Unsupervised Domain Adaptation for Medical Image Segmentation by Selective Entropy Constraints and Adaptive Semantic Alignment

Authors

  • Wei Feng Monash eResearch Center, Monash University Monash Medical AI Group, Monash University Airdoc Monash Research Centre, Monash University
  • Lie Ju Monash eResearch Center, Monash University Monash Medical AI Group, Monash University Airdoc Monash Research Centre, Monash University
  • Lin Wang Monash eResearch Center, Monash University Monash Medical AI Group, Monash University Airdoc Monash Research Centre, Monash University
  • Kaimin Song Airdoc LLC
  • Xin Zhao Airdoc LLC
  • Zongyuan Ge Monash eResearch Center, Monash University Monash Medical AI Group, Monash University Airdoc Monash Research Centre, Monash University

DOI:

https://doi.org/10.1609/aaai.v37i1.25138

Keywords:

CV: Medical and Biological Imaging, ML: Unsupervised & Self-Supervised Learning

Abstract

Generalizing a deep learning model to new domains is crucial for computer-aided medical diagnosis systems. Most existing unsupervised domain adaptation methods have made significant progress in reducing the domain distribution gap through adversarial training. However, these methods may still produce overconfident but erroneous results on unseen target images. This paper proposes a new unsupervised domain adaptation framework for cross-modality medical image segmentation. Specifically, We first introduce two data augmentation approaches to generate two sets of semantics-preserving augmented images. Based on the model's predictive consistency on these two sets of augmented images, we identify reliable and unreliable pixels. We then perform a selective entropy constraint: we minimize the entropy of reliable pixels to increase their confidence while maximizing the entropy of unreliable pixels to reduce their confidence. Based on the identified reliable and unreliable pixels, we further propose an adaptive semantic alignment module which performs class-level distribution adaptation by minimizing the distance between same class prototypes between domains, where unreliable pixels are removed to derive more accurate prototypes. We have conducted extensive experiments on the cross-modality cardiac structure segmentation task. The experimental results show that the proposed method significantly outperforms the state-of-the-art comparison algorithms. Our code and data are available at https://github.com/fengweie/SE_ASA.

Downloads

Published

2023-06-26

How to Cite

Feng, W., Ju, L., Wang, L., Song, K., Zhao, X., & Ge, Z. (2023). Unsupervised Domain Adaptation for Medical Image Segmentation by Selective Entropy Constraints and Adaptive Semantic Alignment. Proceedings of the AAAI Conference on Artificial Intelligence, 37(1), 623-631. https://doi.org/10.1609/aaai.v37i1.25138

Issue

Section

AAAI Technical Track on Computer Vision I