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Abstract
Neural Radiance Fields (NeRF) methods have proved effec-
tive as compact, high-quality and versatile representations
for 3D scenes, and enable downstream tasks such as edit-
ing, retrieval, navigation, etc. Various neural architectures are
vying for the core structure of NeRF, including the plain
Multi-Layer Perceptron (MLP), sparse tensors, low-rank ten-
sors, hashtables and their compositions. Each of these rep-
resentations has its particular set of trade-offs. For exam-
ple, the hashtable-based representations admit faster train-
ing and rendering but their lack of clear geometric meaning
hampers downstream tasks like spatial-relation-aware edit-
ing. In this paper, we propose Progressive Volume Distilla-
tion (PVD), a systematic distillation method that allows any-
to-any conversions between different architectures, including
MLP, sparse or low-rank tensors, hashtables and their com-
positions. PVD consequently empowers downstream appli-
cations to optimally adapt the neural representations for the
task at hand in a post hoc fashion. The conversions are fast,
as distillation is progressively performed on different levels
of volume representations, from shallower to deeper. We also
employ special treatment of density to deal with its specific
numerical instability problem. Empirical evidence is pre-
sented to validate our method on the NeRF-Synthetic, LLFF
and TanksAndTemples datasets. For example, with PVD, an
MLP-based NeRF model can be distilled from a hashtable-
based Instant-NGP model at a 10×∼20× faster speed than
being trained the original NeRF from scratch, while achiev-
ing a superior level of synthesis quality. Code is available at
https://github.com/megvii-research/AAAI2023-PVD.

Introduction
Novel view synthesis (NVS) generates photo realistic 2D
images for unknown view-ports of a 3D scene (Zhou et al.
2018; Chan et al. 2021; Sitzmann, Zollhöfer, and Wet-
zstein 2019a), and has wide applications in rendering, local-
ization, and robot arm manipulations (Adamkiewicz et al.
2022; Moreau et al. 2022; Peng et al. 2021), especially
with the neural modeling capabilities offered by the recently
developed Neural Radiance Fields (NeRF). Exploiting the
strong generalization capabilities of Multi-Layer Percep-
trons (MLPs), NeRF can significantly improve the quality
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Figure 1: Comparison of two models trained in the Family
and Barn scene from TanksAndTemples dataset. The left is
the results of a NeRF model distilled by PVD from an INGP
teacher within 1.5 hours. The right is the results of NeRF
trained from scratch using 25 hours. PVD improves synthe-
sis quality and reduces training time.

of NVS. Several following developments incorporate fea-
ture tensors as complementary explicit representations to re-
lieve the MLPs from remembering all details of the scene,
resulting in faster training speed and more flexible manipu-
lation of geometric structure. The bloated size of the feature
tensors in turn spurs works targeting more compact repre-
sentations, like TensoRF (Chen et al. 2022) that leverages
VM (vector-matrix) decomposition and canonical polyadic
decomposition (CPD), Fridovich-Keil et al. that exploits the
sparsity of the tensor, and Instant Neural Graphics Primitives
(INGP) (Müller et al. 2022) that utilizes multilevel hash ta-
bles for effective compression of feature tensors.

All these schemes have their own advantages and lim-
itations. Generally, with implicit representations, it would
be easier to perform texture editing of a scene (such as
color, lighting changes and deformations, etc.), to the ex-
tent of artistic stylization and dynamic scene modeling (Tang
et al. 2022; Kobayashi, Matsumoto, and Sitzmann 2022;
Pumarola et al. 2021; Gu et al. 2021; Zhan et al. 2021). On
the other hand, methods with explicit or hybrid representa-
tion usually enjoy faster training due to the shallower rep-
resentations and cope better with geometric-aware editing,
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Figure 2: With PVD, given one trained NeRF model, different NeRF achitecutres, like sparse tensors, MLP, low-rank tensors
and hash tables can be obtained quickly through distillation. The loss in intermediate volume representations (shown as double
arrow symbol) like output of ϕ1

∗, color and density are used alongside the final rendered RGB volume to accelerate distillation.

like merging and other manipulations of scenes, which is in
clear contrast to the case of purely implicit representations.

Due to the diversity of downstream tasks of NVS, there
is no single answer as to which representation is the best.
The particular choice would depend on the specific applica-
tion scenarios and the available hardware computation ca-
pabilities. In this paper, we tackle the problem from an-
other perspective. Instead of focusing on an ideal alter-
native representation that embraces the advantages of all
variants, we propose a method to achieve arbitrary conver-
sions between known NeRF architectures, including MLPs,
sparse tensors, low-rank tensors, hash tables and combina-
tions thereof. Such flexible conversions can obviously bring
the following advantages. Firstly, the study would throw
insights into the modeling capabilities and limitations of
the already rich and ever-growing constellation of architec-
tures of NeRF. Secondly, the possibility of such conversions
would free the designer from the burden of pinning down
architectures beforehand, as now they can simply adapt a
trained model agilely to other architectures to meet the needs
of later discovered application scenarios. Last but not least,
complementary benefits may be leveraged in cases where
teacher and student are of different attributes. For example,
when a teacher model with hash table is used to distill a stu-
dent model of explicit representation, it is now possible to
benefit from the faster training speed of the teacher while
still producing a student model with clear geometric struc-
tures.

The way we realize conversions between different NeRF
architectures is PVD, a progressive volume distillation
method that operates on different levels of volume repre-
sentations, from shallower to deeper, with special treatment
of the density volume for better numerical stability. In con-
trast to previous methods proposed for distillation between
models of the same architecture, PVD offers any-to-any
conversion between possibly heterogeneous NeRF architec-
tures, by first constructing a unified view of them, and then
employing a systematic progressive distillation in multiple

stages. Our contributions are summarized as follows.
• We propose PVD, a distillation framework that allows

conversions between different NeRF architectures, in-
cluding the MLP, sparse tensor, low-rank tensor and hash
table architectures. To the best of our knowledge, this is
the first systematic attempt at such conversions. An array
of any-to-any conversion results is presented in Fig. 3.

• In PVD, we build a block-wise distillation strategy to ac-
celerate the training procedure based on a unified view
of different NeRF architectures. We also employ a spe-
cial treatment of the dynamic density volume range by
clipping, which improves the training stability and sig-
nificantly improves the synthesis quality.

• As concrete examples, we find that distillation from
hashtable and VM-decomposition structures often either
helps boost student model synthesis quality and con-
sumes less time than training from scratch. A particular
beneficial case, where a NeRF student model is distilled
from an INGP teacher, is presented in Fig. 1.

Related Work
Neural Implicit Representations
Neural implicit representation methods use MLP to con-
struct a 3D scene from coordinate space, as proposed in
NeRF (Mildenhall et al. 2020). The input of the MLP is
a 5D coordinate (spatial location [x, y, z] and viewing di-
rection [θ, ϕ], and the output is the volume density and
view-dependent color (Mildenhall et al. 2019; Sitzmann,
Zollhöfer, and Wetzstein 2019b; Lombardi et al. 2019; Bi
et al. 2020). The advantage of implicit modeling is that
the representation is conducive to controlling or changing
texture-like attributes of the scene. For example, Kobayashi,
Matsumoto, and Sitzmann use the pretrained CLIP model
(Radford et al. 2021) to induce editing of NeRF representa-
tion of a scene. Pumarola et al. successfully apply NeRF to
the rendering of dynamic scenes by mapping time t to im-
plicit space through an MLP. Martin-Brualla et al. realize the
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control of scene lighting by adding appearance embedding.
However, MLP-based NeRF requires on-the-fly dense sam-
pling of spatial points, which leads to multiple queries of
the MLP during training and inference, resulting in slower
running speed.

Neural Explicit Representations and Hybrids
With the explicit representations, the scene is placed directly
on a 3D grid (a huge tensor). Each voxel on the grid stores
the information of density and color. Fridovich-Keil et al.
first show that a 3D scene can be represented by an explicit
grid, and the spherical harmonic coefficients at each voxel
can be used to obtain the density and color at arbitrary spatial
point by trilinear interpolation. The training and inference
speed of Plenoxels is significantly superior to that of MLP-
based NeRF. Recently, motivated by the low-rank tensor ap-
proximation algorithm, TensoRF (Tang et al. 2022) decom-
poses the explicit tensor into low-rank components, which
significantly reduces the model size. Rasmuson, Sintorn, and
Assarsson continue to evolve the explicit expression and re-
gard the optimization of grid as a non-linear least squares
optimization problem that can be solved more efficiently by
Gauss-Newton method. With explicit representation, it is not
as easy to make artistic creations as with implicit represen-
tation. Nevertheless, explicit representations facility the ge-
ometry editing of the scene, including merging of multiple
scenes, inpainting and manipulations of objects at specific
positions. There are also attempts exploiting a hybrid of the
explicit and implicit representations as NeRF architectures
(Usvyatsov et al. 2022; Garbin et al. 2021; Müller et al.
2022; Chen et al. 2022; Wu et al. 2022). The explicit part
usually stores features related to the scene, while the implicit
part is typically an MLP that interpret the features to obtain
densities and colors. Differences between hybrid representa-
tions are mainly exhibited in the explicit part. Liu et al. use
a spare grid to store features, while Yu et al. optimize the
3D grid through an octree. Wizadwongsa et al. propose an
Implicit-Explicit modeling strategy by storing the coefficient
as a learnable parameter to accelerate training procedure.
Recently, Müller et al. propose the multi-resolution hash en-
coding (MHE), which maps the given coordinate to feature
via a cascade of hash tables at different scales. Like TensoRF
(Chen et al. 2022), MHE significantly reduces memory foot-
print and improve inference speed. However, the compact-
ness of MHE comes at a cost of less straightforward geo-
metric interpretation as there are abundant spatial aliasings
caused by the hash mechanism.

Knowledge Distillation
Knowledge distillation commonly refers to training a small
model to match the output of a larger model (may be trained
beforehand or on-the-fly) (Xu et al. 2021), which is widely
used in model optimization and compression (Hinton et al.
2015; Gou et al. 2021). Multiple attempts have been made in
the field of NVS. Barron et al. propose an online distillation
method to improve the quality of rendering. Wang et al. dis-
till a NeRF model into a model based on neural light fields.
The most related to our work is KiloNeRF (Reiser et al.
2021), which uses a huge pretrained NeRF (teacher) to guide

thousands of small NeRF models (students) for speeding up.
However, KiloNeRF only performs distillation between the
same MLP architecture, and the distilling process is signifi-
cantly slowed down by the continuous querying of the huge
MLP in the teacher model.

Method
Our method aims to achieve mutual conversions between
different architectures of Neural Radiance Fields. Since
there is an ever-increasing number of such architectures, we
will not attempt to achieve these conversions one by one.
Rather, we first formulate typical architectures in a unified
form and then design a systematic distillation scheme based
on the unified view. The architectures we have derived for-
mula include implicit representations like MLP in NeRF, ex-
plicit representations like sparse tensors in Plenoxels, and
two hybrid representations: hash tables (in INGP) and low-
rank tensors (VM-decomposition in TensoRF). Once formu-
lated, any-to-any conversion between these architectures and
their compositions is possible. We will first cover some pre-
liminaries before moving to a detailed description of our
method.

Preliminaries
Neural Radiance Fields NeRF represents scenes with an
implicit function that maps spatial point x = (x, y, z) and
view direction d = (θ, ϕ) into the density σ and color c.
Given a ray r originating at o with direction d, the RGB
value Ĉ(r) of the corresponding pixel is estimated by the
numerical quadrature of the color ci and density σi of the
spatial points xi = o+ tid sampled along the ray:

Ĉ(r) =
N∑
i

Ti(1− exp(−σiδi))ci (1)

where Ti = exp(−
∑i−1

j=1 σiδi), and δi is the distance be-
tween adjacent samples.

Tensors and Low-rank Tensors The Plenoxels directly
represents a 3D scene by an explicit grid (tensor) (Fridovich-
Keil et al. 2022). Each grid point stores density and spherical
harmonic (SH) coefficients. The color c is obtained accord-
ing to the SH and the view direction d as follows:

c(d;k) = S

(
ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

kmℓ Y m
ℓ (d)

)
(2)

where S : x 7→ (1 + exp(−x))−1, k = (kmℓ )
m:−ℓ≤m≤ℓ
ℓ:0≤ℓ≤ℓmax

,
and kmℓ is a set of coefficients, and l is the degree of the SH
function Y m

ℓ .
The performance of explicit sparse tensors depends ex-

cessively on the spatial resolution of the grid. In order to
reduce the memory footprint caused by the enormous size
of the tensor, The VM (Vector-Matrix) (Chen et al. 2022)
decomposition factorizes the huge tensor T ∈ RI×J×K into
low-rank matrices M and vectors v as follows:

T =

R1∑
r=1

v1
r ◦M2,3

r +

R2∑
r=1

v2
r ◦M1,3

r +

R3∑
r=1

v3
r ◦M1,2

r (3)
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where v1
r ∈ RI , v2

r ∈ RJ , v3
r ∈ RK , M2,3

r ∈ RJ×K ,
M1,3

r ∈ RI×K , and M1,2
r ∈ RI×J . And ◦ represents the

outer product. Unlike Plenoxels, VM decomposition does
not store density and color directly but features that can be
decoded by an MLP.

Multi-resolution Hash Encoding INGP (Müller et al.
2022) maps a series of grids of different scales to the corre-
sponding feature vectors with fixed size. INGP uses a hash
function as in Equation (4) to map a spatial point in the grid
to a hash table with different resolution that is adopted to
details of different levels of these grids.

h(x) =

(
d⊕

i=1

xiπi

)
mod S (4)

where
⊕

denotes bit-wise XOR operation. πi is an unique
large prime number. And S is the hash table size. These hash
tables store learnable parameters, which are fed to a shallow
MLP to interpret densities and colors. INGP effectively re-
duces the model size by these hash tables and improves the
synthesis quality by introducing multi-resolution.

PVD: Progressive Volume Distillation
Next we outline the details of PVD. Given a trained model,
our task is to distill it into other models, possibly with dif-
ferent architectures. In PVD, we design a volume-aligned
loss and build a blockwise distillation strategy to accelerate
the training procedure based on a unified view of different
NeRF architectures. We also employ a special treatment of
the dynamic density volume range by clipping, which im-
proves the training stability and significantly improves the
synthesis quality. The illustration of our method is shown in
Fig. 2.

Loss Design In our method, we not only use the RGB,
but also use the density, color and an additional intermediate
feature to calculate loss between different structures. We ob-
served that the implicit and explicit structures in the hybrid
representation are naturally separated and correspond to dif-
ferent learning objectives. Therefore, we consider splitting
a model into this similar expression forms so that different
parts can be aligned during distillation. Specifically, given a
model ϕ∗, we represent them as a cascade of two modules
as follows:

ϕ∗(x,d) = ϕ2
∗(ϕ

1
∗(x,d)) (5)

methods ϕ1
∗ ϕ2

∗
NeRF first K layers remaining MLP
INGP hash tables MLP decoder

TensoRF decomposed tensors MLP decoder
Plenoxels full identity function

Table 1: The division of each architecture under our unified
two-level view. Regarding NeRF, K=4 is used by default in
this paper.

Here * can be either a teacher or a student. For hybrid
representations, we directly regard the explicit part as ϕ1

∗,

and the implicit part as ϕ2
∗. While for purely implicit repre-

sentation, we divide the network into two parts with similar
number of layers according to its depth, and denote the for-
mer part as ϕ1

∗ and the latter part as ϕ2
∗. As for the purely

explicit representation Plenoxels, we still formulate it into
two parts by letting ϕ2

∗ be the identity, though it can be
transformed without splitting. The specific splitting of the
model is shown in Table 1. Based on the splitting, we design
volume-aligned losses as follows:

Lv
2 =

∥∥ϕ1
t (x,d)− ϕ1

s(x,d)
∥∥
2

(6)

In essence, the reason for designing this loss is that mod-
els in different forms can be mapped to the same space that
represents the scene. Our experiments have shown that this
volume-aligned loss can accelerate the distillation and im-
prove the quality significantly. Our complete loss function
during distillation is as follows:

L = ω1Lv
2 + ω2Lσ

2 + ω3Lc
2 + ω4Lrgb

2 + ω5Lreg (7)

where Lσ,Lc,Lrgb, denote the density loss, color loss and
RGB loss respectively. L2 is the mean-squared error (MSE).
The last item Lreg represents the regularization term, which
depends on the form of the student model. For Plenoxels
and VM-decomposition, we add L1 sparsity loss and total
variation (TV) regularization loss. It should be noted that
we only perform density, color, RGB and regularization loss
on Plenoxels for its explicit representation. Please refer to
supplementary materials for more details.

Density Range Constrain We found that the loss of den-
sity σ is hardly directly optimized. And we impute this prob-
lem to its specific numerical instability. That is, the density
reflects the light transmittance of a point in the space. When
σ is greater than or less than a certain value, its physical
meaning is consistent (i.e., completely transparent or com-
pletely opaque). Therefore the value range of σ can be too
wide for a teacher, but in fact, only one interval of the den-
sity values play a key role (a more detailed analysis is in the
supplementary material). On the basis of this, we limit the
numerical range of σ to [a, b]. Then the Lσ

2 is calculated as
follow:

Lσ
2 = ∥min(max(σt, a), b)−min(max(σs, a), b)∥2 (8)

According to our experiments, this restricting has an inap-
preciable impact on the performance of teacher and bring a
tremendous benefit to the distillation. We also consider to
directly perform the density loss on the exp(−σiδi), but we
found it is an inefficiency way since the gradient of exp are
easier to saturate, and it requires computing an exponent that
increases the amount of calculation when the block-wise is
implemented.

Block-wise Distillation During volume rendering, most
of the computation occurs in MLP forwarding for each sam-
pled point and integrating the output over each ray. Such a
heavy process slows down the training and distillation sig-
nificantly. While in our PVD, thanks to the designed of Lv

2 ,
we can implement the block-wise strategy to get rid of this
problem. Specifically, we only forward stage1 at the begin-
ning of training, and then run stage2 and stage3 in turn as
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Figure 3: Quantitative and qualitative results of mutual-conversion between Hash / VM-decomposition / MLP / sparse tensors
on the Lego scene from the NeRF-Synthetic dataset. We first train a teacher model for each structure, then use them to distill the
student models. The numbers indicate PSNR of the quality of the synthesis. See the supplementary material for more results.

shown in Fig.2. Consequently, the student and the teacher do
not need to forward the complete network and render RGB
in the early stages of training. In our experiment, the con-
version from INGP to NeRF can be completed in tens of
minutes, which requires several hours in the past.

Experiments
Implementation Details
Dataset. Our experiments are mainly carried out on the
following three datasets: NeRF-Synthetic dataset (Milden-
hall et al. 2020), forward-facing dataset (LLFF) (Milden-
hall et al. 2019) and TanksAndTemple dataset (Knapitsch
et al. 2017). We only use the above datasets for the train-
ing of teacher models. In the distillation stage, we find it
sufficient to utilize the teacher to generate fake data as in
pseudo-labeling, and not touch any of the training data.

Network Architecture. For each structure (Hash / MLP
/ VM-decomposition / sparse tensors), we keep consistent
with their original settings as much as possible. For MLP

(Yen-Chen 2020), we also use positional encoding for coor-
dinates and view directions. For sparse tensors (Fridovich-
Keil et al. 2022), we use spherical harmonics of degree 2,
and the 128 × 128 × 128 grid for NeRF-Synthetic dataset
and TankAndTemple dataset, 512×512×128 grid for LLFF
dataset. For VM-decomposition (Chen et al. 2022), we take
48 components totally. For Hash (Müller et al. 2022), we set
the coarsest resolution, the finest resolution, levels, hash ta-
ble size and feature dimensions to 16, 2048× scene size, 14,
219, and 2 respectively.

Training and Distilling Details. We implement our
method with the PyTorch framework (Paszke et al. 2019)
to train teachers and distill students. We use Adam Opti-
mizer (Kingma and Ba 2014) with initial learning rates of
0.02 and run 20k steps with batchsize of 4096 rays. For dis-
tilling, we initial the loss rate for volume-aligned, density,
color and RGB with 2e-3, 2e-3, 2e-3 and 1 respectively. The
first stage consumes 3k steps, the second stage consumes 5k
steps, and the third stage will take all the rest steps. All the
experiments are performed on a single NVIDIA V100 GPU.
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Teacher

student PSNR↑ SSIM↑ LPIPSAlex ↓
Hash
32.58

VM
31.52

MLP
30.78

Tensors
27.49

Hash
0.960

VM
0.955

MLP
0.946

Tensor
0.917

Hash
0.032

VM
0.040

MLP
0.049

Tensor
0.122

s-Hash 32.58 30.96 30.52 27.32 0.960 0.949 0.944 0.913 0.032 0.047 0.053 0.119
s-VM 31.33 31.52 30.29 27.46 0.954 0.955 0.944 0.916 0.042 0.040 0.056 0.121
s-MLP 30.76 30.49 30.78 26.87 0.946 0.945 0.946 0.906 0.056 0.055 0.049 0.127

s-Tensors 27.85 27.72 27.44 27.49 0.921 0.921 0.918 0.917 0.100 0.099 0.098 0.122

Table 2: The qualitative results(PSNR / SSIM / LPIPSAlex) of mutual-conversion between Hash / VM-decomposition / MLP /
sparse tensors representations on NeRF-Synthetic dataset. The top number of each column represents the metric of the teacher,
and the four numbers below represent the metric of the student obtained by distillation from the teacher. The s- means distilla-
tion.

method TanksAndTemple LLFF
PSNR SSIM LPIPSAlex LPIPSV GG PSNR SSIM LPIPSAlex LPIPSV GG

Teacher-Hash 29.26 0.915 0.134 0.106 26.70 0.832 0.231 0.130
TensoRF-VM 28.06 0.909 0.145 0.155 26.51 0.832 0.217 0.135
Ours: s-VM 27.86 0.899 0.176 0.181 25.73 0.793 0.195 0.269

NeRF 25.78 0.864 - - 26.50 0.811 0.250 -
Ours: s-MLP 27.50 0.891 0.194 0.190 25.77 0.784 0.213 0.310

Plenoxels 25.18 0.865 0.219 0.261 21.69 0.607 0.527 0.527
Ours: s-Tensors 25.31 0.866 0.263 0.220 21.36 0.600 0.561 0.524

Table 3: Comparison of the qualitative results of models (s-VM, s-MLP, s-Tensors) obtained by our distillation method with the
models (TensoRF-VM, NeRF, Plenoxels) trained from scratch on LLFF and TanksAndTemples datasets.

Please check the supplementary materials for more details.

Performance and Efficiency
It should be noted that this is the first time to propose a con-
version method between different representations, so we do
not have any comparable baseline. Our experiments mainly
focus on whether the conversion between different models
can maintain the performance of the teacher or its own up-
per limit. And we also expect to get some benefits from the
distillation between different structures.

Quantitative Results For four representations (Hash /
VM-decomposition / MLP / sparse tensors), we first train
the models of each representation from scratch in 8 scenes
on the NeRF-Synthetic dataset, and a total of 32 models are
obtained as teachers. Then using the PVD proposed in this
article to convert these teachers into the students with differ-
ent structures. At the same time, we also consider the con-
version between the same structures. We count the average
metrics in Table 2 after the conversion is complete. It can
be seen that our method is very effective for the conversion.
When a model is transformed into another forms, its per-
formance has little difference with the result of training the
model from scratch or the result of the teacher, which fully
shows that the common representations based on radiance
fields can be converted into each other. In addition, our PVD
shows excellent nearly nondestructive performance in distil-
lation between the same structures.

In Fig.4, we can see that the value of max(diff1, diff2)
is very close to 0, which means that the model obtained by
distillation can be close to the teacher or training it from

scratch. The performance of students is mainly limited by
two aspects, one is the performance of teachers, and the
other is the fitting ability of the student itself. Fig.4 shows
strong evidence that our method has migrated knowledge
from teacher to student to the maximum extent.

We further verify our method in Table 3 on the LLFF
and TanksAndTemples datasets. We use INGP as a teacher
to distill NeRF, VM-decomposition and Plenoxels, and we
compare them with the results obtained by training from
scratch of these students. It can be seen from Table 3 that our
method is also effective on these two datasets. It is gratifying
that the NeRF model obtained by our distillation performs
better than its original implementation on TanksAndTemples
dataset. This is mainly due to the fact that our PVD method
provides more prior information to students, making train-
ing more efficient and fully improving the expression limit
of the student. In addition to the possibility of improving

method Lego Orchids Truck
NeRF 32.54/30h 20.36/35h 25.36/35h
s-MLP 31.83/30min 20.61/100min 23.98/30min
s-MLP 32.70/1.5h 21.25/3h 26.69/1.7h

Table 4: Comparison of running time. The teacher is based
on the representation of VM-decomposition. We calculate
the PSNR at different times for student and NeRF trained
form scratch.

the performance of the model, we also show another bene-
fit from our method in Table 4. It can be clearly seen that
our method obtains a NeRF model significantly faster than
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Figure 4: Gaps in PSNR of mutual-conversion in Synthetic-
NeRF dataset. PSNRstu indicates the PSNR of student ob-
tained by distillation. PSNRself represents the PSNR of
student obtained by training it from scratch. PSNRtea is
the PSNR of the teacher.

training the model from scratch. As we mentioned earlier,
distilling from a large NeRF model to a smaller one is typi-
cally inefficient due to the need to frequently query the large
model. While our distillation between heterogeneous forms
can achieve a more efficient distillation.

Qualitative Results Fig. 3 shows the qualitative results
of mutual-conversion between Hash, VM-decomposition,
MLP, and sparse tensors on NeRF-Synthetic dataset. We
can see the excellent properties of PVD in maintaining the
synthesis quality, as the visual quality of the student is of-
ten indistinguishably close to either the teacher or trained
from scratch. We also show the result on TanksAndTemples
dataset in Fig.1. Our s-MLP achieves a better synthesis qual-
ity than NeRF training from scratch. The improvement is
mainly due to the distillation between different structures.
A powerful teacher can let the student approach its upper
limit of expression capability. In addition, Fig.5 shows that
our method not only maintains the synthesis quality but also
maintains the accuracy of the depth information of the scene.

Ablation Studies and Limitations
Our ablation studies demonstrate the degree of influence of
each component in our method on the performance. We im-
plement the conversion from VM-decomposition to MLP on
the Synthetic-Nerf dataset as in Table 5. It can be seen the
intermediate feature loss we designed brings about 0.9dB
PSNR improvement. It can also be seen that the performance
will drop sharply without the restriction on the value of den-
sity. We also take the distillation without using block-wise

Figure 5: Qualitative comparison of depth in Orchids scene
from LLFF dataset. The teacher is INGP and the student is
s-MLP.

PSNR↑ SSIM↑ LPIPSAlex ↓
w/o Lv

2 29.63 0.937 0.065
w/o Lσ

2 30.01 0.939 0.063
w/o Lc

2 29.95 0.938 0.063
w/o Lrgb

2 27.07 0.908 0.945
w/o sigma-constrain 28.45 0.929 0.074

w/o block-wise 29.62 0.941 0.060
w/all 30.49 0.945 0.055

Table 5: An ablation study of our method. Metrics are aver-
aged over the 8 scenes from NeRF-Synthetic dataset in the
conversion from VM-decomposition to s-MLP.

strategy, and we find that it attains poor performance under
the same budget of training time.

Our method also has some limitations inherited from the
distillation. For example, the performance of student models
is generally upper-bounded by the performances of teacher
models, and in those cases further finetuning may be bene-
ficial. Similarly, the modeling ability of the student model
may limit its final performance. In addition, as both teacher
and student models need be active during training, memory
and computation cost will be duly increased.

Conclusions
In this work, we present PVD, a systematic distillation
method that allows conversions between different NeRF ar-
chitectures, including MLP, sparse tensor, low-rank tensor,
and hash tables, while maintaining high sysnthesis quality.
Central to the success of PVD is careful design of loss func-
tions, a progressive distilling schemes utilizing intermedi-
ate volume representations, and special treatment of density
values. By breaking through the barriers between different
architectures, PVD allows downstream applications to op-
timally adapt the neural representation for the task at hand
in a post hoc fashion. Empirical experiments solidly demon-
strate the efficiency of our approach, on both synthetic and
realworld datasets, both measured in quantitative PSNR and
under visual inspection.
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