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Abstract

We tackle the problem of target-free text-guided image ma-
nipulation, which requires one to modify the input reference
image based on the given text instruction, while no ground
truth target image is observed during training. To address this
challenging task, we propose a Cyclic-Manipulation GAN
(cManiGAN) in this paper, which is able to realize where
and how to edit the image regions of interest. Specifically, the
image editor in cManiGAN learns to identify and complete
the input image, while cross-modal interpreter and reasoner
are deployed to verify the semantic correctness of the output
image based on the input instruction. While the former uti-
lizes factual/counterfactual description learning for authen-
ticating the image semantics, the latter predicts the “undo”
instruction and provides pixel-level supervision for the train-
ing of cManiGAN. With such operational cycle-consistency,
our cManiGAN can be trained in the above weakly su-
pervised setting. We conduct extensive experiments on the
datasets of CLEVR and COCO, and the effectiveness and
generalizability of our proposed method can be successfully
verified. Project page: sites.google.com/view/wancyuanfan/
projects/cmanigan.

Introduction
Image manipulation by text instruction (or text-guided im-
age manipulation) aims to edit the input reference image
based on the given instruction that describes the desir-
able modification to the image. This task not only bene-
fits a variety of applications including computer-aided de-
sign (El-Nouby et al. 2019; Viazovetskyi, Ivashkin, and
Kashin 2020), face generation (Xia et al. 2021b,a) and image
editing (Zhang et al. 2021; Shetty, Fritz, and Schiele 2018;
Li et al. 2020a; Wang et al. 2021; Patashnik et al. 2021; Li
et al. 2020b), the developed algorithm can be further applied
as a data augmentation technique for learning deep neural
networks. In addition to the need to output high-quality im-
ages, the main challenges in text-guided image manipulation
are to identify “where” and to know “how” to edit the im-
age based on the given instruction. In other words, how to
bridge the gap between semantic and linguistic information
during image manipulation process requires the efforts from
researchers in related fields.

Copyright © 2023, Association for the Advancement of Artificial
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Existing text-to-image manipulation works can be divided
into two categories: object-centric image editing and scene-
level image manipulation (Shetty, Fritz, and Schiele 2018).
For object-centric image editing (Choi et al. 2018; Li et al.
2019, 2020b,a), existing works focus on modifying visual
attributes (e.g., color or texture) of particular objects (e.g.,
face or bird) in the image, or to change its style (e.g., age
or expression) to match the given description (not necessar-
ily instruction). With such image-description pairs observed
during training, the text-guided editing process can be sim-
ply achieved by mapping the information between the im-
ages and the corresponding descriptions. While ground truth
target image is not necessarily required, such models require
descriptions for both images before and after editing.

As for scene-level image manipulation (El-Nouby et al.
2019; Shetty, Fritz, and Schiele 2018; Zhang et al. 2021;
Dhamo et al. 2020), its goal is to reorganize the composi-
tion of the input image (e.g., moving, adding, and removing
objects in the images). Since the input image might con-
tain multiple objects in the scene, to localize “where” to
edit would be a difficult task to handle. Moreover, instead
of changing attributes of a given object, the model needs to
generate objects or introduce a background on the location
of interest. Thus, Zhang et al. (Zhang et al. 2021) decompose
the above manipulation process into two stages: localization
and generation. With target images as supervision, TIM-
GAN (Zhang et al. 2021) is trained to manipulate the ref-
erence image with visual realism and semantic correctness.
However, since the ground truth target image might not al-
ways be available, Adversarial Scene Editing (ASE) (Shetty,
Fritz, and Schiele 2018) chooses a weakly supervised set-
ting with image-level labels as weak guidance. Nevertheless,
ASE only allows one to remove an object in the scene and
cannot easily be applied to operations like adding or chang-
ing an attribute.

In this paper, we propose a cyclic-Manipulation GAN
(cManiGAN) for target-free image manipulation. Due to the
absence of ground truth target image during training, it is
extremely challenging to identify where and how to edit the
input reference image, so that the output would be semanti-
cally correct. To tackle the above two obstacles, our cMani-
GAN exploits self-supervised learning for enforcing the se-
mantic correctness, while pixel-level guidance can be auto-
matically observed. More specifically, the image editor of
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Methods Input data Manipulation type
Instruction Description GT image Auxiliary info Change attribute Remove Add

ManiGAN (Li et al. 2020a) - ✓ No - ✓ - -
TediGAN (Xia et al. 2021a) - ✓ No - ✓ - -

ASE (Shetty, Fritz, and Schiele 2018) - - No Image-level labels - ✓ -
GeNeVa (El-Nouby et al. 2019) ✓ - Yes - - - ✓
TIM-GAN (Zhang et al. 2021) ✓ - Yes - ✓ ✓ ✓

Ours ✓ - No Image-level labels ✓ ✓ ✓

Table 1: Comparisons of recent approaches on text-guided image manipulation. Note that GT image indicates the need of
ground-truth target image during training.

cManiGAN learns to locate/edit the image region of interest
with global and local semantics observed. And, the mod-
ules of cross-modality interpreter and reasoner are deployed
in cManiGAN. The former is introduced to verify the im-
age semantics via factual/counter-factual description learn-
ing, while the latter infers the “undo” instruction and offers
pixel-level supervision. As detailed later, the above design
uniquely utilizes cross-modal cycle consistency and allows
the weakly-supervised training our of cManiGAN.

Related Works
Object-centric Image Manipulation by Text Instruction.
ControlGAN (Li et al. 2019) is an end-to-end trainable
network for synthesizing high-quality images, with image
regions fitting the given descriptions. Li et al. propose (Li
et al. 2020a,b), containing an affine combination module
(ACM) and a detail correction module (DCM), which
manipulate image regions based on both input text and the
desired attributes (e.g., color and texture). Liu et al. (Liu
et al. 2020) utilize unified visual-semantic embedding
space so that manipulation can be achieved by performing
text-guided vector arithmetic operations. Recently, Xia et
al. (Xia et al. 2021a) apply StyleGAN to edit the reference
image via instance-level optimization. With the given text
as guidance, its produced image would be close to the
reference input in the embedding space.

Scene-level Image Manipulation by Text Instruction. El-
Nouby et al. (El-Nouby et al. 2019) propose GeNeVa for the
serial story image manipulation, which sequentially predicts
new objects based on the associated descriptions to a story
scene background. Dhamo et al. propose SIMSG (Dhamo
et al. 2020), which encodes image semantic information into
a given scene graph for manipulation purposes. Recently,
TIM-GAN (Zhang et al. 2021) decomposes the manipu-
lation process into localization and generation. The intro-
duced Routing-Neurons network in the generation exhibits
the ability to dynamically adapt different learning blocks
for different complex instructions, better capturing text in-
formation and thus with improved manipulation ability. As
noted earlier, existing methods for scene-level image ma-
nipulation require reference-target training image pairs (i.e.,
a fully supervised setting). While methods such as Mani-
GAN (Li et al. 2020a) and TediGAN (Xia et al. 2021a) do
not observe the target images during training, these methods
are generally applied to object-centric images and cannot be
easily generalized to perform scene-level manipulation.

To alleviate the above concern, Shetty et al. (Shetty, Fritz,
and Schiele 2018) introduce ASE, allowing users to remove
an object in a scene-level image while not requiring pair-
wise training data. Instead of producing an entire image out-
put based on given text (Li et al. 2019; Reed et al. 2016)
and scene graphs (Herzig et al. 2020; Johnson, Gupta, and
Fei-Fei 2018; Yang et al. 2021), ASE focuses on generating
the background of a specific area on the image to smoothly
remove the target object. As listed in Table 1, we compare
the properties of recent image manipulation approaches and
highlight the practicality of ours.

Methodology
Notations and Algorithmic Overview
In this work, one is given a reference image Ir and the as-
sociated instruction T , describing where and how to edit Ir.
Without observing the ground truth target image It, our goal
is to produce an image Ig matching T (i.e., with the desir-
able layout and/or attributes).

To tackle this problem, we propose a GAN-based frame-
work of Cyclic Manipulation GAN (cManiGAN), as shown
in Fig. 1(a). Given Ir and T , our cManiGAN has an im-
age editor (generator) G, which consists of a spatial-aware
localizer L and an image in-painter P . The former is de-
ployed to identify the target object/attributes of interest by
producing a binary mask M , and the latter is to complete the
output image Ig accordingly. To enforce the correctness of
the visual attribute and the location of the generated object,
a cross-modal interpreter I is introduced in cMAniGAN,
which learns to distinguish between factual and synthesized
counterfactual descriptions. Moreover, an instruction rea-
soner R is deployed to infer the “undo” instruction T ′ from
T . With this “undo” instruction, a cyclic-consistent training
scheme can be conducted which provides pixel-level super-
vision from the recovered image output.

Following (Shetty, Fritz, and Schiele 2018), we utilize the
image-level labels (i.e., Or and Ot) from the reference and
target images as weak supervision. Note that such labels
are practically easy to obtain, since they can be produced
by pre-trained classifiers or by rule-based language models
like (Manning et al. 2014) to infer the labels from Ir and T
(as discussed in the supplementary materials).

Image Editor G

An overview of the proposed Cyclic-Manipulation GAN
(cManiGAN) is illustrated in Fig. 1(a). The generator, or
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Figure 1: (a) Architecture of cManiGAN, which consists of generator G (with localizer L and inpainter P ), discriminator D,
cross-modal interpreter I, and reasoner R. Note that Or and Ot are image-level labels for the reference and target images,
respectively. (b) Cross-modal interpreter I in (a), which authenticates the output image via factual/counterfactual descriptions.
(c) Reasoner R deployed in (a) to produce the undo instruction for cross-modal cycle consistency. Note that Tloc is the adverbs
of place part of instruction T . Please see Methodology for detailed discussions for each module.

image editor G, aims to modify the given reference image
Ir based on the instruction T and produces the manipulated
result Ig . We now detail the design and learning objectives
for the generator G.

Localizer L. As shown in Fig. 1(a), a spatial-aware local-
izer L is deployed in the first stage of G to identify the target
object/location in Ir. With the adverb Tloc related to loca-
tions extracted from T via CoreNLP (Manning et al. 2014),
it can be further encoded as fT

loc, describing the embedding
of the location of interest with a pre-trained BERT (Devlin
et al. 2018). Together with Ir, L learns to mask out the object
of interest by producing a binary mask M = L(Ir, Tloc).
More precisely, this is achieved by having L perform cross-
modal attention between fT

loc and the feature map of Ir, fol-
lowed by a mask decoder to produce M .

Unfortunately, it would be difficult to verify the cor-
rectness of the aforementioned mask without the presence
of the target image. During the training of our cMani-
GAN, we apply a standard classification objective LL

in =
LCE(MLP(E(M ⊙ Ir)), y

r
in) for the masked part, and the

multi-label classification loss LL
out = LBCE(MLP(E((1 −

M) ⊙ Ir), yout) for the unmasked region. We have E as
the feature extractor (e.g., VGG (Simonyan and Zisserman

2014)), yrin and yout denote the one/multi-hot label vec-
tors indicating object category/categories in the masked/un-
masked parts in Ir and It, respectively. In the above deriva-
tion, MLP denotes multi-layer perceptron, and ⊙ indicates
element-wise dot product. And, LCE and LBCE represent the
cross-entropy/binary-cross-entropy losses. Thus, the objec-
tive for learning the localizer L is calculated by summing
up LL

in, and LL
out. Thus, with the design and deployment of

the Localizer, we are able to enforce the generator to ma-
nipulate the location of interest only. As later verified in our
ablation studies, this allows our model to improve the gener-
ating quality and the feasibility of image manipulation under
a weakly supervised setting.

Image Inpainter P . As the second stage in G, we have
an image inpainter P which takes the text feature fT

how ex-
tracted from T by pre-trained BERT and the masked input
(1 − M) ⊙ Ir for producing Ig . In addition to the stan-
dard GAN loss (Goodfellow et al. 2014) for the genera-
tor G with a discriminator D deployed, we also calculate
the reconstruction loss (i.e., mean squared error) LP

rec =
LMSE((1 − M) ⊙ Ir, (1 − M) ⊙ Ig), preserving the con-
tent of unmasked image regions (1 − M) ⊙ Ig . Moreover,
with an auxiliary classifier C jointly trained with the dis-
criminator, we calculate the following classification losses:
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LP
out = LBCE(C((1−M)⊙ Ig), yout), ensuring the seman-

tic correctness of the unmasked image regions, and LP
in =

LCE(C((M⊙Ig), y
g
in) to enforce that of the manipulated ob-

ject in M · Ig . Note that ygin denotes the one-hot label vector
indicating the ground truth category of the object within the
target location in Ig .

With the above design, we have the total objective for P as
the sum over LGAN ,LP

rec,LP
in, and LP

out, with both image
global and local authenticities enforced by D (Iizuka, Simo-
Serra, and Ishikawa 2017). Please refer to the supplementary
materials for the full objectives and implementation details.

Cross-Modal Interpreter I

For training target-free image manupulation models, how to
preserve both visual and semantic correctness (e.g., visual
attributes and spatial relationship) of the output image
would be a challenging task. Thus, in addition to the above
G and D modules, we introduce a cross-modal interpreter
I in our cManiGAN for achieving this goal with additional
word-level correctness enforced.

Learning from Factual/counterfactual Descriptions. As
shown in Fig. 1(b), given an input image, our cross-modal
interpreter I learns to discriminate the factual description
among multiple synthesized description candidates. This
would enforce the manipulated image to be with suffi-
cient visual and semantic correctness. To generate factual
and counterfactual descriptions of an image, we utilize T
and the labels for reference and target images (i.e., Or =
{o1, o2, ..., on} and Ot = {o1, o2, ..., om}). We note that,
with n and m represent the associated total numbers of ob-
jects, we have |m− n| ≤ 1 since each instruction is consid-
ered to manipulate a single object. Thus, we define a basic
description template as follows: “There is a [OBJ] [LOC]”,
where [OBJ] can be replaced by the object label, and [LOC]
indicates the adverbs of place to describe where [OBJ] is.

With the above definitions, we synthesize the factual de-
scription Sf by replacing the [LOC] with adverbs of the
place of the given instruction, extracted by CoreNLP (Man-
ning et al. 2014). We then replace the [OBJ] with the objects
ofr and oft for the reference and target images to generate the
corresponding descriptions separately. The ofr and oft can be
identified by comparing the difference between Or and Ot

with the following three principles:

• if n > m, ofr = Or −Ot and oft is NONE.

• if n = m, ofr = Or−(Or∩Ot) and oft = Ot−(Or∩Ot).

• if n < m, ofr is NONE, and oft = Ot −Or.
Note that NONE denotes the dummy category, which im-
plies no object of interest at that location.

As for synthesizing the counterfactual descriptions, we
collect object tokens (e.g., green sphere and red cube in
the CLEVR dataset) and relation tokens (e.g., in front of
and behind) by applying NLTK tools (Bird, Klein, and
Loper 2009) on the factual ones. With these tokens, each
object/relation counterfactual descriptions Sc

i (i denotes
the counterfactual description index) can be generated
by randomly replacing the existing object/relation tokens

from the factual descriptions with other non-existing
tokens. As a result, a set of counterfactual descriptions
Sc = {Sc

1 ,Sc
2 , ...,Sc

N} can be obtained by repeating the
above process. Note that N is the total number of counter-
factual descriptions.

Authenticating Semantic Correctness of Ig . With the in-
terpreter I taking the generated image Ig and a set of de-
scriptions S = {Sf ,Sc

1 ,Sc
2 , ...,Sc

N} (i.e., one factual de-
scription and N counterfactual ones) as the inputs, our
cManiGAN is able to assess the semantic correctness of Ig
by calculating the cross-modal matching scores ŷ between
the generated image Ig and each of the descriptions in S.
For the architecture of I, it can be viewed as a cross-modal
alignment module Γ (e.g., ViLBERT (Lu et al. 2019) or
a word-level discriminator in LWGAN (Li et al. 2020b)),
which takes an image and language description/caption as
inputs for producing the associated matching scores. Thus,
the output scores ŷ can be calculated as:

ŷ = I(I, S) = [Γ(I,Sf ),Γ(I,Sc
1),Γ(I,Sc

2), ...,Γ(I,Sc
N )].

(1)
To train our two-stage editor with the interpreter I, we

take I as an auxiliary classifier along with D. Similar to
ACGAN (Odena, Olah, and Shlens 2017), the loss function
LI of the interpreter can thus be formulated as follows:

LI = LCE(I(Ir, Sr), y) + LCE(I(Ig, St), y). (2)

Note that Sr and St denote the synthesized description sets
for reference and target images, respectively. Also, y is one-
hot vector with the only nonzero entry associated with the
factual description.

Reasoner R

Operational Cycle Consistency. With the deployment of
the generator G, discriminator D, and the interpreter I , our
cManiGAN is able to produce images with semantic authen-
ticity preserved at the image level. To further enforece the
correctness at the pixel level, we further introduce a reasoner
R in cManiGAN. As depicted in Fig. 1(a), this reasoner R
is designed to predict the undo instruction T ′ from Ir and T
(together with Or and Ot), which outputs the reconstructed
version Irec and observe operational cycle consistency by
minimizing the difference between Ir and Irec. Thus, this
consistency objective Lcyc is calculated as:

Lcyc = LMSE(Ir, Irec) + Lperc.(Ir, Irec), (3)

where Irec = G(G(Ir, T ), T ′). Also, LMSE and Lperc.

represent the mean squared error and the perceptual
loss (Johnson, Alahi, and Fei-Fei 2016), respectively.

Learning from Sequence-to-sequence Models. Since the
undo instruction is a textual sequence, we approach this
reasoning task by solving a sequence-to-sequence learning
problem and adopt the recent model of T5 (Raffel et al.
2019) as the base model. However, since sequence models
like T5 are trained on the language crawled corpus (Raffel
et al. 2019), they cannot be directly applied for text-guided
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Input image Instruction Ours Geneva TIM-GAN ManiGAN

Change the red sphere behind the 
gray cylinder on the left and in front 

of the red cylinder on the left 
with a blue cylinder

Remove the yellow sphere behind the 
red sphere on the left and behind the 
bluae cube on the right

2, 17, 24, 4618, 3444

Change the red cylinder behind the red 
cube on the right and in front of the red 
cylinder on the right with a gray cube

Add the green sphere behind the gray 
cube on the left and in front of the gray 
cylinder on the left

TediGANGT

Figure 2: Qualitative evaluation on the CLEVR dataset. Each row shows the input reference image, instruction, ground truth
(target) image and those generated by different methods. Note that GeNeVa (El-Nouby et al. 2019) and TIM-GAN (Zhang
et al. 2021) require target images during training. And, ManiGAN (Li et al. 2020a) and TediGAN (Xia et al. 2021a) are mainly
designed to tackle object-centric image data.

image manipulation. Thus, as shown in Fig. 1(c), we design
two learning tasks which adapt T5 for our reasoning task.
First, we consider the image-level labels prediction task,
which predicts the labels Ot by observing Or and T , aim-
ing at relating the changes in image-level labels. To equip R
with the ability to express its observation in terms of desir-
able instructions, we consider instruction generation as the
second fine-tuning task, with the goal to synthesize the full
instruction by inputting Or, Ot and the adverbs of place part
of instruction Tloc (extracted by CoreNLP (Manning et al.
2014) as noted earlier). With these two fine-tuning tasks, our
reasoner R is capable of inferring the undo instruction T ′ by
observing Ot, Or and T .

We now detail the learning process for our reasoner R.
As shown in Fig. 1(c), to realize the sequence-to-sequence
training scheme, we first convert image labels into pure text
format with the subject-verb-object (SVO) sentence struc-
ture. Take Or = {purple sphere, green cube} for example,
we have the text format as “The labels for reference image
contains purple sphere, green cube.” Also, we denote the T O

r
and T O

t as the text format of Or and Ot, respectively. With
the labels desribed in text format, we construct the input text
sequences T̂ for the fine-tuning tasks. For image-level pre-
diction, we have T̂ = T O

r ⊕ T serve as the input context,
the T5 model is learned to predict T O

t . As for the second
task of instruction generation, the input context would be
T̂ = T O

r ⊕T O
t ⊕Tloc, and the output would be the given in-

struction T , where ⊕ is the concatenation on text. Note that
the input text sequence for each fine-tuning task can be fur-
ther created by combining a task-specific (text) prefix (e.g.,
what is the instruction) with the context according to the task
of interest. Please refer to the supplementary materials for

details and more training examples.
With the above designs, we impose the conventional

sequence-to-sequence objective Ls2s (Raffel et al. 2019) to
fine-tune the T5 model. Thus, the objective for learning R
can be formulated as follows:

LR = Ls2s(R(T O
r ⊕T O

t ⊕ Tloc), T )

+ Ls2s(R(T O
r ⊕ T ), T O

t ).
(4)

Once the above model is fine-tuned as our reasoner R, the
undo instruction T ′ can be directly inferred by observing
input test sequence as T̂ = Tloc ⊕T O

r ⊕T O
t with the labels

for the reference and target images swapped.
As illustrated in Fig. 1(a), operational cycle consistency

can be observed during the training of cManiGAN, provid-
ing additional desirable pixel-level guidance. For complete
learning details (including pseudo code) of our cManiGAN,
please refer to the supplementary material.

Experiment
Datasets
CLEVR The CLEVR dataset (Johnson et al. 2017) is cre-
ated for multimodal learning tasks such as visual question
answering, cross-modal retrieval, and iterative story gener-
ation. We consider the synthesized version of CLEVR as
TIM-GAN (Zhang et al. 2021) did, which contains a total of
24 object categories (red cube, blue sphere, and cyan cylin-
der, etc.) with about 28.1K/4.6K paired synthesized images
for training/validation. Each training sample includes two
paired images (reference image and target image (for evalu-
ation only)) and an instruction describing where and how to
manipulate the reference image.
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Operation Type 1: remove + add Type 2: attribute change / shape

Matrics FID ↓ IS ↑ image
acc (%)

In-mask
acc (%)

Interp.
acc (%) R@1 R@5 FID ↓ IS ↑ image

acc (%)
In-mask
acc (%)

Interp.
acc (%) R@1 R@5

Upper bound - - 99.25 88.66 67.16 72.1299.77 - - 98.71 90.91 67.19 96.2799.85
GeNeVa† 54.802.336 92.93 40.08 34.27 33.3279.2352.912.017 88.65 7.18 11.18 64.1776.75
TIM-GAN† 43.382.192 93.40 25.50 38.17 33.7280.8154.662.122 90.05 4.67 10.79 58.7376.37
ManiGAN 168.52.390 75.68 20.12 0.88 0.01 0.09 170.12.234 73.78 2.3 0.42 0.08 0.17
TediGAN 172.22.760 69.60 26.07 4.02 0.01 0.49 168.12.672 69.47 2.46 0.76 0.04 0.64
Ours 45.882.214 93.59 43.01 40.85 47.9594.0438.262.210 93.18 39.18 33.74 87.4694.01

Table 2: Quantitative evaluation on CLEVR. Note that R@N indicates the recall of the true target image in the top-N retrieved
images. † denotes methods requiring target images for training. The numbers in bold indicate the best scores, and those with
underlines denote the second highest ones.

FID ↓ IS ↑ image
acc (%)

Inside-mask
acc (%)

Inpterp.
acc (%)

Upper
bound - - 91.47 92.49 68.71

Ours 166.18 4.64 86.04 17.17 13.54
ASE† 132.04 6.37 86.99 41.66 33.34
Ours† 104.77 7.21 89.73 50.03 46.20

Table 3: Quantitative results on COCO. † denotes only the
“remove” operation is considered during evaluation.

COCO The COCO dataset (Lin et al. 2014) contains 118k
real-world scene images for training with a total of 80 thing
categories (car, dog, etc.). For simplicity, we consider a sam-
pled COCO dataset containing 20 object categories (over-
lapped with Pascal-VOC (Everingham et al. 2015)) with
about 12K/3K samples for training/validation. Since the tar-
get images are not available for COCO, only a reference im-
age and an instruction are included in a training/validation
sample (see supplementary material for the details).

Note that three types of manipulations/operations, i.e.,
“add”, “remove”, and “change”, are considered in both
datasets. We will make the datasets publicly available for
reproduction and comparison purposes.

Qualitative Evaluation
We compare our proposed cManiGAN with recent mod-
els, including GeNeVa (El-Nouby et al. 2019), TIM-
GAN (Zhang et al. 2021), ManiGAN (Li et al. 2020a) and
TediGAN (Xia et al. 2021a), with example results shown in
Fig. 2. From this figure, we observe that the outputs of the
attribute-based methods, such as ManiGAN and TediGAN,
were not able to locate proper image regions for manipula-
tion and even failed to preserve the image structure or de-
tails. As for the structure-based methods (i.e., GeNeVa and
TIM-GAN), even though the structure of the reference im-
age was preserved, these methods fail to comprehend the
complex input instruction and lack the ability to manipu-
late the image with visual and semantic correctness. Take
the third case in Fig. 2 for example, GeNeVa incorrectly
changed the visual attributes of two non-target objects. On

the other hand, our cManiGAN was able to generate consis-
tent outputs following the given instructions. For more qual-
itative results, please refer to our supplementary materials.

Quantitative Evaluation
To quantify and compare the performances between differ-
ent models, two metrics are applied: Fréchet inception dis-
tance (FID) and inception score (IS). Moreover, the follow-
ing four different metrics are utilized for evaluation:
(1) Image classification accuracy (Image acc) measures
whether the objects in the generated image match the la-
bels of the target image. (2) Inside mask classification
accuracy. (In-mask acc) evaluates whether the generated
object in the masked part can be recognized by a pre-
trained classification model. (3) Interpreter accuracy (In-
terp. acc). measures whether the generated image semanti-
cally matches its factual description via a cross-modal inter-
preter, which is pre-trained on the reference image Ir and its
corresponding description set Sr. (4) Retrieval score (RS)
evaluates the manipulation correctness of the manipulation
by applying the existing text-guided image retrieval method
of TIRG (Vo et al. 2019). Following TIM-GAN (Zhang et al.
2021), we report RS@N, where N indicates the recall of the
ground-truth image in the top-N retrieved images.

Quantitative Comparisons Image Quality and Realness.
In Table 2, we compare our cManiGAN with GeNeVa (El-
Nouby et al. 2019), TIM-GAN (Zhang et al. 2021), Mani-
GAN (Li et al. 2020a) and TediGAN (Xia et al. 2021a) in
terms of FID, IS, image accuracy, and inside-mask accuracy.
To better compare these methods for image manipulation,
we consider structure-based and attribute-based operations
(as mentioned in Sect. ), and we divide the evaluation into
two types: Type 1 focuses on the “remove/add” operations,
and Type 2 considers only “attribute/shape change” opera-
tions. These metrics measure the quality of the generated re-
sults, reflecting the resulting realness of the synthesized im-
ages. From this table, we see that our cManiGAN reported
comparable or improved FID and IS scores on both types
of operations. It is worth pointing out that, while the best
FID scores were reported by TIM-GAN (Zhang et al. 2021)
in Type 1 comparisons, they require ground-truth target im-
ages during training, while others (including ours) do not
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have such a requirement.
To further quantify the output accuracy, we report the

multi-label classification accuracy on the produced images,
and also the single-label classification accuracy on the im-
age regions masked by the ground truth masks. As listed in
the above table, we see that cManiGAN achieved either the
best or the second-best image accuracy and in-mask accu-
racy among all methods on two types (i.e, Type 1 as add/re-
move and Type 2 as attribute/shape change) of operations,
which verify that our method successfully edits the image
with visual correctness. We observe that GeNeVa tended to
“remove” objects in the reference image not following the
instruction, resulting in degraded image-level accuracy even
with satisfactory in-mask accuracy on Type 1 operations (i.e,
add/remove). This is mainly due to the fact that it is opti-
mized on such operations and cannot easily generalized to
complex ones like “add”.

Semantic Relevance and Correctness. In Table 2, we re-
port the accuracy of the interpreter and retrieval scores to
measure the semantic relevance between the manipulated
images and the instructions, as well as the visual correct-
ness of the generated objects. From this table, we see that
our cManiGAN again outperformed favorably against base-
line methods across both types of operations (i.e., add/re-
move and attribute/shape change). While GeNeVa and TIM-
GAN produced visually realistic images, their correspond-
ing interpretation accuracy and retrieval scores were not
satisfactory, indicating their lack of ability in comprehend-
ing complex instructions to edit the images with semantic
and visual correctness. In comparison, our approach consis-
tently achieved higher scores on interpretation accuracy and
retrieval scores with remarkable margins. Additional user
studies in terms of generating realism and semantic rele-
vance are presented in the supplementary materials.

Real-World Target-Free Images
We now consider the COCO dataset, a challenging real-
world dataset with no target image data (i.e., no retrieval
scores R@N can be measured). For quantitative comparison
purposes, we compare with ASE (Shetty, Fritz, and Schiele
2018), which focuses on object removal in the scene image
from a weakly supervised setting, and the results are shown
in Table 4(a). From this table, we see that our cManiGAN
outperformed ASE in terms of both image quality and se-
mantic correctness. More specifically, our method improved
the FID score while the interpretation accuracy was im-
proved by nearly 10%. As for qualitative analysis and more
experiments on COCO, please refer to our supplementary
materials.

Ablation Studies and Remarks
Design of cManiGAN. Table 4(b) assesses the contribu-
tions of each deployed module in our cManiGAN, and thus
verifies the design of our proposed model. To justify the two
stage design of our generator G, we ablate the localizer L,
and utilize only the in-painter P to produce the generated
image by observing the reference image and the instruction.
One can find that, by adding the localizer, our generator is

FID ↓ IS ↑ image
acc (%)

Inside-mask
acc (%)

Interp.
acc (%)

Upper bound - - 98.96 89.56 67.16
Ours w/o L 228.7 1.11 72.52 24.38 0.667
Ours w/o R (cycle) 68.08 2.07 83.47 41.40 28.27
Ours w/o I 44.08 2.11 93.73 41.01 35.14
Ours w/o R, I 77.56 2.08 80.22 39.70 26.55
Ours 39.41 2.22 93.41 41.92 37.46

Table 4: Ablation studies on CLEVR. Note that L, I and cy-
cle denote the localizer in generator, cross-modal interpreter
and operational cycle-consistency losses, respectively.

able to comprehend the complex instruction and locate the
target location, which enforces the generator to manipulate
within target location only, improving both the semantic cor-
rectness of the generated image and the overall visual quality
of the generated image. To verify the effectiveness of the in-
terpreter I during training, we show that adding such a mod-
ule (comparing the third and fifth rows of this table) into our
baseline would further improve the performance, with im-
proved visual realness and semantic correctness.

Finally, we verify the contribution of the operational
cycle-consistency and observe improved visual quality
scores in FID. This verifies that our operational cycle-
consistency serves as a potential pixel-level training feed-
back without observing the target images. By combining
all of the above designs, our full version of cManiGAN
achieves the best results in Table 4(b). Thus, the design of
our cManiGAN can be successfully verified. For more ab-
lation studies of objective function and reasoner module,
please refer to our supplementary materials.

Conclusion

We presented a Cyclic Manipulation GAN (cManiGAN) for
target-free text-guided image manipulation, realizing where
and how to edit the input image with the given instruction.
To address this task, a number of network modules are in-
troduced in our cManiGAN. The image editor learns to ma-
nipulate an image in a two-stage manner, locating the im-
age region of interest followed by completing the output im-
age. In order to guarantee that the output image would ex-
hibit visual and semantic correctness at pixel and world lev-
els, our cManiGAN has unique modules of a cross-modal
interpreter and a reasoner, leveraging auxiliary semantics
self-supervision. The former associates the image and text
modalities and serves as a semantic discriminator, which
enforces the authenticity and correctness of the output im-
age via word-level training feedback. The latter is designed
to infer the “undo” instruction, allowing us to train cMani-
GAN with operational cycle-consistency, providing addi-
tional pixel-level guidance. With extensive quantitative and
qualitative experiments, including user studies, the use of the
model is shown to perform favorably against state-of-the-art
methods which require different degrees of supervision or
be applicable to a limited amount of manipulation tasks.
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