trained
URanker can be utilized to facilitate the training of a UIE
network. The pre-trained URanker loss can be expressed as:

LURanker(Ie) = Sigmoid(−MURanker(Ie)), (3)

where Ie is the result enhanced by a UIE network,
MURanker(·) is pre-trained URanker. The total loss for
training a UIE network is the weighted combination of
URanker loss and content loss:

Ltotal(Ie, Igt) = Lcontent(Ie, Igt) + λLURanker(Ie), (4)

where Igt represents the ground truth and Lcontent repre-
sents the pixel-wise content loss such as L1 loss, L2 loss, or
perceptual loss. λ is a trade-off coefficient.

UIE Network
Our URanker loss can be easily plugged into the train-
ing phase of any UIE model. As a baseline network, we
use a simple Normalization-based U-shape UIE network
(NU2Net) as shown in Figure 5. The main body of NU2Net
is a stack of Conv-IN-ELU blocks. Besides the basic struc-
ture, we found a normalization tail can significantly improve
the performance of UIE network.

To be specific, inspired by the stretching operation pro-
posed in a traditional UIE algorithm (Iqbal et al. 2010), we
formulate it as a normalization tail to handle the overflow
values, i.e. outside of [0, 1]. When the overflow values exist
in channel c ∈ {r, g, b}, it can be written as:

Îce =
Ice −min(Ice)

max(Ice)−min(Ice)
. (5)

Please note that the normalization tail only works for the
overflow values. More discussions are provided in the abla-
tion studies.

Experiments
Experimental Setting
Implementations. We train our URanker for 100 epochs
with the Adam optimizer with default parameters (β1 =
0.9, β2 = 0.999) and the fixed learning rate 1.0× 10−5. For
data augmentation, the input images are randomly flipped
with a probability of 0.5 in both vertical and horizontal di-
rections. The proposed NU2Net is trained for 250 epochs

Methods SRCC ↑ KRCC ↑
UCIQE 0.5039 0.4049
UIQM 0.3705 0.3052
FDUM 0.3104 0.2469
NUIQ 0.5779 0.4346
Twice-Mixing 0.6218 0.4887
MUSIQ 0.8241 0.6928

URanker (Ours) 0.8655 0.7402

Table 1: Quantitative comparison of UIQA methods. Bold-
face indicates the best result.

with a batch size of 16. Adam optimizer with an initial learn-
ing rate of 0.001 is adopted. The learning rate is adjusted by
the cosine annealing strategy. All inputs are cropped into a
size of 256×256 and the same data augmentation as training
URanker is employed. All experiments are implemented by
PyTorch on an NVIDIA Quadro RTX 8000 GPU. Besides,
the code implemented by MindSpore framework is also pro-
vided.

Datasets & Metrics. Following the experimental settings
of (Li et al. 2021), we randomly select 800 image groups
in URankerSet for training and the rest 90 groups are re-
garded as the testing set. Such settings are used for UIQE
and UIE experiments. To measure the consistency of the
IQA results with the manual sorting results, we adopt two
rank-wise metrics, Spearman rank-order correlation coeffi-
cient (SRCC) and Kendall rank-order correlation coefficient
(KRCC), to evaluate the performance of UIQA methods, We
discarded the linear correlation metrics generally adopted by
IQA methods such as Pearson linear correlation coefficient
(PLCC), as our URankerSet only provides the order with-
out the specific scores. For UIE experiments, the PSNR and
SSIM are used as evaluation metrics.

Underwater Image Quality Assessment
Comparison
We compare URanker with five UIQA methods, including
UCIQE (Yang and Sowmya 2015), UIQM (Panetta, Gao,
and Agaian 2015), FDUM (Yang et al. 2021), NUIQ (Jiang
et al. 2022), Twice-Mixing (Fu et al. 2022), and one recent
Transformer-based generic IQA method, i.e., MUSIQ (Ke
et al. 2021). We use the released code of UIQA methods and
the PyTorch version of MUSIQ provided by IQA-PyTorch2.
For a fair comparison, we retrain MUSIQ using the same
data as our URanker.

In Figure 6, we compare the prediction results of our
URanker with other methods. We also mark the ranking or-
der for a better visual comparison. It can be seen that our
URanker achieves the closest results to the ground truth
ranking (the failure case is denoted in red) and is more con-
sistent with the human perception as the color bar indicated.

Table 1 shows the quantitative comparisons of our
URanker and other methods. Our Uranker achieves state-

2https://github.com/chaofengc/IQA-PyTorch
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Figure 7: Visual comparison of UIE networks with and without pre-trained URanker as additional supervision. Model+U
represents the model is optimized by the pre-trained URanker loss.

Methods w/o LURanker w/ LURanker

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
WaterNet 21.814 0.9194 21.926 0.9244
Ucolor 20.433 0.8963 20.686 0.8987
NU2Net 22.419 0.9227 22.669 0.9246

Table 2: Quantitative improvements of UIE networks by ap-
plying our pre-trained URanker as additional supervision.

of-the-art performance. Compared with the second best
method, MUSIQ, our method brings 5.02% improvements
on the SRCC and 6.84% improvements on the KRCC.

Underwater Image Enhancement Comparison
To further demonstrate the effectiveness of our URanker, we
adopt the pre-trained URanker as additional supervision to
optimize the NU2Net and two well-known data-driven UIE
networks, i.e., WaterNet (Li et al. 2019) and Ucolor (Li
et al. 2021). For the content loss, WaterNet and Ucolor use
the loss functions in their original works while our NU2Net
adopts L1 loss. The trade-off coefficient λ in Eq. (4) is set
to 0.025, 0.005, and 0.025 for training these three UIE net-
works, respectively.

Figure 7 presents a set of visual examples for qualitative
comparison. As we can see, the UIE networks with the pre-
trained URanker as additional supervision generate results
of better visual quality. Besides, our NU2Net is able to gen-
erate the most visually pleasing results.

In Table 2, the pre-trained URanker as additional super-
vision can significantly improve the performance for all
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Baselines SRCC ↑ KRCC ↑
w/o HPM 0.8585 0.7381

w/ direct 0.8478 0.7219
w/ neighbour 0.8589 0.7363
w/ dense 0.8497 0.7225

full model 0.8655 0.7402

Table 3: Ablation study on the HPM and different connec-
tion manners. Boldface indicates the best result.
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Figure 8: Visual comparison of ablation results on HPM and
DCPB. The prediction scores of different ablated models
decrease from top to bottom. The ground truth ranking is
marked at the top-right corner of each image. Results with
incorrect ranking are marked in red.

three UIE networks. Besides, the proposed NU2Net achieves
state-of-the-art performance when compared with the Water-
Net and Ucolor.

Ablation Study
We conduct a series of ablation studies to verify the effec-
tiveness of the key components of our designs.

Effectiveness of HPM & DCPB. We remove the his-
togram prior module (HPM) or replace the dynamic connec-
tion parallel block (DCPB) with other connection manners
to respectively verify their impacts on UIQA performance.

In Table 3, when the HPM is removed, the performance
of the ablated model decreases 0.80% and 0.28% in terms of
SRCC and KRCC, respectively. The full model achieves the
best performance compared with the other three variants of
DCPB. In addition, the model with the dense connection per-
forms worse than the neighbour connection, which demon-
strates the over-communication of multi-scale features may
pollute the original features and further supports the neces-
sity of dynamic connection used in our method. In Figure
8, we show that only the full model can achieve an accu-
rate ranking for the five enhanced results. The results further
suggest the effectiveness of the proposed HPM and DCPB.

Effectiveness of Normalization Tail. We further ana-
lyze the effectiveness of the normalization tail used in our

Baselines PSNR ↑ SSIM ↑
w/o normalization tail 18.857 0.8682
w/ Sigmoid 18.249 0.8292
w/ clip 19.963 0.8837
w/ IN+Sigmoid 19.181 0.8797
w/ IN+clip 18.257 0.7559

full model 22.419 0.9227

Table 4: Ablation study on the normalization tail and differ-
ent operators. Boldface indicates the best result.

(a) Input (b) w/o NT (c) w/ S (d) w/ clip

(e) w/ IN+S (f) w/ IN+clip (g) full model (h) Reference

Figure 9: Visual comparison of ablation results on the nor-
malization tail. ’NT’ denotes the normalization tail and ’S’
the Sigmoid function.

NU2Net. Firstly, the normalization tail is removed as a com-
parison. Second, we replace it with [0, 1] clip and Sigmoid
activation function to handle the outliers. Moreover, since
the stretching operation is similar to the Instance Normal-
ization (IN) (Ulyanov, Vedaldi, and Lempitsky 2016), which
adjusts the distribution of data by the mean and variance,
IN+Sigmoid and IN+clip are also used in ablation studies.

The comparison results are presented in Table 4. The per-
formance can increase 2.456dB and 0.039 at least in terms
of PSNR and SSIM by our normalization tail. As Figure 9
shows, the full model produces the perceptually best re-
sult compared to others. The results demonstrate this simple
operation can boost performance without introducing addi-
tional parameters.

Conclusion
In this paper, we propose a new UIQA method to over-
come the limitations of previous methods. The success of
our method mainly lies in the task-specific designs such as
the histogram prior module and dynamic connection paral-
lel block together with a new underwater image with ranking
dataset. We also demonstrate the proposed UIQA model can
facilitate the performance improvement of UIE networks.
Besides, the proposed normalization tail significantly boosts
the UIE performance. Both the proposed UIQA model and
the UIE model outperform the state-of-the-art methods.
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