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Abstract

Crowdedness caused by overlapping among similar objects
is a ubiquitous challenge in the field of 2D visual object de-
tection. In this paper, we first underline two main effects of
the crowdedness issue: 1) IoU-confidence correlation distur-
bances (ICD) and 2) confused de-duplication (CDD). Then
we explore a pathway of cracking these nuts from the per-
spective of data augmentation. Primarily, a particular copy-
paste scheme is proposed towards making crowded scenes.
Based on this operation, we first design a “consensus learn-
ing” strategy to further resist the ICD problem and then find
out the pasting process naturally reveals a pseudo “depth” of
object in the scene, which can be potentially used for alle-
viating CDD dilemma. Both methods are derived from mag-
ical using of the copy-pasting without extra cost for hand-
labeling. Experiments show that our approach can easily im-
prove the state-of-the-art detector in typical crowded detec-
tion task by more than 2% without any bells and whistles.
Moreover, this work can outperform existing data augmenta-
tion strategies in crowded scenario.

Introduction
The task of object detection has been meticulously studied
for quite a long time. In the deep learning era, in recent
years, many well-designed methods (Liu et al. 2020a) have
been proposed and raised the detection performance to a sur-
prisingly high level. Nevertheless, there still exist many in-
trinsic problems that are not fundamentally solved. One of
them is the “crowdedness issue”, which usually denotes the
phenomenon that objects belonging to the same category are
highly overlapped together. In a geometrical manner, the ba-
sic difficulty stems from the semantical ambiguities of the
2D space. As shown in Fig. 1, in our 3D world, each voxel
has its “unique semantics” and lies on a “certain object”.
However, after projecting to 2D plane, one pixel might fall
on several collided objects. After evolving the concept from
a “pixel” to a “box”, the semantical ambiguity in crowded
scenes leads to the notion of overlap.

To probe the effects of this problem, we now dive into the
essence of the detection paradigm. Generally, an object de-
tector reads in an image and outputs a set of bounding-boxes
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Figure 1: Semantic ambiguities in the 2D space. We exhibit
the same scenario in the real 3D world (left) and the 2D
space after photographing (right) respectively. The colored
boxes represent two distinct objects (pucksters) while the
green points denote a voxel in 3D space and its correspond-
ing pixel in the 2D image. It is clearly illustrated that the
3D voxel lies on the body of a unique puckster while the 2D
pixel lies on both of them. After evolving from a point to a
bounding-box, the ambiguity arises in the form of overlap.

each associated with a confidence score. For an ideally-
performed detector, the score value should convey how
well the predicted box is overlapped with the ground-truth.
In other words, the Intersection-over-Union (IoU) between
these two boxes should be positively correlated with the con-
fidence score. After visualizing the mean and standard devi-
ation of scores with respect to IoU in Fig. 2, it turns out
that even for the off-the-shelf detectors like (He et al. 2017),
this positive correlation would be gradually disturbed by the
increase of crowdedness degree1. This experimental study
clearly indicates the struggle of current detection algorithms
in facing the super-heavy overlaps. We embody this effect
as IoU-confidence Correlation Disturbances (ICD). On the
other hand, a typical detection pipeline often ends with a de-
duplication module, for example, the widely adopted Non-
Maximum Suppression (NMS). Due to the 2D semantical
ambiguity mentioned previously, these modules are often
confused by heavily overlapped predictions, which leads to
severe missing in a crowd. We cast this type of effect as Con-
fused De-Duplication (CDD).

To overcome these two obstacles, we explore a pathway

1The crowdedness degree is indicated in terms of “occlusion
ratio”, i.e., 1 − sv/sf , where the sv and sf represent size of the
visible box and full box of an object.
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Figure 2: IoU-confidence correlation disturbances (ICD).
We visualize the confidence score w.r.t the IoU between
the predicted box from (He et al. 2017) and ground-truth
in CrowdHuman (Shao et al. 2018). First, the IoU range
of [0, 1] are equally divided into 100 bins (each with the
length of 0.01) as the horizontal axis. Then, average value
(left) or standard deviation (right) of confidence scores are
computed within each bin, generating a corresponding point
in the coordinate plane. Marker shapes of diamond (red),
pentagon (green) and circle (blue) refer to crowdedness de-
grees with the occlusion ratio on three ranges of [0, 0.33],
[0.33, 0.66] and [0.66, 1] respectively. On the left figure,
the average score curve corresponding to the most crowded
range (blue) are obviously more jittering than the other two
curves; On the right figure, the heavier the crowdedness is,
the larger the standard deviations are. Both figures suggest
that the IoU-confidence correlation would become more un-
certain when the crowdedness increases.

from the perspective of data augmentation. Referring to the
preceding works (Ghiasi et al. 2021; Dwibedi, Misra, and
Hebert 2017; Li et al. 2021; Dvornik, Mairal, and Schmid
2018; Fang et al. 2019), a simple copy-paste variant is pro-
posed. Firstly, object segmentation patches are pasted to
the training images following some specialized rules ded-
icated for making crowded scenes. Then, revolved from
copy-pasting, we design a “consensus learning” approach
to align confidence distributions of overlaid objects to their
identical but non-overlaid counterparts, which further re-
strains the ICD problem. Moreover, thanks to the program-
controlled pasting process, we can naturally get the extra or-
der information of which one is in the front and which one is
in the back when two (pasted) objects are overlapped. This
cost-free knowledge provides cues on the additional third
dimension of depth apart from x and y-axis spanning the im-
age plane, which can be deemed as a breakthrough of the
aforementioned 2D restrictions inducing the CDD dilemma.
From this motivation, we propose a concept named “over-
lay depth” and semi-supervisely train the detector to predict
this label. Then, an Overlay Depth-aware NMS (OD-NMS)
is introduced to make use of the depth knowledge during
de-duplication. Experiments show that this strategy can help
distinguish boxes gathered in 2D space and further boost the
detection results.

We evaluate our method from multiple aspects. As a data
augmentation strategy, this work can outperform other coun-
terparts in crowded scenes, no matter hand-craft methods
or automated ones. As an approach of countering crowd-
edness issue, our method can stably improve the state-of-
the-art detector by more than 2% without any bells and

whistles. Moreover, since hand-labeling the crowded data is
resource-consuming, this method provides a way of training
on “sparse data” only and applying to crowded scenes via
data augmentation.

To sum up, the major contributions of this work are two-
fold: (1) We propose a crowdedness-oriented copy-paste
scheme and introduce a consensus learning strategy, which
effectively helps the detector resisting the ICD problem and
bring improvements in crowded scenes. (2) We design a sim-
ple method to utilize the weak depth knowledge produced by
the pasting process, which further optimize the detector.

Related Works
Crowded Object Detection. Detecting objects in crowded
scenes has been a long-standing challenge (Liu et al. 2020a)
and much effort has been spent on this topic. For ex-
ample, (Wang et al. 2018) and (Zhang et al. 2018) pro-
pose specific loss functions to constrain proposals closer to
the corresponding ground-truth and further away from the
nearby objects, thereby enhancing discrimination between
overlapped individuals. CaSe (Xie et al. 2020) uses a new
branch to count pedestrian number in a region of interest
(RoI) and generates similarity embeddings for each pro-
posal. As a response to the CDD problem mentioned above,
a group of works focuses on alleviating the deficiency of
Non-Maximum Suppression (NMS). Adaptive-NMS (Liu,
Huang, and Wang 2019) introduces an adaptation mech-
anism to dynamically adjust the threshold in NMS, lead-
ing to better recall in a crowd. In (Gählert et al. 2020)
and (Huang et al. 2021), NMS leverages the less-occluded
visible boxes to guide the selection of full boxes, whereas
extra labeling (of the visible boxes) is required. Crowd-
Det (Chu et al. 2020) conducts one proposal to make mul-
tiple predictions and uses an artfully designed Set-NMS to
solve heavily-overlapped cases. Some recent works explore
other ways. (Zhang et al. 2021) models the pedestrian detec-
tion task as a variational inference problem. (Zheng et al.
2022) refines the end-to-end detector Sparse R-CNN (Sun
et al. 2021) to adapt to the crowded detection scenario.

Data Augmentation in Object Detection. In the field of
computer vision, data augmentation (Shorten and Khoshgof-
taar 2019) has long been used to optimize the model train-
ing, which originates mainly from the image classification
task (He et al. 2016; Tan and Le 2019). Early approaches
usually include strategies such as color shifting (Szegedy
et al. 2015) and random crop (Krizhevsky, Sutskever, and
Hinton 2012; LeCun et al. 1998; Simonyan and Zisserman
2015; Szegedy et al. 2015). Naturally, the core ideas were
transferred to the detection domain and some operations
(e.g., image flipping and scale jittering) have been widely
adopted as a standard module (Liu et al. 2016; Redmon et al.
2016; Ren et al. 2015). Currently, methods with more con-
crete theoretical basis have emerged. These variants, rang-
ing from hand-crafted Cutout (Devries and Taylor 2017),
Mixup (Zhang et al. 2017) and CutMix (Yun et al. 2019)
to learning based AutoAugment (Cubuk et al. 2018), Fast
AutoAugment (Lim et al. 2019) and RandAugment (Cubuk
et al. 2020), perform considerable effects on image clas-
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sification and suggest huge potential in object detection.
Meanwhile, there are also some works focusing on detection
task. Stitcher (Chen et al. 2020) and YOLOv4 (Bochkovskiy,
Wang, and Liao 2020) introduce mosaic inputs containing
rescaled image patches to enhance robustness. (Zoph et al.
2020) and (Chen et al. 2021) re-design the AutoAugment
scheme to adapt to object detection. In (Tang et al. 2021), re-
searchers propose a method searching the policy of data aug-
mentation and loss function jointly. In (Liu et al. 2020b), a
novel APGAN is proposed to transfer pedestrians from other
datasets in making augmentation.

Copy-Paste Augmentation. Copy-paste augmentation is
first invented in (Dwibedi, Misra, and Hebert 2017). By cut-
ting object patches from the source image and pasting to
the target one, a combinatorial amount of synthetic train-
ing data can be easily acquired and improve the detec-
tion/segmentation performance significantly. This amazing
magic power is then verified by subsequent works (Remez,
Huang, and Brown 2018; Li et al. 2021; Fang et al. 2019;
Dvornik, Mairal, and Schmid 2018; Ghiasi et al. 2021) and
the method has been further polished by context adapta-
tion (Fang et al. 2019; Remez, Huang, and Brown 2018;
Dvornik, Mairal, and Schmid 2018). In (Ghiasi et al. 2021),
the authors claim that simple copy-paste can bring con-
siderable improvement as long as the training is sufficient
enough. Their experiments further suggest the potential of
this augmentation strategy on instance-level image under-
standing. It should be noted that the initial motivation of
copy-paste is to diversify the sample space, especially for
the rare categories (Ghiasi et al. 2021) or alleviating the
complex mask labeling (Remez, Huang, and Brown 2018).
However, in our work, we utilize this operation to precisely
solve the crowdedness issue. Although there has been sim-
ple practice in previous works (Dwibedi, Misra, and Hebert
2017; Ghiasi et al. 2021), the actual effects of this strategy
on dealing with crowdedness scenario has never been sys-
tematically designed and studied.

Resist the IoU-Confidence Disturbances
This part focuses on solving the Iou-Confidence Distur-
bances (ICD). We explore two consecutive ways in achiev-
ing this aim. First, doing copy-paste to make crowded
scenes. Then, introducing consensus learning between over-
laid objects and their non-overlaid counterparts, which relies
on the copy-pasting.

Crowdedness Oriented Copy-Paste
Based on observations of Fig. 2, an intuitive idea is to make
more crowded cases to dominate the training. To this end,
we carefully re-design the copy-paste strategy. First, the con-
ception of “group” is introduced. An image should include
several groups and each group consists of multiple heav-
ily overlapped objects. Following this logic scheme, we first
generate the group centers on an image and then paste ob-
jects around them.

Formally, for every training image to be augmented, we
initialize a set C of “group centers”:

C = {(x1, y1, s1), ..., (x|C|, y|C|, s|C|)},

where each tuple represents the object locating at center of
the corresponding group (xi, yi and si denote the coordi-
nates and normalized object size respectively). We obtain
these group centers by sampling from original objects on
the current image. The group number |C| is randomly cho-
sen from an integral range of [0, N ], where N is a hyper pa-
rameter.

The second step is pasting objects around these group cen-
ters. For each ci ∈ C, we should generate a set Ĝi of objects
in the group i:

Ĝi = {(x̂i1, ŷi1, ŝi1), ..., (x̂i|Ĝi|
, ŷi|Ĝi|

, ŝi|Ĝi|
)},

similarly, object number |Ĝi| in the group comes from range
[0,M ] where M is another hyper parameter. Since the nature
of crowdedness is “overlapping”, every ĝij ∈ Ĝi is enforced
to be overlapped with the group center object ci. We ma-
nipulate the overlapping from three aspects of the x, y and s
conditioning in a probabilistic sense.

First, objects in a group usually have similar sizes. Let
p(ŝij |si, I) be the probability density function of ŝij on con-
ditions of the center object size si in the image I. We choose
p(·) to be a Gaussian as:

p(ŝij |si, I) =
1√
2πσ

exp(−
(ŝij − si)2

2σ2
), (1)

where σ is the standard deviation which a constant value 0.2
is used in this paper. To guarantee overlapping, we adopt
two independent uniform distributions in modeling the co-
ordinate values x̂ij and ŷij :

x̂ij ∼ U(xi −
dw
τ
, xi +

dw
τ
), (2)

ŷij ∼ U(yi −
dh
ϵ
, yi +

dh
ϵ
), (3)

where dw and dh are the maximum distances of ĝij shifting
from group center ci with overlap. Coefficients τ > 1 and
ϵ > 1 are used to adjust the crowdedness degree.

During training, for every image loaded, the set C and Ĝi-
s are generated obeying rules above. Then object segmenta-
tion patches would be sampled, re-scaled and pasted to the
image accordingly.

Consensus Learning
With the toolkit of copy-pasting, we augment detector train-
ing with a dedicated strategy for resisting the ICD issue.
Given the observation shown in Fig. 2 that the instability of
predicted scores derives from crowdedness, an emerging fix
is to align the score of an object in crowded circumstances
(overlaid by other objects) to that when it is not overlaid.
Thanks to the copy-paste method, we can easily generate
this type of object pairs in which two identical objects lie in
different surroundings. Fig. 3 illustrates our idea. Following
the previous data augmentation, we pick out a set Bovl of
objects which are overlaid by others. Then, the same object
patches with those in Bovl are re-pasted to the image without
been overlaid, constructing another set B∗ovl. During train-
ing, we enforce the predicted score distributions of each ob-
ject bi ∈ Bovl in an alignment with its counterpart b∗i ∈ B∗

ovl.

499



𝒑𝒊𝟐

𝒑𝒊𝟑

𝒑𝒊𝟏∗

𝒑𝒊𝟐∗

𝒑𝒊𝟑∗
score distr. score distr.

Consensus 
Learning

𝒑𝒊𝟏

(𝜇! , 𝜎! ) (𝜇!∗, 𝜎!∗)Eq.(6)

Figure 3: Consensus Learning. Learn to reach consensus be-
tween the overlaid object (the man in red on the left) and its
identical but non-overlaid counterpart (right).

We term this process as consensus learning by drawing an
analogy of “reaching consensus” within each pair. Specifi-
cally, let Pi be the set of proposals matched to bi and P∗

i
be the set of proposals matched to b∗i . We first compute the
mean µ and standard deviation σ of scores for each object:

µi =
1

m

∑
pij∈Pi

c(pij), σi =

√√√√ 1

m

∑
pij∈Pi

(c(pij)− µi)2, (4)

µ∗
i =

1

m∗

∑
p∗ij∈P∗

i

c(p∗ij), σ∗
i =

√√√√ 1

m∗

∑
p∗ij∈P∗

ij

(c(p∗i )− µ∗
i )

2,

(5)
wherem andm∗ are the sizes of Pi and P∗

i respectively and
c(·) denotes the predicted confidence score of a proposal.
Then we pursue a pair of {µi, σi} approaching {µ∗

i , σ
∗
i }

through the mean squared error (MSE) loss:

Lcl =
1

|Bovl|
∑

bi∈Bovl

(µi − µ∗
i )

2 + (σi − σ∗
i )

2. (6)

It is worth to point that only the overlaid half {µi, σi} con-
tributes to the gradient back-propagation while the non-
overlaid half (marked by ∗) is treated as target.

Analyze the IoU-Confidence Disturbances
Now we analyze the effectiveness of our method on miti-
gating the aforementioned ICD issue. To revisit the origi-
nal motivation raised from the right of Fig. 2, we plot the
standard deviation (STD) of scores in Fig. 4. First, it is
clearly demonstrated that score STDs of the model trained
with our Crowdedness-oriented Copy-Paste (CCP) are obvi-
ously lower than those of the baseline model (BL) and the
gap becomes larger by improving the crowdedness degree
(from Fig. 4-(a) to (d)). Second, although the curves of CCP
and CCP+CL seems with no clear distinction, after comput-
ing their average STDs (the four histograms in Fig. 4), we
find the value of the latter is actually lower than that of the
former. Moreover, we plot another model augmented with
random copy-paste (RCP) without specially taking crowd-
edness into consideration. It is obvious that the decline of
score STDs is with a much smaller margin. These observa-
tions convince that our method can significantly improve the
detector’s robustness in crowded scenes and therefore alle-
viate the ICD problem.
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IoU between dets and gts

Figure 4: Effects of our method on the ICD issue, lower is
better. We plot only the standard deviation of confidence
scores w.r.t the IoU value on CrowdHuman. The crowded-
ness (occlusion ratio) gradually increases from (a) to (d).

Alleviate the Confused De-Duplications
Our augmentation strategy has a natural by-product: for
these overlapped objects pasted, the relative “order of depth”
is known a priori. In other words, we are aware of which
one is in the front and which one is in the back. Now let
us return to the semantical ambiguity described in our in-
troduction. Basically, ambiguities in 2D space are caused by
the absence of one dimension in the real (3D) world. From
this point of view, the depth order can be viewed as some
weak knowledge of the additional third dimension, which
shed light on mitigating the vagueness. As a feasible prac-
tice, in this work, we utilize the depth order information to
resolve the confused de-duplication (CDD) problem.

First, we introduce a variable named “overlay depth”
(OD) that depicts the extent of how an object is visually
overlaid by others. Fig. 5 demonstrates the process of cal-
culating OD. We start by assuming that the overlay depth of
an object equals to 1.0 if there are no other objects covering
it. Let ovl(b1, b2) be the region of object b1 overlaid by ob-
ject b2 and S(·) denote the size of a region. For any object
bi in the image, there exists a set Oi of objects overlying bi:

Oi = {bj ∈ B|bj ̸= bi, S(ovl(bi, bj)) > 0}, (7)

where B is the set of all objects in current image. Then, the
OD value of bi can be clearly defined:

odi = 1.0 +
1

S(bi)

∑
bj∈Oi

S(ovl(bi, bj)). (8)

Therefore, the severer an object is occluded by others (ob-
jects of the same category), the higher OD value it would be
assigned (such as objects b1 and b2 in Fig. 5). Starting from
this property, application of the overlay depth is based on a
plausible observation: two heavily overlapped objects usu-
ally lie in different depth, or more specifically, hold distinct
OD values. So by taking extra knowledge from the axis of
depth, the OD value can be adopted during de-duplication in
a confused 2D plane.
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Figure 5: Definition of overlay depth (OD). Calculation pro-
cess of the OD value as defined in Eq.(8). Boxes of b1, b2
and b3 are three overlapped objects (skaters), in which b2 is
overlaid by b3 only while b1 is overlaid by both b2 and b3.

Now we enable the detector to predict the OD values.
Generally, a detection model takes a branch to regress the
coordinates of the bounding-box. Following this design, we
add an extra predictor to the branch in taking responsibility
for the OD regression. This modification incurs neglectable
computing burden and can be easily implemented in both
one-stage and two-stage structures (refer to the Appendix
for details). During training, a common L2 loss is adopted.
It should be emphasized that only the OD of pasted objects
can be acquired due to the semi-supervised knowledge of the
overlay depth. So we activate the OD regression loss only
when the ground-truth is available. Formally, the whole loss
can be written as below:

Ldet =

{
α · Lcls reg + γ · Lcl + η · Lod if od available
α · Lcls reg + γ · Lcl elsewise,

(9)
where Lcls reg is the conventional detection loss, Lcl is the
consensus learning loss and Lod is OD regression loss re-
spectively. We use α = γ = 1 and η = 0.1 in this paper.

Algorithm 1: Overlay Depth-aware NMS

Input: B = {b1, ..., bN}: All boxes; S = {s1, ..., sN}:
Scores; thiou: IoU threshold.
D ← ∅
while B ̸= ∅ do
m← argmax{S}
M← bm; D ← D

⋃
M;B ← B −M

for bi in B do
thod = δ · eψ·IoU(M,bi)

if IoU(M, bi) ⩾ thiou and |odi − odm| ⩽ thod
then
B ← B − bi;S ← S − si

end if
end for

end while

During inference, we invent a novel de-duplication strat-
egy named Overlay Depth-aware NMS (OD-NMS). In the
original NMS pipeline, boxes are recursively compared with
each other and one of them would be suppressed in each step

if the IoU exceeds a threshold thiou. Following this scheme,
objects might be de-duplicated by mistake in a crowded sce-
nario. In our OD-NMS, for difficult scenario where IoU is
higher than thiou, we integrate the predicted OD value into
a more comprehensive decision. If the two objects are in dif-
ferent depth, i.e., the absolute difference of the two OD val-
ues is higher than a predefined threshold thod, we can cancel
the suppression in the current step. Empirically, ambiguous
cases often raise in the range of large IoU: when two boxes
are more heavily overlapped, we need stricter OD threshold
to judge if they are distinct objects. So we design a dynamic
threshold of OD with respect to the IoU value:

thod = δ · eψ·IoU , (10)

where δ and ψ are constant coefficients.
Algorithm 1 summarizes the whole process. In this way,

objects in a crowded scenario can be effectively recalled in-
stead of being inappropriately de-duplicated. This strategy
can be viewed as an evolvement of the original NMS with
comparable time complexity.

Experiment
Datasets. Pedestrian detection is the most typical task bur-
dened by the crowdedness problem, so our experiments
are conducted mainly on two datasets: CrowdHuman (Shao
et al. 2018) and CityPersons (Zhang, Benenson, and Schiele
2017). Annotations in these datasets consist of a full box and
a visible box for each person, in which we only adopt the
full ones to make the data crowded enough. Since both the
training and validation data hold the same level of crowded-
ness, we prepare another “sparse training set” by re-labeling
full body box of persons in COCO (Lin et al. 2014) to fur-
ther evaluate the potential of our method. We name this train
set as COCO-fullperson (we will release this dataset). More-
over, we use the category of “car” in KITTI (Geiger, Lenz,
and Urtasun 2012) to further estimate the generality.

Augmentation Details. For pasting instance generation, we
choose the open source Mask R-CNN (He et al. 2017) model
adopting ResNet-50 (He et al. 2016) as backbone. We run
this model on the train set and select 1000 instances with
only three rough criteria: high confidence, relatively large
size and not been occluded. A group of fixed hyper param-
eters are used in our experiments, where sample numbers
N = 3 and M = 5, shifting coefficients τ = 4, ϵ = 2 and
OD-NMS coefficient δ = 0.001, ψ = 10. Copy-paste aug-
mentation strategies are processed online within each train-
ing step, along with the generation of the semi-supervised
OD ground-truths according to Eq.(8). We start consensus
learning at the 10-th epoch during training.

Experimental Settings. We conduct experiments on both
two-stage and one-stage detection frameworks. For two-
stage structure, we use the standard Faster R-CNN (Ren
et al. 2015) with FPN (Lin et al. 2017a). For one-stage struc-
ture, we choose RetinaNet (Lin et al. 2017b) as a represen-
tative. All those detectors use ResNet-50 as backbone. We
train the networks on 8 Nvidia V100 GPUs with 2 images on
each GPU. We also apply our method to the state-of-the-art
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MR−2 AP@0.5 JI
Aug Method on Faster R-CNN

Baseline 50.42 84.95 -
Baseline+ 42.46 87.07 79.77
Mosaic 43.71 85.21 78.35
RandAug 42.17 87.48 80.40
SAutoAug 42.13 87.64 80.39
SimCP 41.88 87.36 79.53
CrowdAug (Ours) 40.21 88.61 81.41

Aug Method on RetinaNet
Baseline 63.33 80.83 -
Baseline+ 50.65 83.80 76.40
Mosaic 52.53 82.95 75.60
RandAug 50.25 83.94 76.58
SAutoAug 50.21 84.02 76.80
SimCP 50.01 84.12 77.02
CrowdAug (Ours) 47.35 85.29 77.79

on SOTA pedestrian detectors
CrowdDet 41.35 90.06 82.07
ProgS-RCNN 41.45 92.15 83.13
CrowdDet + AutoPed 40.58 - -
CrowdDet + Ours 38.98 91.50 83.89
ProgS-RCNN + Ours 40.12 92.31 83.35

Table 1: Results on CrowdHuman val set. The Baseline+
denotes newly trained strong baselines. Results are in per-
centage (%).

pedestrian detectors CrowdDet (Chu et al. 2020) and ProgS-
RCNN (Zheng et al. 2022). Other training details will be
reported in the following subsections.

Results on CrowdHuman
Three metrics are used to evaluate results on CrowdHu-
man: the log-average miss rate on False Positive Per Im-
age (FPPI) in the range of [10−2, 100] (shortened as MR−2,
lower is better), the Average Precision (AP@0.5, higher is
better) and the Jaccard Index (JI, higher is better), among
which the MR−2 is the main indicator. To make our experi-
ments convincing enough, we use very strong baselines (the
Baseline+s in Table 1), which are 8%-12% superior than
those in the CrowdHuman paper (Shao et al. 2018). During
training, the short side of each image is resized to 800 and
the long side is limited within 1400. Models are trained for
60k iterations starting from an initial learning rate of 0.02
(Faster R-CNN) or 0.01 (RetinaNet) and is reduced by 0.1
on 30k and 40k iters respectively. Table 1 compares results
of our method (CrowdAug) with other approaches. First, the
widely used Mosaic augmentation (Bochkovskiy, Wang, and
Liao 2020) leads to a decline. This phenomenon is mainly at-
tributed to the fact that in CrowdHuman, many boxes extend
across image boundary. After the mosaic operation, these
near-boundary boxes are truncated at the joints of image
patches, losing original characteristics. We also make tri-
als of two automated strategies: the Random-Augmentation
(RandAug) (Cubuk et al. 2020) and the Scale-Aware Auto-
Augmentation (SAutoAug) (Chen et al. 2021). It needs to
be noted that in these works, the search space does not in-
clude policies in dealing with crowded scene, which we
hypothesize is the main reason of their marginal effects.

MR−2 AP@0.5 JI
Faster R-CNN 53.51 85.30 77.21
Faster R-CNN + Ours 50.12 86.40 78.50
RetinaNet 59.45 80.86 74.22
RetinaNet + Ours 56.80 81.42 75.30

Table 2: Results of model trained on COCO-fullperson and
evaluated on CrowdHuman val set. We list results on Faster
R-CNN and RetinaNet respectively.

CCP CL OD MR−2 AP@0.5
42.46 87.07

(RCP) 42.01 87.10√
41.11 87.75√ √
40.80 88.02√ √ √
40.21 88.61

Table 3: Ablation results on CrowdHuman val set. Experi-
ments are conducted on Faster R-CNN.

The Simple Copy-Paste (Ghiasi et al. 2021) (SimCP in Ta-
ble 1)improves the detector by nearly 0.6%. Instead, our
CrowdAug can consistently improve the detection results by
2.2% and 3.3% for Faster R-CNN and RetinaNet respec-
tively from the strong baselines. Moreover, the proposed
method has exceptional performance on the state-of-the-art
(SOTA) pedestrian detectors CrowdDet (Chu et al. 2020)
and ProgS-RCNN (Zheng et al. 2022). As shown in the last
two lines of Table 1. On CrowdDet, our method can achieve
an improvement of 2.37% and reach a new SOTA of 38.98%
in MR−2. On ProgS-RCNN (only the CCP is applied since
the CL and OD-NMS is not needed for end-to-end detector),
our method can bring an enhancement of 1.33%. The pro-
posed CrowdAug can also outperform the previously SOTA
augmentation strategy AutoPedestrian (Tang et al. 2021) by
1.6% in MR−2. These experiments confirm that the Crow-
dAug can effectively optimize the crowded detection even
on a supremely high base.

We also train the detector on the “sparse” dataset COCO-
fullperson and report results on the “crowded” CrowdHu-
man val set in Table 2. Since training samples are generally
not crowded, the CrowdAug can bring significant improve-
ment (more than 3% in MR−2). These results suggest that
our method can largely help the detector to handle crowded
scenes when there is limited or even no crowded data avail-
able for training.

Ablation Study
Crowdedness-oriented Design. The third line of Table 3
shows the contribution of our augmentation strategy (CCP).
The CCP can improve the detection result by nearly 1.3%.
For comparison, we try the random copy-paste (RCP) men-
tioned before. In this strategy, average number and size dis-
tribution of pasting objects are kept the same with those in
our CCP while the positions to paste are randomly allocated
rather than specially making crowded scenes. The 2nd line
of Table 3 shows that the RCP improves the baseline by
0.45%, which is inferior to our CCP.
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Figure 6: Visualization of the OD prediction. The value of
predicted overlay depth (OD) is marked at the top left cor-
ner of each box. The red boxes denote the persons who are
wrongly deleted by the original NMS are recalled.

Pasting Object Numbers MR−2 AP@0.5 JI
1000 (default) 40.21 88.61 81.41
3000 40.25 88.53 81.39
500 40.23 88.57 81.40
1000 sel 40.20 88.60 81.32
1000 sel+mask gt 40.21 88.62 81.42

Table 4: Robustness to Pasting Objects. The “sel” denotes
manually selected high-quality objects and the “mask gt”
means using segmentation annotations instead of those pre-
dicted by the Mask R-CNN model.

Consensus Learning. As shown in the 4-th line of Table 3,
the proposed consensus learning (CL) strategy can further
enhance the the Faster R-CNN by 0.3% from CCP base-
line. This improvement becomes much larger (0.88%, not
shown) when applying to RetinaNet. With qualitative anal-
ysis in the method part, we can make a conclusion that this
module makes a step further in alleviating the ICD problem.

Overlay Depth. Comparing the last two lines of Table 3
can find out contribution of the overlay depth (OD). As a
breakthrough of the 2D constraint, this weak depth knowl-
edge brings a stable enhancement.We make visualizations of
the OD prediction in Fig. 6. It can be seen that although the
training process is semi-supervised, overlay depths learned
by the detector are quite discriminative and can recall miss-
ing pedestrians (red dotted boxes in Fig. 6) of the baseline
model. In the structure design, the simplicity of our OD pre-
dictor guarantees the ease of use during application.

Robustness to Pasting Objects. Our method is robust to the
quantity and quality of pasting objects. Results in Table 4
show that variations of either quantity or quality of pasting
objects will not essentially effect the final performance,

Method
MR−2

AP@0.5Reasonable Partial Bare Heavy
FRCNN 11.20 11.55 6.62 52.05 82.95
Mosaic 11.05 11.42 6.77 51.62 83.01
RandAug 10.84 11.20 6.31 51.27 82.97
APGAN 11.9 11.9 6.8 49.6 -
AutoPed 10.3 - - 49.4 -
Ours 10.02 10.48 5.79 48.50 83.78
RetinaNet 13.60 14.32 7.22 55.61 79.31
Mosaic 13.20 14.58 7.50 54.90 79.31
RandAug 13.23 13.96 7.02 54.61 79.77
Ours 12.38 13.07 6.49 52.96 80.86

Table 5: Results on CityPersons val set. We list the MR−2

on four crowdedness levels: reasonable, partial, bare and
heavy. The metric of AP@0.5 is also reported.

Easy Moderate Hard
on Faster R-CNN

Baseline 97.24 89.77 79.44
CrowdAug 98.30 91.07 81.69

Table 6: Results on KITTI val set. We use the category of
“cars” in KITTI (Geiger, Lenz, and Urtasun 2012) dataset.
AP@0.7 (%) of easy, moderate and hard objects are listed.

Results on CityPersons
On CityPersons, images are trained and evaluated with input
scale of×1.3. During training, we use an initial learning rate
of 0.02 (Faster R-CNN) or 0.01 (RetinaNet) for the first 5k
iterations and reduce it by 0.1 continuously on the next two
groups of 2k iterations. Table 5 compares our CrowdAug
with other methods. The results show that the CrowdAug
can stably optimize the detector and once the crowdedness
becomes heavier, the improvement becomes larger.

Results on KITTI
To estimate the generalization of our method to other
crowded objects, we make experiments on the category of
“cars” in KITTI (Geiger, Lenz, and Urtasun 2012). Table 6
shows the results. After applying the CrowdAug, Average
Precision of cars get improvement if 1.05%, 1.20% and
2.25% for the objects of easy, moderate and hard respec-
tively for the Faster R-CNN structure, which demonstrate
the similar trend of its performance on pedestrian detection.

Conclusion
In this paper, we point out two main effects of crowded-
ness issue in the visual object detection task and propose
a solution from the perspective of data augmentation. First,
we invent a novel copy-paste strategy to improve crowded-
ness and design a consensus learning method. Then, we rea-
sonably use the weak information of depth produced by the
pasting process. Both contributions can help alleviating the
ambiguities of crowded 2D object detection. We think this
is a new pathway of solving the crowdedness issue with the
advantages of significant effect and resource conservation.
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