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Abstract

This paper explores a better prediction target for BERT pre-
training of vision transformers. We observe that current pre-
diction targets disagree with human perception judgment.
This contradiction motivates us to learn a perceptual predic-
tion target. We argue that perceptually similar images should
stay close to each other in the prediction target space. We sur-
prisingly find one simple yet effective idea: enforcing percep-
tual similarity during the dVAE training. Moreover, we adopt
a self-supervised transformer model for deep feature extrac-
tion and show that it works well for calculating perceptual
similarity. We demonstrate that such learned visual tokens in-
deed exhibit better semantic meanings, and help pre-training
achieve superior transfer performance in various downstream
tasks. For example, we achieve 84.5% Top-1 accuracy on
ImageNet-1K with ViT-B backbone, outperforming the com-
petitive method BEiT by +1.3% under the same pre-training
epochs. Our approach also gets significant improvement on
object detection and segmentation on COCO and semantic
segmentation on ADE20K. Equipped with a larger backbone
ViT-H, we achieve the state-of-the-art ImageNet accuracy
(88.3%) among methods using only ImageNet-1K data.

Introduction
Current state-of-the-art self-supervised pre-training meth-
ods (Dosovitskiy et al. 2020; Bao, Dong, and Wei 2021;
He et al. 2021; Xie et al. 2021; Chen et al. 2022; Wei
et al. 2021) for vision transformers focus on masked image
modeling (MIM), a task of making predictions for masked
patches from the visible patches. The input is usually an
image consisting of visible patches and randomly masked
patches and each patch is associated with corresponding
positional embedding. The prediction target for masked
patches varies for different methods, ranging from pixel-
level prediction (Dosovitskiy et al. 2020; He et al. 2021; Xie
et al. 2021) to feature-level prediction (Bao, Dong, and Wei
2021; Chen et al. 2022; Wei et al. 2021). In this paper, we
study the prediction targets and introduce a better prediction
target for MIM.
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Figure 1: Several examples illustrating the results of dif-
ferent prediction targets on the question that which image
(View1 or View2) is “closer” to the Reference image. The
number denotes the distance between View1 or View2 and
the Reference image. The images with smaller distances are
considered more similar. We observe that the proposed PeCo
agrees with human judgments while L2 or DALL-E dis-
agree.

We point out that current prediction targets disagree with
human judgment when evaluating the similarity between
two different images. There are two representative predic-
tion targets in current MIM methods: per-pixel regression
and discrete token prediction. Figure 1 illustrates the results
of different prediction targets on the question that which im-
age (View1 or View2) is “closer” to the “Reference” for
these examples. The reason for such disagreement of cur-
rent prediction targets may come from the per-pixel loss.
Note that the discrete tokens are obtained by a VQ-VAE
trained under the objective of reconstruction loss, i.e. , per-
pixel loss. The per-pixel measure assuming pixel-wise inde-
pendence is insufficient for assessing structured outputs. For
example, blurring causes large perceptual change but small
pixel error, while shifting incurs small perceptual change but
large pixel error (Zhang et al. 2018). Such disagreement with
human visual perception indicates that perceptually similar
patches may have divergent prediction targets. This under-
mines the capability of MIM as it, in principle, is based on
context prediction.

We propose that a good prediction target for MIM should
coincide with human judgment. In other words, perceptually
similar images should be close to each other in the prediction
target space. Inspired from the observation in (Zhang et al.
2018) that deep features model low-level perceptual simi-
larity surprisingly well, we introduce this so-called percep-
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tual loss in VQ-VAE for discrete token learning. This loss
can be viewed as per-feature loss as it aims to minimize the
feature-wise distance between the original image and the re-
constructed image. Specifically, we adopt multi-scale deep
features from multiple layers at different depth of a self-
supervised Transformer. As shown in Figure 1, our proposed
new prediction target indeed aligns with human perception
judgment. We also show that the proposed visual tokens get
much higher linear accuracy than the one without the per-
ceptual loss. It indicates that our new visual tokens exhibit
more semantic meanings, which is analogous to texts whose
discrete tokens often contain highly semantic information.

We denote MIM using the introduced perceptual visual
tokens for targets as “PeCo”, i.e. Perceptual Codebook for
BERT pre-training of vision transformers. In the experi-
ments, we demonstrate that equipped with such perceptual
visual tokens, PeCo achieves better performance compared
with the strong competitor BEiT (Bao, Dong, and Wei 2021)
using DALL-E (Ramesh et al. 2021) codebook trained over
250M images without the perceptual loss. We fine-tune the
pre-trained model on various downstream tasks: image clas-
sification, object detection, and semantic segmentation. Ex-
perimental results show that our pre-trained model transfers
better than BEiT with only the prediction target changed.
Concretely, we achieve 84.5% Top-1 accuracy on ImageNet-
1K with ViT-B model, outperforming BEiT by +1.3% with
the same 800 pre-training epochs. Our approach also gets
significant improvement on COCO object detection and se-
mantic segmentation as well as on ADE20K semantic seg-
mentation. Our PeCo also shows strong scalability that when
equipped with a larger backbone ViT-H, we achieve the
state-of-the-art ImageNet accuracy (88.3%) among methods
using only ImageNet-1K data.

Related Works
Self-Supervised Learning Self-supervised learning has
attracted increasing attention over the past few years, as deep
learning networks become more and more data-hungry and
it’s impossible to label everything in the world. There are
two main categories along this path, contrastive and genera-
tive (Liu et al. 2021a). One emerging field is self-supervised
contrastive learning, training an encoder to the representa-
tion measured by contrastive loss (Hadsell, Chopra, and Le-
Cun 2006; Dosovitskiy et al. 2014) via comparing similar
and dissimilar samples. The representative methods include
MOCO (He et al. 2020; Chen et al. 2020d), SimCLR (Chen
et al. 2020b,c), BYOL (Grill et al. 2020), SwAV (Caron et al.
2020). However, contrastive-based methods heavily depend
on the strong data augmentation and effective negative sam-
pling.

The other recent resurgent field is generative self-
supervised learning, training an encoder and a decoder un-
der the objective of reconstruction loss. The typical objec-
tives, autoregressive and denoising autoencoder, aiming at
recovering the corrupted or masked input, has yielded the
most successful frameworks (Devlin et al. 2018) in NLP.
Thanks to the pre-existing vocabulary in language, recov-
ering the missing word can be transformed into predict-
ing all the possible words with the probability estimation,

converting the prediction problem to an easier classifica-
tion problem. While in CV, on the other hand, most at-
tempts (Van Oord, Kalchbrenner, and Kavukcuoglu 2016;
Oord et al. 2016; Chen et al. 2020a) still resort to regression
for generative methods due to the lack of visual vocabulary,
e.g. iGPT (Chen et al. 2020a). Recently, BEiT (Bao, Dong,
and Wei 2021) successfully adopts a classifier for prediction
by directly adopting a VQ-VAE as the visual tokenizer. Yet
there exists a major difference between the language vocab-
ulary and the visual vocabulary. That is, the words of lan-
guage are highly semantic, while the visual words of images
are mostly not. Most recently, numerous works (Bao, Dong,
and Wei 2021; He et al. 2021; Xie et al. 2021; Wang et al.
2022b; Dong et al. 2022) based on MIM have been concur-
rently developed, yet few studied the perceptual level of the
prediction targets. In this work, we attempt to learn a per-
ceptual visual vocabulary for BERT pre-training, showing
superior transfer performance than BEiT (Bao, Dong, and
Wei 2021) and MAE (He et al. 2021).

Discrete Visual Supervision Exploring masked image
modeling or image inpainting task for self-supervised pre-
trained tasks has never been stopped in vision community,
especially when BERT (Devlin et al. 2018) achieves great
success in various tasks of NLP. To apply the cross-entropy
loss function for vision tasks, iGPT (Chen et al. 2020a) clus-
ters the pixel values to simulate the process of BPE (Sen-
nrich, Haddow, and Birch 2015) process for different words
in language. ViT (Dosovitskiy et al. 2020) attempts to di-
rectly divide the raw pixel values into multiple groups and
assign a discrete label for each group GRB value. Recent
work VQ-VAE (Oord, Vinyals, and Kavukcuoglu 2017) pro-
poses to adopt encoder and decoder to quantize the visual
contents to a learnable codebook with fixed size.

Perceptual Similarity The term “perceptual similarity”
refers to imitating human perception when assessing im-
age similarity. It has been shown in (Zhang et al. 2018)
that the internal activations of network trained for classi-
fication task surprisingly coincide with human judgment.
Such deep features have been widely used in image gen-
eration with the goal of synthesizing realistic images. The
loss is called perceptual loss or VGG loss as the network
used is often VGG architecture. In this paper, we surpris-
ingly discover that this simple loss is super effective in build-
ing a better prediction target and significantly improves vi-
sion BERT pretraining. Moreover, to enable self-supervised
learning, we adopt a self-supervised trained network rather
than ImageNet-trained networks and show it also works
comparably well. Both these two discoveries are conceptu-
ally simple yet super-effective and valuable.

Method
In the natural language processing field, the words are nat-
urally discrete tokens which contain high semantic informa-
tion. By contrast, vision signals are continuous with redun-
dant low-level information. While there are various ways to
discretize the image in prior works, the semantic level of the
resulting visual tokens has been largely ignored. In this sec-
tion, we start by briefly describing the discrete representa-
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tion learning from VQ-VAE, and then introduce the process
of how to learn a perceptual codebook, followed by BERT
pre-training over the learned perceptual visual tokens.

Learning Discrete Codebook for Visual Content
We utilize VQ-VAE (Oord, Vinyals, and Kavukcuoglu 2017)
to convert the continuous image content into the form of
discrete tokens. Consider an image x ∈ RH×W×3, VQ-
VAE is able to represent it with discrete visual codewords
{z1q , z2q , · · · , zNq } ∈ V1 × V2 × · · · × VN , where ziq comes
from a visual codebook (vocabulary) Vi = {eik ∈ RD}Ki

k=1
consisting of Ki D-dimensional codewords. Usually we
have K1 = K2 = · · · = KN = K for simplicity, and
N = h × w with h × w being the spatial resolution of the
latent space.

Specifically, to learn such latent codeooks, VQ-VAE con-
tains three major parts: an encoder, a quantizer and a de-
coder. The encoder maps the input image to intermediate
latent vectors z = Enc(x), where z ∈ Rh×w×D.The quan-
tizer is in charge of quantizing each vector at position (i, j)
to be codewords coming from the corresponding codebook
Vi,j = {ei,jk }Kk=1 ⊂ RD according to nearest neighbor as-
signment. That is,

k∗ = q(zi,j) = argmin
k∈{1,2,··· ,K}

∥zi,j − ei,jk ∥. (1)

zi,jq = r(k∗) = ei,jk∗ , (2)

where q is the quantization encoder that maps the vector
to an index of the codebook, and r is the quantization de-
coder that reconstructs the vector from the index. Based on
the quantized codewords zq, the decoder aims to reconstruct
the input image x. Suppose the reconstruct result is x̂ =
Dec(zq). Since the quantizer is non-differentiable, to back-
propagate gradient into encoder, the gradient is approxi-
mated like the straight-through estimator (Bengio, Léonard,
and Courville 2013) and just copied from decoder to en-
coder (Oord, Vinyals, and Kavukcuoglu 2017). The training
objective of VQ-VAE is defined as,

LVQ-VAE(Enc,Dec, {V}) = Lpixel + ∥sg[Enc(x)]− zq∥22
+ β∥sg[zq]− Enc(x)∥22. (3)

Here, Lpixel =
1

H×W×3∥x − x̂∥ is the per-pixel loss, sg[·]
is the stop-gradient operator, β is a loss weight set to 0.25 in
all our experiments.

Learning Perceptual Codebook for Visual Content
In the vanilla VQ-VAE, the codebook is learned by an
element-wise pixel loss, i.e. Lpixel, between the original im-
age and the reconstructed image. However, this per-pixel
loss may prevent the network from capturing perceptual dif-
ference since the loss only accounts for the correctness of
individual pixels. Therefore, a small shift and rotation oper-
ation on the original image may not cause perceptual change
but large ℓ1/ℓ2 error.

Therefore, we propose a simple yet effective strategy by
enforcing perceptual similarity between the original image

and the reconstructed one beyond the pixel loss. The percep-
tual similarity is not based on pixel differences but instead
feature differences where the high-level image features ex-
tracted from a pre-trained deep neural network. We hope this
feature-wise loss will better capture perceptual difference
and offer invariance towards low-level variations. We show
the comparison of using different losses in Figure 3 from
the perspective of image reconstruction, suggesting that im-
ages with lower pixel-wise loss may not appear perceptually
similar.

Previous works usually adopt a supervised pretrained
VGG (Simonyan and Zisserman 2014) network to calcu-
late perceptual loss, since using supervision is not consistent
with our purpose of self-supervised pre-training. We turn to
the self-supervised models and replace the ConvNet-based
model with Vision Transformer, which have a better model-
ing capability and efficiency. On the other hand, pre-trained
models usually encode different levels of semantic infor-
mation in different layers, to enable our codebook to have
rich perceptual information, we adopt multi-scale features
from multiple layers of the model to calculate the percep-
tual loss. Our experiments show that a vision Transformer
(ViT-B model) from self-supervised learning works well for
calculating perceptual loss.

Formally, let fl(x) be the normalized activations of the l-
th layer of a network F when processing the image x. The
size of the feature map is Hl ×Wl × Cl with Hl being the
height, Wl being the width and Cl being the channel dimen-
sion. Usually, multi-scale features, more comprehensive and
discriminative, from multiple layers at different depth are
extracted to calculate the perceptual similarity for better se-
mantic capture. The perceptual metric for the input image x
and the reconstructed image x̂ can be formulated as,

Lpercep =
∑
l∈S

1

ClHlWl
∥fl(x)− fl(x̂)∥22, (4)

where S denotes the number of layers from which the fea-
tures are extracted.

Therefore, the overall objective function is,

LVQ-VAEpercep
= Lpixel + λLpercep

+ ∥sg[Enc(x)]− zq∥22
+ β∥sg[zq]− Enc(x)∥22, (5)

where λ is the hyper-parameter for the loss weight of
Lpercep, we will study different vaules of loss weight λ in
the experiments. The training pipeline of perceptual code-
book is illustrated in Figure 2 (a). After training, the encoder
and the quantizer are used as tokenizer in the subsequent
pre-training process.

BERT Objective over Perceptual Codebook
We adopt the BERT objective to perform the masked
image modeling task over the discrete visual tokens as
in BEiT (Bao, Dong, and Wei 2021), illustrated in Fig-
ure 2. For a given image x, the input tokens are image
patches which are non-overlappingly split from the whole
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Figure 2: (a) Training pipeline of our Perceptual Coodbook. (b) Apply PeCo in BERT-Like pretraining. Our PeCo provides a
more semantic prediction target to the Mask Image Modeling Task.

Input 𝐿𝑝𝑖𝑥 𝐿𝑝𝑖𝑥+𝐿𝑝𝑒𝑟𝑐 Input 𝐿𝑝𝑖𝑥 𝐿𝑝𝑖𝑥+𝐿𝑝𝑒𝑟𝑐

Figure 3: Image reconstruction with different losses. An
example contains three images showing input (left), re-
constructed image using pixel-wise loss (middle), and re-
constructed image using pixel-wise and feature-wise losses
(right). We can see that perceptually the right image appears
more similar to the input compared with the middle image,
although the middle image gets lower pixel-wise loss.

image, and the output tokens are discrete perceptual vi-
sual words obtained through learning Eqn 5. Let the in-
put be {x1, x2, · · · , xN}, and the groundtruth output be
{k1, k2, · · · , kN} = q(Enc(x)). The goal of the masked
image modeling is to recover the corresponding visual to-
kens from the masked input where a portion of input tokens
have been masked.

Precisely, let M be the set of masked index. Then the
masked input x̄ is represented as,

x̄i =

{
xi, i /∈ M
m, i ∈ M , i = 1, 2, · · · , N, (6)

where m is a learnable mask token as same dimension as

non-mask tokens. The masked input tokens are fed into a
L-layer vision Transformer with the last layer’s hidden out-
put being denoted as {h1, h2, · · · , hN}. We aim at recover-
ing the corresponding visual token from the hidden vector
at masked positions. To achieve that with the classification
loss, a K-way classifier is appended after the hidden vec-
tor hi to get the probability estimation about all possible
discrete tokens in the corresponding codebook Vi. Suppose
the groundtruth discrete visual tokens corresponding to the
masked patches are kt with t ∈ M, the pre-training objec-
tive can be formulated as,

Lpre-training = −
∑
t∈M

logP (kt|x̄), (7)

where P (kt|x̄) is the estimated target token probability for
masked patches of corrupted image x̄.

After pre-training the model, we apply the model to
various downstream tasks including ImageNet-1K (Deng
et al. 2009) classification, COCO object detection (Lin et al.
2014), and ADE20K (Zhou et al. 2017) Segmentation.

Pre-training Details
Vector Quantizer We use the standard k-means algorithm
for vector quantization. We set the codebook size K as
8192 for fair comparison. When the size of the discrete la-
tent space K is large, we observe that only a few code-
words are selected to represent image and get trained. Many
other codewords are wasted. To overcome this issue, we
adopt exponential moving averages (Oord, Vinyals, and
Kavukcuoglu 2017) to update the codebook which is proved
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Methods pre-train pre-train ViT-B ViT-L ViT-H ViT-H448dataset epochs

Training from scratch (i.e., random initialization)
ViT384 - - 77.9 76.5 – –
DeiT - - 81.8 – – –
ViT - - 82.3 82.6 83.1 –

Self-Supervised Pre-Training on ImageNet-1K
DINO IN-1K 300 82.8 – – –
MoCo v3 IN-1K 300 83.2 84.1 – –
BEiT IN-1K 800 83.2 85.2 – –
BootMAE IN-1K 800 84.2 85.9 – –
MAE IN-1K 1600 83.6 85.9 86.9 87.8
PeCo IN-1K 800 84.5 86.5 87.5 88.3

Table 1: Image classification accuracy (%) comparison on
ImageNet-1K (IN-1K) of different self-supervised methods
using various backbones.

to be useful for increasing utilization of codewords in a
codebook.

Perceptual Codebook Learning Setup We train the per-
ceptual codebook using the training set of ImageNet-1K
dataset by default. For the encoder and decoder of VQ-VAE,
we choose traditional convolutional based backbone. The
network contains two residual blocks at each resolution. A
self-attention block is applied to the smallest resolution for
both encoder and decoder. For perceptual loss, we use the
pre-trained 100 epochs ViT-B model from self-supervised
method MoCo v3 (Chen, Xie, and He 2021) by default.

BERT Pre-training Setup For computation resource con-
sideration, we use the original ViT-B/16 (Dosovitskiy et al.
2020) as the basic architecture of our backbone to vali-
date the effectiveness of the learned visual codebook, as in
BEiT (Bao, Dong, and Wei 2021). The model is pre-trained
for 300/800 epochs with the batchsize of 2048. We use a
block-wise masking strategy for obtaining the corrupted im-
ages with the same setup as BEiT (Bao, Dong, and Wei
2021). We further demonstrate the effectiveness of our ap-
proach when scaling to ViT-Large and ViT-Huge backbones.

Experiments
Downstream Tasks
Image Classification aims to classify a given image
into its corresponding class category. We use the popular
ImageNet-1K dataset. To enable classification, a global av-
erage pooling layer is appended after the pre-trained model.
We finetune the model with 100 epochs and a cosine decay
learning rate that warmups to 4e−3 with 20 epochs and de-
cays to 0. Following (Bao, Dong, and Wei 2021), the layer-
wise learning rate decay is also used and set to 0.65 by de-
fault. For more details, please refer to the supplementary ma-
terials.

Semantic Segmentation is the task of assigning a label to
each pixel of the input image. We compare on the seman-
tic segmentation dataset ADE20K benchmark (Zhou et al.

Methods tokenizer tokenizer BERT pre- IN-1K
dataset #params train epoch Top-1

BEiT DALLE(400M) 53.8M 300/800 82.8/83.2
PeCo IN-1K(1.3M) 37.5M 300/800 84.1/84.5
PeColite IN-1K(1.3M) 25.7M 300/800 84.0/84.5

Table 2: Tokenizer comparison with BEiT. Here we report
tokenizer training dataset and #parameters. PeColite is a lite
version of PeCo that reduces the channel number of tok-
enizer by half.

Methods pre-train pre-train ADE-20K COCO
dataset epochs mIoU APbb APmk

DEiT IN-1K 300 47.4 44.1 39.8
MoCo IN-1K 300 47.3 44.9 40.4
BEiT DALLE+IN-1K 800 47.1 46.3 41.1
MAE IN-1K 800 47.6 46.8 41.9
MAE IN-1K 1600 48.1 47.2 42.0
PeCo IN-1K 800 48.5 47.8 42.6

Table 3: Semantic segmentation mIoU (%) comparison on
ADE20K and object detection and instance segmentation
comparison in terms of box AP (APbb) and mask AP (APmk)
on COCO. The backbones for all the methods are the ViT-B.

2017). Here we employ the Upernet (Xiao et al. 2018) as the
basic framework. For fair comparison, we follow previous
works (Bao, Dong, and Wei 2021) and train Upernet 160k
iterations with batch size set as 16, more details are provided
in the supplementary material.

Object Detection and Segmentation Object detection is
to locate objects in a given image and identify each object.
We perform fine-tuning on the COCO objection detection
and segmentation with the Mask R-CNN (He et al. 2017)
framework. Specifically, we add four different scale FPNs
to scale the feature map into different size following (Bao,
Dong, and Wei 2021). The fine-tuning is conducted with
“1x” (12 training epochs) schedule and single-scale input on
the COCO training set and test the performance on COCO
validation set, following the strategy used in Swin Trans-
former (Liu et al. 2021b).

Comparison with Previous Works
We first compare our PeCo with previous state-of-the-art
works. Here we report ImageNet-1K results with various
model sizes. For object detection on CoCo and semantic seg-
mentation on ADE20K, we use ViT-B as the backbone.

Image Classification The Top-1 accuracy on ImageNet-
1K classification is reported in Table 1. We compare our
method with 1) ViT (Dosovitskiy et al. 2020) and DeiT (Tou-
vron et al. 2021) that are supervisedly trained from scratch
with random initialization; and 2) MoCo v3 (Chen, Xie,
and He 2021) and DINO (Caron et al. 2021), represent the
contrastive learning for self-supervised pre-training; and 3)
BEiT (Bao, Dong, and Wei 2021), MAE (He et al. 2021) and
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BootMAE (Dong et al. 2022) based on masked image mod-
eling for self-supervised pre-training. It can be seen that our
model (PeCo) significantly improves the performance com-
pared with the models trained from scratch, suggesting the
effectiveness of pre-training.

Compared with prior self-supervised pre-training models,
our model achieves the best performance. For example, our
model using ViT-B backbone pre-trained with 800 epochs
reaches 84.5% Top-1 accuracy, 1.3% higher than BEiT and
0.9% higher than MAE. Furthermore, we also compare the
results on larger backbones, e.g. ViT-L and ViT-H. The re-
sults are reported in the Table1, showing significantly bet-
ter performance than previous counterparts. This validates
that our perceptual codebook is indeed beneficial for pre-
training. Concretely, our model PeCo-H448 achieves the best
Top-1 accuracy, 88.3%, on ImageNet-1K without external
data, outperforming MAE by 0.5%. This is a new state-of-
the-art result using only ImageNet-1K data.

We also report the results pre-trained with 300 epochs in
Table 2. Compared with the baseline BEiT (Bao, Dong, and
Wei 2021), our model gets +1.3% improvement for both
300 and 800 pre-training epochs. We further investigate a
lite version of tokenizer which reduces the channel number
of the original by half. This decreases the extra timecost in-
troduced by the tokenizer by about 2×. We can see from
Table 2 that with a lite tokenizer, our model still gets com-
petitive performance.

Semantic Segmentation We compare our method with
1) DEiT, which is a supervised pre-training method on
ImageNet-1K , 2) MoCo, the contrastive learning based
methods, and 3) BEiT (Bao, Dong, and Wei 2021),
MAE (He et al. 2021), the state-of-the-art self-supervised
learning model. Here we use UperNet (Xiao et al. 2018)
framework with 512 × 512 input and trained for 160K iter-
ations. The evaluation metric is mean Intersection of Union
(mIoU) averaged over all semantic categories and we report
single-scale results here. The results are given in Table 3.
Our method achieve 48.5 mIoU, +1.1 mIoU than supervised
based methods. It is also + 1.2 mIoU than MoCo, +1.4 mIoU
than BEiT, and +0.9 mIoU than MAE. Our model even
achieve better results(+0.4 mIoU) than MAE pre-training
with 1600 epochs. This verifies the effectiveness of the per-
ceptual codebook.

Object Detection and Segmentation We further investi-
gate our transfer performance on object detection and seg-
mentation. Here we use Mask-RCNN (He et al. 2017) frame-
work with single-scale input and 1× schedule (12 epochs).
We compare with the strong competitor BEiT (Bao, Dong,
and Wei 2021) on this dataset. The evaluation metric is box
AP for detection and mask AP for segmentation. The com-
parison is presented in Table 3. Our model with ViT-B as
backbone achieve 47.8 box AP and 42.6 mask AP, +3.7 box
AP and +2.8 mask AP over supervised methods. Our model
also outperform recent work MAE by +1.0 box AP, + 0.7
box AP under the same pre-training epochs. Our model is
also higher than MAE pre-training with 1600 epochs.

Methods LinearProb. Classification.
on codewords on recon.

DALL-E 6.1 18.2
PeCo(w/o Lpercep) 10.2 17.9
PeCo(ours) 29.7 51.7

Table 4: Evaluation of the semantics of the codewords from
linear probling accuracy (%) of codewords on ImageNet-1K
and classification accuracy (%) on the reconstructed Ima-
geNet validation images using Deit-T.

Loss for Tokenizer Training acc. on IN-1K

Lpixel 82.9
Lpixel + Lpercep from SSL ResNet-50 84.0
Lpixel + Lpercep from SSL ViT-B 84.1
Lpixel + Lpercep from Supervised VGG 84.1

Table 5: The performance comparison when using different
architectures for calculating the perceptual similarity.

Analysis of Perceptual Codebook
In this section, we ablate our perceptual codebook by using
the setting of self-supervised pre-training on ImageNet-1K.
The pre-raining epochs is 800.

Semantics of the Codewords The most important ques-
tion would be: will the learned perceptual codewords exhibit
(more) semantic meanings? To answer this, we quantita-
tively evaluate the codewords’ semantics from two aspects.
(1) We use the codewords of the image as features for classi-
fication. An average pooling is conducted over the quantized
codewords of the image and we test its linear probing accu-
racy over ImageNet dataset. (2) We use an ImageNet-1K su-
pervisedly pre-trained DeiT-T (Touvron et al. 2021) (72.2%
Top1 accuracy on clean ImageNet val set) to test the clas-
sification accuracy over the reconstructed images. We com-
pare with the variant without using the perceptual similarity.
The results are given in Table 4. We find that our perceptual
codewords get much higher accuracy for both linear eval-
uation on codewords and classification on the reconstructed
images. This indicates that our perceptual codebook exhibits
more semantic meanings and benefits the image reconstruc-
tion process. We also provide a visualization of the masked
region prediction using BEiT (Bao, Dong, and Wei 2021)
and our PeCo in Figure 4, showing that our PeCo, with the
aid of perceptual codebook, is able to make more semantic
predictions for the masked region.

Deep Architectures for Perceptual Similarity Another
key question would be: will the deep architectures for deep
perceptual features affect the perceptual codebook learning
and thus affect the pre-training performance? Therefore, we
investigate two different deep architectures: convolutional-
based backbone ResNet50 (He et al. 2016) and Transformer-
based model ViT-B (Dosovitskiy et al. 2020). We study the
self-supervised models in order to enable unsupervised pre-
training. The results are reported in Table 5. We can see
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Figure 4: Examples of reconstruction results on ImageNet-1K using BEiT and our PeCo.

Perceptual mechanism Top-1 acc. on IN-1K

Classification loss on codewords 82.9
Contrastive loss on codewords 82.9
Perceptual loss on images 84.1

Table 6: Performance comparison of different way to inject
semantic to the codebook.

that using convolution-based or Transformer-based network
achieves similar performance. In addition, we also report
the results using the classical supervised (i.e. using label)
trained VGG (Simonyan and Zisserman 2014) in Table 5.
It can be seen that using supervised model for perceptual
metric achieve comparable performance as self-supervised
model.

Discussions
We present several in-depth discussions about the proposed
model in this section.

Implicit vs. Explicit. The key contribution of our paper
is improving the perceptual level of the discrete visual to-
kens for the subsequent pre-training. We have successfully
demonstrated that through a simple strategy, i.e. enforcing
perceptual similarity over images. One may think that it
seems quite implicit for learning perceptual codebook by
constraining on images instead of directly exploiting some
constraint over the codebook. Indeed, we also experiment
in two explicit ways: 1) supervised classification loss over
the codewords; 2) constraining a momentum contrastive loss
over the quantized codewords through data augmentation in
a self-supervised way. We hope that leveraging those forms
of high-level classification objective may encode some se-
mantics into the codewords. But empirically we found that
such explicit ways are not as effective as the proposed im-
plicit strategy. The results are reported in Table 6. We con-
jecture that the codebook may learn global semantics from
the classification/contrastive loss and thus fail to differen-
tiate different codewords, which is not suitable for pre-
training. In contrast, deep features from a pre-trained deep
model contain rich and dense semantics.

Loss functions Top-1 acc. on IN-1K

Lpixel 82.9
Lpixel + Lpercep 84.1
Lpixel + Lpercep + Ladv 83.9

Table 7: Performance comparison of different loss functions.

Perceptual Loss vs. GAN Loss. The perceptual loss is
widely used in generation tasks with the goal of improv-
ing the image quality. We ask the question that is there a
positive relation with the image quality and the perceptual
level of the codebook. In order to explore this, we adopt
another technique, adversarial loss in Generative Adversar-
ial Nets(GANs) (Goodfellow et al. 2014), which has been
proved to be effective in enhancing the reconstructed image.
Specifically, we add a patch-based discriminator D (Li and
Wand 2016), aiming to make the original image and the re-
constructed one indistinguishable. The adversarial loss is,

min
Enc,{V},Dec

max
D

Ladv = logD(x) + log(1−D(x̂)). (8)

We add this loss with a suitable weight 0.4 to Eqn 5 and
use the learned codebook for pre-training. The resulting per-
formance is shown in Table 7. We can see that adversarial
loss can not bring gain to the transfer performance of pre-
training.

Conclusion
In this paper, we argue that a good prediction target for
masked image modeling should agree with human percep-
tion judgment. Motivated by this observation, we propose
a simple yet effective strategy to obtain perceptually dis-
crete tokens, beneficial for BERT pre-training of vision
transformers. We present extensive comparisons on various
downstream tasks. Our results indeed validate our hypoth-
esis and show superior performance compared with previ-
ous state-of-the-art methods. We hope that the deep anal-
ysis about the prediction target in our work will lead to a
broader exploration of this perspective and even help exist-
ing multi-modality foundation model pretraining (Yuan et al.
2021; Wang et al. 2022a).
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