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Abstract

As one of the basic while vital technologies for HD map con-
struction, 3D lane detection is still an open problem due to
varying visual conditions, complex typologies, and strict de-
mands for precision. In this paper, an end-to-end flexible and
hierarchical lane detector is proposed to precisely predict 3D
lane lines from point clouds. Specifically, we design a hier-
archical network predicting flexible representations of lane
shapes at different levels, simultaneously collecting global
instance semantics and avoiding local errors. In the global
scope, we propose to regress parametric curves w.r.t adap-
tive axes that help to make more robust predictions towards
complex scenes, while in the local vision the structure of
lane segment is detected in each of the dynamic anchor cells
sampled along the global predicted curves. Moreover, corre-
sponding global and local shape matching losses and anchor
cell generation strategies are designed. Experiments on two
datasets show that we overwhelm current top methods under
high precision standards, and full ablation studies also ver-
ify each part of our method. Our codes will be released at
https://github.com/Doo-do/FHLD.

Introduction
While advanced driver-assistance system (ADAS) entering
the lives of millions, one of its supporting tasks, centimeter-
level lane detection for high-definition(HD) map construc-
tion is still limited by many challenges. First, diverse dif-
ficult visual conditions. The visual clue is not always clear
in real driving scenes due to occlusions or severe illumina-
tion conditions. Second, complex typologies. The multifari-
ous combination of varying numbers and directions of lanes,
along with merges and splits make the discrimination of lane
instances beset with difficulties. Moreover, more strict preci-
sion is needed. Widely used evaluation metrics like TuSim-
ple’s are too permissive to errors in local offset(Tabelini
et al. 2021b), and thus methods with higher precision are
still needed for accurate uses like HD map construction.

Over the past decades, most researchers carry out lane
detection with front-view images as input. Limited by the
physical characteristics of RGB optical sensors, it cannot
deal with poor illumination well. These years, more and
more attention has been paid to lane detection with point
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cloud data. Point cloud is not only insensitive to illumina-
tion conditions, it can also preserve the accuracy of 3D infor-
mation of lanes even in a very long distance. Moreover, its
privacy-free feature is also a necessity for actual uses. Fol-
lowing all methods extracting lane lines from point cloud
that we know, we structure the point cloud in a Bird’s-eye-
view (BEV) and regard encoded BEV feature maps as input.

Existing methods function in a segmentation manner
which needs cumbersome clustering processes(Ma et al.
2020), or focuses on global information by predicting para-
metric lanes while ignoring local errors(Liu et al. 2021b), or
some others based on preset anchors while losing the flexi-
bility of predictions(Tabelini et al. 2021a). In this paper, we
propose an end-to-end framework with hierarchical outputs,
to fully combine both the advantages of top-down manner
which can collect all the global clues indicating instance in-
formation, and the strength of bottom-up manner that fo-
cuses on modeling local geometry and predicting accurate
positions, to predict each lane as a sequence of points, pro-
viding more flexibility for detection results.

Specifically, in the global parametric curve branch, a
Transformer structure is used to get a 3D parametric descrip-
tion for each lane. Notably, we propose a new representation
for each curve based on the local adaptive reference axis,
which incorporates the position of lane terminals, and rep-
resents the curve w.r.t its own reference axis to help the net-
work fit better on complex scenes like oblique and curved
lanes and hard topologies. Given the shape and instance in-
formation predicted from the global branch, dynamic anchor
cells are generated along the lane and the corresponding
cropped features are fed to the local branch for more pre-
cise and flexible predictions.

In the local shape prediction branch, we detect line seg-
ment structure inside each anchor cell and use the center
point of each as the final result, instead of directly detecting
the specific lane center point inside every anchor. In addi-
tion, we optimize it by matching the ground truth Gaussian
distribution along each lane segment, instead of regressing
the segment parameters directly, introducing more explicit
contextual information into account to shrink the searching
space and optimize all the parameters simultaneously. More-
over, the positional relationships among predictions in dif-
ferent cells are also constrained, improving the smoothness
of outputs. Notably, local predictions in dynamic anchor
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cells generated from global results are of certain instances
and orders, thus eliminating clustering post-processing.

We collect a point cloud dataset RoadBEV on both high-
ways and country roads in different cities for realistic evalu-
ation. The results of comparison experiments on it and also
on a self-annotated public dataset sub-KCUD, under a rela-
tively strict metric with distance thresholds of 10 cm and 30
cm, show that our method outperforms recent state-of-the-
art works in accurate detection. And also, full ablation stud-
ies validate the effectiveness of every part of our method.
We summarise our main contributions as follows:

• An end-to-end hierarchical framework is designed which
fully fuses both the global and local level information for
accurate and flexible 3D lane detection.

• We propose both a new global parametric representation
for curves and a local shape description for line segments
to enhance the robustness and flexibility of results.

• The dynamic anchor cells generation module and also hi-
erarchical shape matching strategy are proposed to help
networks detect line elements hierarchically better.

Related Works
Traditional methods(Sun, Tsai, and Chan 2006; Jung
et al. 2019) exploit hand-crafted filters and adopt manual-
designed processes like morphological filtering to extract
and synthesize specialized features, resulting in poor robust-
ness. Recently, data-driven trends as represented by CNN
make it easier to distinguish more subtle and complex fea-
tures for lane detection. These deep learning methods can be
divided into several paradigms as illustrated below.
Segmentation-based methods. Following the bottom-up
manner, SAD(Hou et al. 2019) and RESA(Zheng et al. 2021)
predict a label for each pixel in the front-view camera im-
ages, and similar methods are also used for 3D point cloud
data(Wen et al. 2019; Ma et al. 2020). These methods im-
prove the detection performance by strengthening the priors
of lanes or ameliorating networks for better feature extrac-
tion. However, cumbersome post-processing is still needed
to cluster these isolated points into corresponding instances.
Meanwhile, methods following this paradigm will output
unnecessary points and be sensitive to local imperfections
as well. By comparison, our method fully utilizes top-down
information to guide the local shape prediction to generate
flexible results and avoid post-processing.
Grid-based methods. This can be viewed as a combi-
nation of grid-level segmentation and accurate offset re-
gression. PointLaneNet(Chen, Liu, and Lian 2019) directly
predicts x-coordinates for fixed y values for each lane.
UFast(Qin, Wang, and Li 2020) speeds up predictions by
modeling it as a row-based selecting problem and handles
the no-visual-clue problem by enlarging the receptive field.
PINet(Ko et al. 2021) improves the instance clustering by
contrastively learning the embedding features for each grid.
CondlaneNet(Liu et al. 2021a) resolves instance-level dis-
crimination with the help of the proposal head and condi-
tional convolution. The cells in these methods are not flex-
ible so the performance may be influenced under the situa-
tions when two adjacent lanes fall in the same grid, or one

lane line locates at the middle seam of two grids. To avoid
these difficulties, our method predicts lane elements only
within specific dynamically proposed anchor cells along the
predicted global parametric curves.
Anchor-based methods. Conventional detection meth-
ods(Chen et al. 2020) use the bounding box as a coarse
proposal for the whole lane, which is not suitable for the
slender structure of lanes. Dagmapper(Homayounfar et al.
2019) and HRAN(Homayounfar et al. 2018) use iteratively
proposed cells for local topology nodes searching from 3D
point cloud data. However, they do not explicitly make full
use of global semantic information, and thus local errors
may be accumulated at the later stage of iterations. Some
other methods like Lane-ATT(Tabelini et al. 2021a) and
SGNet(Su et al. 2021) use dense line-shape anchors to pro-
vide better priors, where the anchors need to be pre-defined,
and NMS is needed to remove redundant predictions. Fol-
lowing the idea of proposals but instead of setting dense an-
chors, we sample anchor cells along the predicted parametric
lines to both provide a better global understanding and also
enable end-to-end training.
Parametric-based methods. LSTR(Liu et al. 2021b), Poly-
LaneNet(Tabelini et al. 2021b) and BezierLaneNet(Feng
et al. 2022) follow the top-down manner to model each lane
as a parameterized curve and predict the global parameters
directly from the network. However, these methods model
the curve equation defined w.r.t fixed y-axis, which limits the
flexibility for predicting diverse lanes. More importantly, lo-
cal errors are ignored by these methods. In contrast, we pro-
pose a new 3D parametric representation for lane lines pro-
viding more flexibility, and also introduce extra local shape
prediction to help get more precise localization.

Problem Definition
We take the aggregated point cloud data as raw input, and
feed the encoded BEV maps to networks to predict each lane
line as a sequence of sparse 3D points along it, since the
point set is more flexible for the slender structure of lane
lines than other representations.

Since lane lines have few complex structures along height
direction, we follow the common practice to structure the
point cloud in BEV. Specifically, we project N points (each
with 4 attributes: coordinates x, y, z, and reflective intensity
r that distinguishes road markings from surroundings) onto
the ground plane, rasterize it to W ×H grids, and obtain the
encoded BEV maps I ∈ RW×H×4, of which the 4 chan-
nels in turn represent the average intensity, density, height
variance, and minimum height of points in each grid.

Methodology
The end-to-end Flexible and Hierarchical Lane Detector
(FHLD) we proposed is shown in Fig.1, where line elements
are represented and predicted at different levels. For global
understanding, each lane line is predicted in a parametric
way based on its adaptive reference axis. For more flexible
and accurate outputs, a local line segment shape prediction
branch is also proposed, to finally produce a sequence of
points in dynamic anchor cells generated along each glob-
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Figure 1: Framework structure. FHLD contains a shared backbone for feature extraction, two different branches separately
detecting lane elements in different levels, and a dynamic anchors generation module to pass global prediction to local scope.

ally predicted curve. With accordingly designed hierarchical
losses and training strategies, our method fully fuses high-
level semantic information and local fine structure of lanes
to both obtain global vision and avoid local errors.

Hierarchical Shape Representation
As shown in Fig.2, lane lines are represented at different
levels, emphasizing global features of lane curves and lo-
cal features of line segment shapes simultaneously to carry
out hierarchical predictions.
Global parametric shape representation. To represent 3D
lines in a more flexible way, we model each one as a cu-
bic polynomial curve w.r.t. its own reference axis adaptively.
Specifically, as shown in Fig.2(a), for each line we incorpo-
rate its starting position (lower terminal) ps and ending posi-
tion (higher one) pe as a part of our parametric expression,
which indicates the basic position of the lane. We set ps

as the origin and −−→pspe as the positive direction of reference
axis. Then, each line can be described with a set of curve pa-
rameters θ = (A,B,C,D,ps,pe) which determines both
the shape and position of this curve, written as:

p = f(t; θ) = At3 +Bt2 +Ct+D, (1)

t =
||
−−→
psp̃||

||−−−→pspe||
, (2)

where t ∈ [0, 1] denotes the relative position of any point
p̃ ∈ R3 moving on the reference axis between ps and pe,
p ∈ R3 denotes the corresponding point on the curve, and
A,B,C,D ∈ R3 the cubic polynomial coefficients, || · ||
the magnitude of vector.

Noted that when t = 0 or t = 1, corresponding reference
point p̃ overlaps on ps or pe respectively so the boundary
conditions are shown below:{

ps = f(0; θ) = D
pe = f(1; θ) = A+B +C +D

. (3)

It can be seen that 12 parameters (4 for each dimension)
are required to describe each 3D curve. Compared with ex-
isting descriptions that model the curve w.r.t. y-axis, our

formation gets rid of the binding with fixed reference axis,
providing more flexibility and reasonable searching space,
especially for inclined and complex lanes, as proven by ex-
periments. Globally parametric prediction can fully excavate
lane semantics in a top-down manner and provide abundant
positional priors for local shape detection to further reduce
local errors.
Local shape description. To further predict more flexible
and accurate results in local vision, each lane line is modeled
as a sequence of segments, with their center points regarded
as final outputs. Specifically, within dynamically sampled
anchor cells along each lane (illustrated in the following sec-
tion), we model the local line structure in each cell as a thin
bar with a fixed pre-defined width wl, as shown in Fig.2(b).
Its position and shape can be described by a set of segment
parameters η = (po, l, α), where po denotes the 3D center
point position of the bar, i.e. final outputs, l is the length of
lane segment in this cell, and α is the heading angle of this
line segment. Notably, since the size of anchor cells only
corresponds to a very tiny distance in real scenes, each com-
prising very little height difference, and thus the tilt and roll
angles of line segments are just ignored in practice.

Compared to directly modeling the local structure as the
isolated center point, searching for a detailed bar struc-
ture helps to provide more context information in a smaller
searching space, reducing the difficulty of regressing. Fi-
nally, with the curvature-aware dynamic anchoring strategy
when inferencing, such local shape representation provides
more flexible and locally accurate prediction results.

Network Structure with Hierarchical Outputs
FHLD contains a shared feature extraction backbone, two
different branches separately searching lane elements at dif-
ferent levels, and a dynamic anchors generation module to
pass global information for local segment shape searching.
Specifically, input BEV maps I , our backbone composed of
CNNs and a self-attention module fuses the global contex-
tual information and outputs feature maps F ∈ Rw×h×c.
Global parametric curve branch. A DETR-like structure
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Figure 2: Hierarchical shape representation of lane lines.
(a): Global parametric description. (b): Local segment shape
representation & Visualization of Gauss distribution.

is adopted. To fully gather the context across entire feature
maps to perceive the global shape, position, and instance in-
formation of lanes, extra self-attention blocks are adopted to
encode F , and together with positional queries, they are then
fed to Transformer decoder to generate F ′, the attended fea-
ture sequences for each of N predictions. Finally, FFNs in
the classification head and parameter head output result set
{(ĉ′i, θ̂i)|i=1, ..., N}, where ĉ′i are the confidence scores for
each class (lane or non-lane). In practice, the outputs from
each layer of the decoder are supervised.
Local segments shape branch. After further encoding F
with convolution layers to F ′′ ∈ Rw×h×c, 2D positions
of generated anchors are mapped to F ′′ using RoiAlign(He
et al. 2017) to crop corresponding feature sequences FL.
For each of these cropped local features, a set of results
{(ĉ′′i , η̂i)|i=1, 2, ..., B} is predicted, where c′′i are predicted
classification scores, B is the number of cells generated on
this lane. The position of segment center p̂o is predicted in
a relative form w.r.t corresponding anchor cell center.
Dynamic anchors generation module. Along each pre-
dicted parametric lane, a sequence of anchor cells is sam-
pled following the strategy introduced in the following sec-
tion. Every cell is projected onto F ′′ from the original res-
olution image and is quantified to FL with the help of
RoiAlign. This projection guarantees that the local segment
branch concentrates on the explicitly specific region of inter-
est along the lane and reduces the false positive predictions.

Training with Hierarchical Shape Matching Loss
To supervise hierarchical outputs in two branches, The loss
function is also designed in two parts accordingly.

L = LGSM + LLSM . (4)
Global Shape Matching Loss. Since the ground truth lanes
are described in the global coordinate system while the pre-
dicted ones are defined on the local reference axis, to define
the difference between them, a bridge is needed. Specifi-
cally, we represent the i-th ground truth lane Qi as a se-
quence of densely sampled points. For each point p ∈ Qi,
its corresponding relative position tp on the reference axis
can be calculated by projecting it to −−−→pspe, written as:

tp =
−−−→pspe · −−→psp

||−−−→pspe||2
, (5)

where · means dot product of two vectors, ps and pe are the
ground truth terminals. At each relative position tp, the cor-
responding prediction point p̂ = f(tp, θ̂i) can be calculated.
And then, a curve fitting loss Lf is used to describe the gap
between each pair of points on i-th curve, written as:

Lf (θ̂i) =
1

|Qi|
∑
p∈Qi

||p̂− p||, (6)

where | · | denotes the size of the set.
Moreover, a cross-entropy loss is used for the predicted

logits as well. Overall, with o(ci) denoting the predicted
probability for label ci ∈ {0, 1}, with assigning ϵ̂(i)-th pre-
dicted lane matched to Qi after bipartite matching described
in next section, and with ground truth set Q padded to the
number of N with non-lanes, the global shape matching loss
can be written as:

LGSM =
N∑
i=1

(−λ1logoϵ̂(i)(ci)+1(ci ̸= 0)Lf (θ̂ϵ̂(i))), (7)

where 1(·) is an indicator function, and λi is the weight to
balance the effect of loss terms.
Local Shape Matching Loss with Curve Smoothing.
Constraints on local branch are mainly composed of a
shape matching loss Lkl locating precise line segments,
and a curve smoothing loss Lsm aiming at constraining the
smoothness of neighbored local predictions. With the binary
classification loss written as Lcls and Lz denoting L2 regres-
sion loss for the height of output points, it can be written as:

LLSM = λ2Lkl + λ3Lsm + λ1Lcls + Lz. (8)
For better matching and locating the shape of segment el-

ements in local scope, we optimize the Gauss distribution g
covered on each segment bar, determined by the parameter
set η (as visualized in Fig.2(b)). The mean µ and covariance
Σ of distribution g can be written as:

Σ1/2 = RΛR⊤ =

(
cosα − sinα
sinα cosα

)
·(

wl 0
0 l

2

)
·
(

cosα sinα
− sinα cosα

)
,

(9)

µ = (xo, yo)
⊤, (10)

where xo and yo are the two components of po, and wl is
doubled to cover more contextual message.

Instead of directly regressing the isolated parameters of
segments, we constrain the predicted distribution from the
ground truth ones using KL-divergence, denoted as Lkl:

Lkl =
1

2

N∑
i=1

B∑
j=1

(KL(gi,j |ĝi,j) +KL(ĝi,j |gi,j)) , (11)

where ĝi,j is the predicted distribution in the j-th anchor
on i-th lane. Such design makes its optimization easier than
detecting a point or a rotated line directly because the po-
sition, angle, and length information of the slender struc-
ture can be optimized simultaneously with adaptively ad-
justable strategy, providing more accurate gradient informa-
tion(Yang et al. 2021), and abundant contextual information
around the lane is explicitly taken into account.
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Moreover, thanks to the structured results of global
branch, the anchor cells on each lane are of explicit order.
We also constrain the positional relationship among pre-
dicted results in different cells. Concretely, Lsm is used to
constrain the second derivative of each curve, i.e., of consec-
utive output points, to guarantee the smoothness of predic-
tions and avoid local imperfect predictions in unclear scenes
like occlusion. With p̂i,j

o denoting the predicted absolute co-
ordinate in the j-th anchor on i-th lane, it can be written as:

Lsm=
N∑
i=1

B−2∑
j=1

∥(p̂i,j+2
o −p̂i,j+1

o )−(p̂i,j+1
o −p̂i,j

o )∥. (12)

Training Strategies
Dynamic anchors generation. The local structure of the
lane line is searched under the guidance of top-down infor-
mation, obtaining a better understanding of the entirety. Say
concretely, a sequence of anchor cells is sampled dynami-
cally along each parametric lane for further local fine pre-
diction. Dynamic anchoring, instead of conventional fixed
grid-based methods, can avoid both dense computations and
failure in troublesome situations when the line lies at the
middle seam of two grids, or two lanes are in the same grid.

When training, B points are sampled along each predicted
parametric lane as the centers of dynamic anchor cells. Ac-
cording to empirical attempts and experimental results, the
shape and size of cells here do not affect the results much
so we set a fixed size for anchors at r × r pixels. Thanks
to the global branch, here most of the sampled cells contain
lane segments, i.e., are positive samples. For better distin-
guishing the local features, following the idea of contrast
learning, negative anchor cells are also randomly sampled
around each positive one at a set proportion. Notably, only
classification loss Lcls is used to supervise these negative
samples. Moreover, a little random offset is added as noise
to the sampled positive positions to mimic the imperfection
in global predictions and improve the generalization.

When inferencing, only positive anchors are sampled, and
the sampling rate of each lane is set proportional to its cur-
vature. That is to say, there will be more points predicted on
the complex lane structure than on the simple straight one,
keeping the compactness of outputs.
Bipartite matching for global predictions. The correspon-
dence between N predictions and M (padded to N) ground
truth lanes is built using Hungarian Algorithm (HA) follow-
ing LSTR. To design the cost matrix D ∈ RN×N , only two
parts are covered in it, the classification cost and the position
cost. Though a more precise comparison between two line
instances can be done, under our adaptive parametric rep-
resentation of curves it is sufficient to match the terminals
due to their unambiguity and importance in all road scenes.
With di,j denoting the (i-th, j-th) element in D, and oj(ci)
the probability of target class label ci predicted by j-th net-
work output, it can be written as:

di,j=−λ1oj(ci)+1(ci ̸=0)L1

(
(p̂(j)

s , p̂
(j)
e ), (p

(i)
s ,p

(i)
e )

)
. (13)

With the help of HA, a one-to-one match can be guaran-
teed where the i-th ground truth lanes are matched with the

ϵ̂(i)-th prediction with ϵ̂ = argmin
ϵ

∑N
i=1 di,ϵ(i).

Experiments
To show the superiority of our framework and also the effec-
tiveness of each design, we have done abundant comparative
experiments and ablation studies.
Dataset: Experiments are carried out on two point cloud
dataset, a self-collected one named RoadBEV and sub-
KCUD, a subset of public KAIST Complex Urban Dataset
(Jeong et al. 2019) annotated by ourselves, since there are
no readily available large-scale public datasets with 3D lane
annotations for the HD map construction task. For each
dataset, from the raw point cloud, regions of 25×25 m are
cropped along the trajectory at a stride of 13 m. Then we
project and rasterize the points to 800×800 pixel BEV maps
encoded as mentioned before. To annotate each lane, 3D
polylines crossing the center of lane lines are used. At most
8 and at least 0 lines are contained in each BEV map, and
complex scenes like splits and merges are included. Road-
BEV contains around 25k and sub-KCUD contains nearly
4k BEV images. For each dataset, we randomly set 80% se-
quences for training and 20% for testing.
Metrics: Following the testing paradigm of Dagmapper, we
set a more strict evaluation scheme compared with the ones
defined by Tusimple or Culane, which is more necessary for
high-precision HD maps. Firstly, a large number of points
are densely sampled respectively from predicted and ground
truth lanes, and then, recall and precision rates are calculated
by searching the number of ground truth or predicted points
within a distance threshold from the predicted or ground
truth points. Under the 10 cm and 30 cm distance threshold,
we report the precision(%), recall(%), F1 score(%), and also
FPS of all methods. Notably, we care more about stricter 10
cm standard. FPS is calculated with batch size 1 on Nvidia
RTX3090 implemented by Pytorch.
Details: For backbone, we modify commonly used Resnet-
18(He et al. 2015) by cutting the output channels of each
block into [16, 32, 64, 128] to avoid overfitting. We augment
each input BEV map by random shifting, rotating, flipping,
scaling, and cropping, transforming it to a size of 640×640.
We train each model for 200k iterations with batch size 64
and initial learning rate 0.0001 using Adam optimizer. The
loss coefficients λ1, λ2 and λ3 are set to 1, 1 and 0.5, an-
chors sampling ratio is 1:100, and N=15, B=40. If multiple
segments appeared in one cell, the one closest to the cell
center is chosen as the ground truth in this cell. For better
performance, LLSM is not optimized for first 2k iterations.
All of the backbones and hyper-parameter settings are set to
the same for fair comparison for all experiments if appliable.
Three parallel experiments are carried out for each method.

Comparative Experiments
Baseline: Because there are few strong open-sourced base-
lines for point cloud lane detection, and due to its similar-
ity to front-view detection tasks, we have to modify some
strongest RGB methods to adapt to this task as compar-
isons. Our method is compared with adapted Lane-ATT,
LSTR, PINet, UFast, CondLaneNet, SAD, PolyLaneNet,
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Method
RoadBEV sub-KCUD

FPS10 cm 30 cm 10 cm 30 cm
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

LaneATT 71.72 70.35 71.03 90.26 89.99 90.12 72.15 71.99 72.07 91.32 90.02 90.67 94
LSTR 71.70 72.24 71.97 91.51 90.23 90.87 72.01 72.40 72.20 91.45 90.80 91.12 116
PINet 70.92 66.32 68.54 92.33 90.27 91.29 71.58 67.85 69.67 90.39 88.99 89.68 5
UFast 63.52 68.34 65.84 87.55 93.81 90.57 69.92 68.16 69.03 89.02 93.12 91.02 133
CondLaneNet 74.13 73.02 73.57 93.09 92.97 93.03 72.25 72.30 72.27 90.30 92.79 91.53 75
SAD 71.33 70.25 70.79 89.77 93.42 91.56 68.72 67.99 68.35 89.71 90.89 90.30 35
PolyLaneNet 58.69 57.07 57.87 82.23 80.99 81.61 60.73 59.78 60.25 83.25 84.39 83.82 104
RESA 60.16 56.45 58.25 79.80 80.75 80.27 62.93 60.42 61.65 80.65 78.32 79.47 25
FHLD(Ours) 76.68 78.49 77.57 92.99 94.50 93.74 74.42 74.45 74.43 91.49 93.05 92.20 97

Table 1: Comparison experiments results on RoadBEV and sub-KCUD dataset.

Global description Local matching Training Results (10 cm) Results (30 cm)
Adp. Fixed Shape Point Lsm Noise Precision Recall F1 Precision Recall F1
✓ ✓ ✓ ✓ 76.68 78.49 77.57 92.99 94.50 93.74

✓ ✓ ✓ ✓ 74.89 76.93 75.90(-1.67) 92.47 94.01 93.23(-0.51)
✓ ✓ ✓ ✓ 74.77 76.48 75.62(-1.95) 92.36 93.84 93.09(-0.65)
✓ 72.66 73.25 72.95(-4.62) 92.18 91.63 91.99(-1.75)

✓ 71.73 72.23 71.98(-5.59) 91.50 90.24 90.87(-2.87)
✓ ✓ ✓ 75.58 77.79 76.67(-0.90) 92.49 94.22 93.35(-0.39)
✓ ✓ ✓ 75.50 77.81 76.64(-0.93) 92.53 94.25 93.38(-0.36)

Table 2: Ablation studies results on RoadBEV dataset.

and RESA. Notably, since most of these methods are hard
to expand to 3D prediction, we directly set their height pre-
dictions as the ground truth ones, while ours predicts 3D
coordinates straight from the model outputs. That is to say,
we put other methods we compare with in a better position.

It’s important to note that SAD, RESA, and UFast all need
to pre-define the instance labels, and we assign each lane one
of 10 labels according to the horizontal positions. LSTR’s
modeling for curves is designed for the geometry of front-
view images so we adapt it to polynomial curves in BEV.
Methods beside LSTR need more or fewer post-processings
and lane-ATT needs pre-designed anchor settings. In con-
trast, our method trains and inferences in a totally end-to-
end manner, regardless of the number, position and direction
of the lanes in the image. Besides, our method can flexibly
output point set at different sparsities depending on the cur-
vature, or following other customized requirements. In this
section the qualitative results of output point set are shown
equidistantly for clear comparison with other methods. More
flexible output options demonstrated in 3D point clouds, as
well as more hard samples of complex topologies with both
intermediate and final results are visualized in the Supp..

The testing results on two datasets can be found in Tab.1.
Clearly, although our method is tested under a harder situ-
ation, it still overwhelms others, especially under the more
accurate 10 cm standard since our flexible output can greatly
improve local errors. Specifically, on RoadBEV dataset,
FHLD respectively obtains 5.4% and 3.0% higher F1 score
than the second best-performed method under 10 cm dis-
tance threshold, and obtains 0.8% and 0.7% higher under 30

cm distance threshold. Our methods successfully improve
the accurate prediction at the centimeter level. Compared
with the parametric-based and cell-based methods most sim-
ilar to ours, LSTR and PINet, we achieve 7.8% and 13.2%
higher scores under 10 cm standard on RoadBEV. Besides,
we can notice that thanks to the anchor generation module,
the recall of FHLD is also improved much, especially when
compared to segmentation methods. In addition, The cor-
responding qualitative results can be seen in Fig.3, where
FHLD performs accurately thanks to flexible and hierarchi-
cal outputs, while others either ignore local offsets(LSTR),
lack constraints on relative relationships(CondLaneNet), or
just miss the whole line due to preset anchors(Lane-ATT).

Ablation Studies
To show the contributions of each part in our method, we
carry out abundant ablation studies, including replacing our
global curve representation w.r.t adaptive axis(Adp.) with
traditional description w.r.t fixed axis(Fixed), replacing lo-
cal shape Gauss matching(Shape) with direct lane center
point regression(Point), with or without Lsm and noise
when generating anchors. The results of each combination
are shown in Tab.2, where we can see that the local pre-
diction branch contributes much to the final result (+4.62)
and the new parametric representation of the global curve
(+1.67) as well as the local shape matching strategy (+1.95)
also helps a lot, especially under 10 cm threshold.
Effectiveness of global curve representation. To better
show the superiority of our global representation, we further
test our method with adaptive(Adp.) or traditional(Fixed)
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Figure 3: Visualization of prediction results on RoadBEV (Best viewed in colors).

Figure 4: Prediction results visualization of ablation studies (Best viewed in colors). (a): Direct global output with fixed(left)
and adaptive(right) representations. (b): Final point output of local prediction by point regressing(left) or shape matching(right).

Parametric output Point set output
Precision Recall F1 Precision Recall F1

Adp. 71.07 71.65 71.36 74.62 74.73 74.67
Fixed 67.24 66.58 66.91 71.35 72.01 71.68

Table 3: Results on hard-RoadBEV under 10 cm standard.

representations on a subset dataset hard-RoadBEV, which
comprises only lanes with large scopes and curvatures. We
report both the results of parametric curves (without local
branch) and final point outputs. The results shown in Tab.3
validate that modeling curves under the adaptive axis helps
to fit such scoped curves better than the original ones. Ad-
ditionally, though traditional representation result is 6.2%
lower than our representation, after the local predictions, the
gap is narrowed to 4.0%, showing the advantage of local
branch in helping with imperfect curve fittings for robust
output. Corresponding visualization in Fig.4(a) also shows
the validation of our global representation on flexibility.
Contributions of local shape prediction and matching.
Tab.2 shows that without local shape prediction, directly out-
putting global curves will lower F1 by 6.0%. Changing from
local shape matching to local point regressing lower F1 by
2.5%. Also, Fig.4 shows that our local shape matching re-
lieves the influence brought by imperfect global prediction,
and avoids local errors under high precision requirements.

r 16 24 32 40 48
F1 77.23 77.45 77.57 77.47 77.36

Table 4: Experimental results on RoadBEV under 10cm
standard about the size of anchor cells r.

Size of anchor cells. We also experiment on the size of an-
chor cells r, and the results on RoadBEV under 10 cm stan-
dard are in Tab.4. With r increasing, enlarged cells cover
more room for local prediction to provide better refinement
for potential imperfect global prediction. However, when r
is too large, it may cover multiple lines in one cell which
sometimes leads to ambiguity, worsening the performance.
In general, the shape of cells hardly affects results much so
a fixed r is enough for FHLD to get satisfying results.

Conclusion
In this paper, we propose an end-to-end framework FHLD
which fully fuses information from global and local visions
to output flexible and accurate results. In particular, lane line
representations in different levels are proposed, and related
hierarchical shape matching strategies are designed accord-
ingly. Experiments on two datasets validate our superiority
in improving local error under high accuracy requirements.
Additionally, the idea of our work can be easily extended to
2D lane detection tasks and other inputs like multi-modal.
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