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Abstract

Point cloud compression with a higher compression ratio and
tiny loss is essential for efficient data transportation. How-
ever, previous methods that depend on 3D convolution or fre-
quent multi-head self-attention operations bring huge compu-
tations. To address this problem, we propose an octree-based
Transformer compression method called OctFormer, which
does not rely on the occupancy information of sibling nodes.
Our method uses non-overlapped context windows to con-
struct octree node sequences and share the result of a multi-
head self-attention operation among a sequence of nodes.
Besides, we introduce a locally-enhance module for exploit-
ing the sibling features and a positional encoding generator
for enhancing the translation invariance of the octree node
sequence. Compared to the previous state-of-the-art works,
our method obtains up to 17% Bpp savings compared to the
voxel-context-based baseline and saves an overall 99% cod-
ing time compared to the attention-based baseline.

Introduction
In the past few decades, the LiDAR sensor has proven to be
crucial for various types of intelligent robot applications (Li
and Ibanez-Guzman 2020; Zou et al. 2022). It can accu-
rately capture the 3D geometry information of scenes, which
makes it widely used in the detection, segmentation, plan-
ning, and other downstream perception tasks. However, stor-
ing and transmitting point cloud data require high costs. For
example, a single Velodyne LiDAR of HDL64 generates
over 100,000 points per sweep, and about 2.88 million points
are generated per second. Hence, it is necessary to develop
an efficient point cloud compression method.

Due to the disorder and sparsity of the point cloud, com-
pressing the point cloud into a tiny capacity is a tough chal-
lenge compared to its well-studied image and video counter-
parts. Fortunately, several schemes for point cloud geometry
and attribute compression (Google 2017; Chou, Koroteev,
and Krivokuća 2019; Guarda, Rodrigues, and Pereira 2020)
have been explored in prior research works. (Limuti, Polo,
and Milani 2018) presents a voxelized dynamic point cloud
coding scheme that combines a cellular automata block re-
versible transform for geometric data with a region adap-

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tive transform for color data. (Quach, Valenzise, and Du-
faux 2019) designs a model for learning analysis and synthe-
sis transforms suitable for voxel-based point cloud geometry
compression. Further, (Nguyen et al. 2021) proposes a deep
auto-regressive generative method to estimate the occupancy
probability of each voxel. In general, these methods do not
fully use spatial context information and also require a huge
amount of computing power.

Compared with point cloud coding using voxel grids, oc-
tree has more advantages benefiting from its higher coding
efficiency (Huang et al. 2006; Liu et al. 2019). An octree
node uses an 8-bit occupancy to represent the distribution
of children nodes. By combining the deep entropy model
along with an arithmetic encoder, the octree encoded point
cloud is further compressed into a compact bitstream. Actu-
ally, in octree encoding process, the main problem faced is
how to efficiently extract strong prior information between
spatial neighboring nodes, especially for the relationship be-
tween sibling nodes. Sibling nodes can provide low-level lo-
cal geometry features, which are significant for exploiting
geometry redundancy. Unlike ancestor nodes’ relationships,
it is difficult to obtain the neighbor geometric relationship
of sibling nodes by traversing the octree directly. Therefore,
a highly parallel sophisticated method for point cloud com-
pression is needed, and spatial context information is fully
considered.

In this paper, we propose a Transformer-based entropy
model called OctFormer, which can compress the point
cloud efficiently. OctFormer uses non-overlapped context
windows to construct sequences and shares the results of the
expensive multi-head self-attention (MSA) operation for a
sequence of nodes, which significantly reduces time over-
head. Subsequently, we propose an octree-based locally-
enhanced feed-forward network (OctLeFF) and octree-
based positional encoding generator (OctPEG) to help the
model fit the octree node sequence data better. We use
OctPEG instead of traditional absolute positional encod-
ing (APE) to avoid unnecessary positional features, which
enhances the translation-invariance of the octree node se-
quence. Our method only needs prior knowledge informa-
tion of the traversal format from sibling and ancestor nodes,
not additional coarse neighborhood information which is not
readily available, such as the occupancy information of sib-
ling nodes or local voxel context.
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We compare the proposed model with state-of-the-art
methods (Graziosi et al. 2020; Que, Lu, and Xu 2021; Huang
et al. 2020; Fu et al. 2022) on 3D point cloud datasets Se-
manticKITTI (Behley et al. 2019) and ScanNet (Dai et al.
2017). The experiments show that our method outperforms
these methods, which are only designed for a specific cate-
gory of point clouds. The contributions of our work can be
summarized as:
• We propose a novel octree-based entropy model called

OctFormer for point cloud geometry compression, which
uses non-overlapped context windows to construct se-
quences.

• Our OctFormer shares the MSA results between a se-
quence of traversal node information and does not need
to use the occupancies of sibling nodes, which can be ap-
plied to efficient point cloud encoding and decoding.

• We propose a local-enhancing module replacing the orig-
inal feed-forward network in Transformer. This simple
design exploits the local features and improves the com-
pression performance.

• To avoid unnecessary positional features caused by tra-
ditional APE, we introduce the OctPEG module which
enhances the translation-invariance of the octree nodes
when generating the sequence data.

Related Work
Structured Point Cloud Compression
Structured data formats intuitively present the point cloud
data and fit for convolution operations naturally. There are
mainly voxel-based (Limuti, Polo, and Milani 2018; Quach,
Valenzise, and Dufaux 2019; Kaya, Schwarz, and Tabus
2021) and image-based methods (Houshiar and Nüchter
2015; Sun et al. 2019; Feng, Liu, and Zhu 2020). The video
point cloud compression standard (VPCC) (Schwarz et al.
2018) converts the 3D input point cloud into a set of 2D
patches followed by a packing process. Such a way allows
compressing the patches utilizing the existing video coding
standards. (Houshiar and Nüchter 2015) proposes mapping
the floating point measured ranges onto a three-channel im-
age and then compressing it. The performance of image-
based methods is limited due to the loss of spatial informa-
tion inherent. (Wang et al. 2021) voxelizes point clouds into
non-overlapped 3D cubes, and designs a 3D-convolution-
based variational autoencoder to compress the point clouds.
However, the voxel-based method is sensitive to the density
variation and fails for the sparse point clouds. High compu-
tational costs are also prohibitive.

Unstructured Point Cloud Encoding
Octree-based methods have higher coding efficiency
through hierarchical representation. The MPEG point cloud
geometry compression standard (GPCC) (Graziosi et al.
2020) compresses the point cloud geometry information by
exploiting an octree-based encoding strategy. It predicts at-
tributes and encodes or transmits them in a scalable man-
ner. (Dricot, Pereira, and Ascenso 2018) optimizes the oc-
tree partitioning decisions based on a rate-distortion opti-
mization process to adapt the content. (Wen et al. 2020)
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Figure 1: Comparison between different methods of extract-
ing node features, where the occupancy is represented by
decimal digits in the node. For a sequence of octree nodes,
our method can share the MSA results.

adopts an adaptive patch generation module through adap-
tive octree-based decomposition and clustering processing
to avoid the reconstruction error prorogation. (Garcia et al.
2020) develops a super-resolution technique to generate pos-
sible contexts based on octrees that can be arithmetically
encoded. OctSqueeze (Huang et al. 2020) is the first octree-
based deep learning entropy model by gathering context in-
formation about conditions on ancestor nodes. However, the
prior octree-based methods seldom focus on the neighbor-
hood contexts from the sibling nodes, which can not fully
extract the local spatial information of the nodes.

Recently, VoxelContext-Net (Que, Lu, and Xu 2021) pro-
poses introducing voxel context in the tree-structured deep
model for a more precise prediction of the node’s occupancy
distribution. It employs 3D convolution on the generated lo-
cal voxel context to encode the neighboring spatial informa-
tion for each node in the constructed octree. However, this
method has a limited receptive field of neighborhood infor-
mation in fixed-size voxels and causes a lot of computations
due to introducing voxel encoding, especially for higher res-
olution. Furthermore, OctAttention (Fu et al. 2022) designs
a conditional entropy model with a large receptive field that
models the sibling and ancestor contexts to exploit the strong
dependencies among the neighboring nodes. Additionally,
OctAttention uses the mask operation to encode multiple
nodes in parallel. Although OctAttention obtains excellent
compression performance, the resulting high time overhead
is unacceptable. OctAttention directly uses the occupancy
as features from the sibling nodes, so decoding the current
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Figure 2: The overview of our proposed method. The input point cloud is first constructed as an octree. Each non-leaf node
contains the feature of its xyz coordinate, depth, parent occupancy, and index. Non-overlapped context windows are constructed
for generating input sequences. For example, we set the context window size N = 4 and take one sequence (orange) as input.
The input features (N ∗6) are firstly embedded into 256 dimension vectors (N ∗256). After adding the positional encoding using
OctPEG, the features (N ∗ 256) are fed into Transformer blocks with our OctLeFF for feature extraction. Finally, a multi-layer
perceptron (MLP) is employed to generate the occupancy distribution (N ∗ 256) for N nodes in the context window.

octree node requires previous sibling nodes to be decoded.
Frequent MSA operation for every prediction for one node
brings expensive time costs.

As shown in Fig.1, we visualize the differences in feature
extraction between different methods. Overall, our proposed
OctFormer has the following advantages:

1. Compared with VoxelContext-Net, our proposed method
considers higher resolution features (i.e., from sibling
nodes) and does not need to introduce computationally
expensive 3D convolution on generated voxel grids.

2. Compared with OctAttention, our method does not intro-
duce sibling occupancy as a feature. Our method elimi-
nates the decoding dependencies between the nodes and
shares the result of a MSA operation within the con-
text window, which achieves several times to hundreds
of times the time performance improvement.

3. We design OctLeFF and OctPEG modules to further im-
prove the compression performance, which is also veri-
fied in both offline open source datasets and the practical
downstream task (i.e., segmentation).

The Proposed Method
As shown in Fig.2, we propose an octree-based Transformer
with the local enhancement for point cloud compression
called OctFormer. We organize point cloud data with octrees
and then design a Transformer-based deep entropy model
along with an arithmetic encoder to compress the octree
node sequences. The octree node sequences are constructed
by non-overlapped context windows. By not introducing sib-
ling occupancy as features, our OctFormer eliminates the de-
coding dependencies between the nodes and shares the re-
sult of a multi-head self-attention operation (MSA) within
the context window, which hugely reduces the computa-
tions. Considering that the sibling nodes tend to have similar

occupancies, we introduce an octree locally-enhanced feed-
forward network to better capture the local features. Besides,
we propose octree-based positional encoding instead of ab-
solute positional encoding to keep the translation invariance
of the input sequence. Finally, we predict the distribution of
the node’s occupancy based on our proposed OctFormer.

Octree Building
The octree is an efficient representation structure, especially
for the sparse point cloud where most of the space is empty.
We construct an octree from an input point cloud by recur-
sively partitioning the space into 8 cubes of the same size
until the max depth is reached or the cube is empty. The oc-
tree node uses an 8-bit occupancy to indicate whether the
child node is empty or not. We represent the octree by us-
ing these non-leaf nodes’ occupancies. For example, for the
octree built in Fig.2, there are 15 non-leaf octree nodes in
total and each non-leaf node requires 8 bits to store the occu-
pancy. Thus, it requires 120 bits to store the octree if there is
no entropy model to compress further. Using a breadth-first
traversal, we serialize the octree into a bitstream and recon-
struct the octree structure from the bitstream losslessly. By
taking each leaf node’s center as a point, we reconstruct the
point cloud from the octree. Octree construction introduces
quantization error, which is a lossy stage for the octree-based
methods. As shown in Fig.3, we visualize octree occupan-
cies with different depths. A deeper octree obtains more fine-
grained leaf nodes and discovers precise geometric informa-
tion. This means that the quality of the reconstructed point
cloud depends on the max depth of the octree.

Our Deep Entropy Model
Suppose a sequence of occupancies for octree nodes are rep-
resented as o = [o1, o2, ..., oi, ..., on], where oi represents
the occupancy of the i-th octree node Oi. oi can be rep-
resented using an 8-bit code, which indicates whether a
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Figure 3: The visualization of octree occupancies at depths of 8, 9, 10, and 11. The color of each point is set to the value of the
node’s occupancy and similar color denotes similar occupancy. Points in the octree leaf nodes decrease with increased depth.

Figure 4: An illustration of the octree node sequences gener-
ating process. The nodes of a sequence come from different
parts of the space, which is not friendly to the APE mecha-
nism.

child node is empty or not. For example, suppose oi =
[1, 0, 0, 0, 0, 1, 0, 0], that means child node of Oi at index 0
and 5 is not empty, while the others are all empty.

Suppose the actual distribution of the sequence o is P (o),
and the predicted distribution is Q(o). According to the in-
formation theory (Shannon 1948), the closer the estimated
distribution Q(o) is to the actual distribution P (o), the fewer
bits are needed to encode the sequence o. Thus the goal
of the entropy model is to minimize the cross-entropy loss
Eo∼P [−log2Q(o)] between the P (o) and Q(o). We factor-
ize Q(o) into a product of predicted probability distributions
of every octant occupancy oi as follows:

Q(o) =
∏
i

qi(oi|fi−j , ..., fi, ...fi+k;w) (1)

where qi(oi|fi−j , ..., fi, ...fi+k;w) is the estimated proba-
bility distribution of octree node occupancy oi. w is the
weight of the entropy model. fi denotes the feature of the
octree node Oi, which contains the xyz coordinates, in-
dex (0-7), depth (1-12), and parent occupancy (1-255). As-
suming the distribution of the occupancy oi only depends
on the local context window of octree node Oi, we con-
struct non-overlapped context window with size of N to
form sequence, and use all the features from the sequence
(fi−j , ..., fi, ...fi+k) to predict the distribution qi, where
j + k − 1 = N .

Octree-based Transformer Block
The structure of OctFormer is illustrated in Fig.2. We first
employ an embedding layer to increase the feature dimen-
sion from 6 to 256. Then we introduce the octree positional
encoding generator (OctPEG) to generate positional encod-
ing for the input sequence. We use several Transformer
blocks to extract features for every node, where an octree
locally-enhanced feed-forward network (OctLeFF) is used
to help capture the local features. Finally, a MLP is em-
ployed to generate the occupancy distribution of every node.
The OctFormer block can be formally defined as:

X0 = OctPEG(Emb) + Emb,

X
′

l = MSA(LN(Xl−1)) +Xl−1,

Xl = OctLeFF (LN(X
′

l )) +X
′

l

(2)

where Emb is the output of the Embedding layer. X0 de-
notes the input before the first transformer block. Xl and X

′

l
are the outputs of the MSA module and OctLeFF module of
the l-th transformer block, respectively. LN represents the
layer normalization (Ba, Kiros, and Hinton 2016).

Computation Complexity Analysis Our OctFormer
eliminates the decoding dependencies between the nodes
and shares the results of the MSA operation within our
constructed non-overlapped window, which hugely re-
duces the computation cost. Our encoding and decoding
processes are identical. Suppose there are n nodes to be
encoding/decoding, the context window size is N and the
feature dimension is d. The computation complexity is
O(N2 ∗ d ∗ n

N ) for us. OctAttention (Fu et al. 2022) can
achieve O(N2 ∗ d ∗ n

N ) for encoding as well by applying
their proposed masked operation and shrinking the average
receptive field to (N + 1)/2. However, because of taking
the sibling occupancy as a feature, OctAttention is N
times slower when decoding, which brings O(N2 ∗ d ∗ n)
complexity. We can achieve N times less computation when
decoding compared with OctAttention, which is a huge
improvement because the context window size N is usually
set to a big number such as 512 or 1024.

Octree Locally-enhanced Feed-Foward Network It has
been proved that the vanilla Transformer can extract global
features effectively but have limitations in capturing the lo-
cal features (Li et al. 2021; Wu et al. 2021). As shown in
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Figure 5: The quantitative results of different methods on ScanNet and SemanticKITTI, which is presented in the form of
rate-distortion curves. It should be noted that we use the results of VoxelContext-Net not containing the coordinate refinement
module, which is an algorithm to improve the PSNR value after point cloud reconstruction. Besides, for a fair comparison, we
only compare with OctAttention on SemanticKITTI dataset, in which data in their paper is used.

Ground Truth (ScanNet) Ours: PSNR:64.99 Bpp:5.54 GPCC: PSNR:64.86 Bpp:6.83 Ours: PSNR: 58.96 Bpp: 2.58 GPCC: PSNR:58.18 Bpp:2.69 

Ground Truth (SemanticKITTI) Ours: PSNR:83.06 Bpp:3.32 GPCC: PSNR:82.83 Bpp:5.17 Ours: PSNR:76.98 Bpp:1.67 GPCC: PSNR:75.82 Bpp:1.97 

0.00040.00020 0.0001 0.0003

Error Colormap

Figure 6: The visualization of compression results of our method and GPCC on ScanNet (top) and SemanticKITTI (bottom)
under different Bpps.

Fig.3, we visualize octree occupancies at different depths.
We can observe that octree nodes tend to have similar oc-
cupancy among the siblings. Therefore, we propose using a
1D convolution layer to replace the feed-forward network in
the vanilla Transformer to better capture the local features
of the octree node. The structure of OctLeFF module is il-
lustrated in Fig.2. We first use a linear projection layer to
project the feature to another dimension and then apply a
1D convolution operation on the feature. Finally, we use an-
other linear projection layer to project the feature back. Dif-
ferent from the original element-wise feed-forward network,
the 1D convolution aggregates the features from the siblings,
which enables our OctLeFF to capture the local features of
the sibling nodes.

Octree Positional Encoding Generator The sequence
generated by an octree should have translation-invariance.
As shown in Fig.4, when generating the sequence data, the
empty node is jumped over and the consequent N nodes are
organized as a sequence. That means the sequence should
have an order in space but the nodes at the same position of
different sequences have totally different relative geometric

locations in space. However, the absolute positional encod-
ing (APE) scheme (Vaswani et al. 2017; Dosovitskiy et al.
2021) performs badly on the tasks which require translation-
invariance because it adds unique positional encodings to
each token. Inspired by (Chu et al. 2021), we propose using
OctPEG to generate the positional encoding according to the
local features. As shown in Fig.2, the key to our OctPEG is
adopting a depth-wise convolution operation to extract the
local feature before the transformer block. The OctPEG is
applied in input embedding features E ∈ RN×256 to pro-
duce the position encodings E′ ∈ RN×256. Compared with
APE, the designed convolution introduces learnable parame-
ters to enhance the translation-invariance for the node’s em-
bedding features and makes the position encodings the same
size as the embedding features.

Learning

We optimize our deep entropy model using the cross entropy
between the real and predicted occupancy of the non-leaf
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node. The loss function ℓ is defined as follows:

ℓ = −
∑
i

log qi(oi|fi−j , ..., fi, ...fi+k;w) (3)

where qi(oi|fi−j , ..., fi, ...fi+k;w) is the estimated occu-
pancy distribution of octree node occupancy oi as defined
in Eq.(1).

Experiments
Datasets
SemanticKITTI SemanticKITTI (Behley et al. 2019) is a
large-scale point cloud dataset under different densities. It
provides 22 sequences, 43,504 scans in total, with each scan
containing over 120,000 points. We use the official train/test
split, which is using sequences 00 to 10 for training and 11
to 21 for testing. Overall, we use 23,201 scans for training
and 20,351 scans for testing.

Scannet ScanNet (Dai et al. 2017) is a popular indoor
3D point cloud dataset containing more than 1,500 scans.
Train/test splits are the same as ScanNet’s benchmark tasks,
that is, we select 1,045 as the training set, 156 as the vali-
dation set, and 312 as the test set. We sample 50,000 points
from each scan the same as (Que, Lu, and Xu 2021).

Experimental Details
Baseline Methods We compare our method against meth-
ods GPCC (Graziosi et al. 2020), OctSqueeze (Huang et al.
2020), VoxelContext-Net (Que, Lu, and Xu 2021), and Oc-
tAttention (Fu et al. 2022). They are also only designed for a
specific category of point clouds. Since the source codes of
some methods are not publicly available, we keep our train-
ing/testing setting consistent with them and use the results
in their paper.

Implementation Details We set the maximum depth of
the octree at 9 and 12 for ScanNet and SemanticKITTI re-
spectively. At the training stage, we use all nodes of the oc-
tree to optimize the model. At the testing stage, we test the
bitrate at a certain depth of the octree by directly truncating
the octree at the depth and evaluate it.

Our model is implemented in Pytorch and trained/tested
on a machine with Xeon Gold 6134 CPU and a single
NVIDIA Tesla V100 GPU (32GB Memory). In the training
procedure, the Adam optimizer is adopted and the learning
rate is set to 1e-4 for the entropy model. It takes 2 days to
train the model on ScanNet and 3 days on SemanticKITTI.
We set the embedding size to 256 and the feed-forward di-
mension in the Transformer block to 1024. We use 6 layers
and 8 heads for the MSA. By default, the context window
size N is set to 1,024. We test the encoding/decoding time
on 1,000 dummy octree nodes for the experiment below.

Evaluation Metrics We use bits per point (Bpp) as the
compression ratio metric. As for evaluating the point cloud
reconstruction quality, we use the point-to-point PSNR (D1
PSNR) and point-to-plane PSNR (D2 PSNR) proposed by
the MPEG standards (Schwarz et al. 2018). Specifically, we
use the official metric calculating tool pc error provided by

Method Bpp on SemanticKITTI Time (s)
D=8 D=10 D=12 En/Decode

VoxelContext-Net - 0.951 4.497 0.426/0.419
OctAttention 0.139 0.939 3.740 0.002/2.060

Ours 0.146 0.963 3.708 0.005/0.007

Table 1: Comparison with prior state-of-the-art methods on
SemanticKITTI dataset. ’D’ is the max depth of octree. For
each method, we choose the best compression results for fair
comparison.

MPEG’s GPCC. We set the PSNR peak value r = 1 follow-
ing (Que, Lu, and Xu 2021) and (Fu et al. 2022). We normal-
ize the point cloud data to [0, 1]3. For a fair comparison, we
correct other papers’ results by eliminating inconsistencies
in the PSNR formula.

Experiment Results
Results on SemanticKITTI and ScanNet Datasets The
rate-distortion curves of LiDAR compression are shown in
Fig.5. Overall, one can observe that our method achieves
better performance compared with other baselines, as ex-
pected. Specifically, compared with GPCC and OctSqueeze,
we can achieve up to 54% and 21% bitrate savings on Se-
manticKITTI and 22% and 10% bitrate savings on Scan-
Net. The state-of-the-art method VoxelContext-Net is close
to ours on ScanNet. The main reason is that the point
cloud in ScanNet is much denser, which means there’s much
less information to discover in the octree. For sparse point
cloud in SemanticKITTI, we achieve 17% Bpp savings com-
pared with VoxelContext-Net. Considering that octree-based
methods have the same reconstruction qualities under the
same octree depth, we only visualize the quantitative results
of ours and GPCC, shown in Fig.6. The visualization results
also demonstrate the effectiveness of our method.

Comparison with Prior State-of-the-Art Methods As
shown in Table.1, we further compare our method with
state-of-the-art VoxelContext-Net (Que, Lu, and Xu 2021)
and OctAttention (Fu et al. 2022). Compared with
VoxelContext-Net, our method has up to 17% Bpp savings
and achieves dozens of times performance improvement.
The reason is that Voxelcontext-Net has a limited recep-
tive field and expensive computation in higher resolution.
Compared with OctAttention, we achieve about 300 times
of time performance improvement, while maintaining sim-
ilar compression effect. Although introducing sibling occu-
pancy as the feature can greatly improve the compression
performance, it will bring unacceptable time consumption
because decoding the current octree node requires previous
sibling nodes to be decoded. Our method eliminates the de-
coding dependencies between the nodes and shares the result
of a MSA operation within the context window. Therefore,
our decoding process is identical to the encoding process,
which is hundreds of times faster than OctAttention.

Ablation Study and Analysis
Context Window Size As shown in Table.2, we perform
ablation study on context window size. We set the different
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Size N Bpp on ScanNet
D=5 D=6 D=7 D=8 D=9

32 0.062 0.238 1.049 3.353 6.416
128 0.057 0.220 0.986 3.192 6.135
256 0.057 0.219 0.985 3.183 6.113
512 0.057 0.218 0.980 3.169 6.086
1024 0.056 0.211 0.958 3.123 6.021

Table 2: Performance of our methods when setting different
context window sizes N.

APE OctLeFF OctPEG Bpp Params
✗ ✗ ✗ 6.212 5.66 M
✓ ✗ ✗ 6.213 5.66 M
✗ ✓ ✗ 6.144 4.28 M
✗ ✗ ✓ 6.161 5.66 M
✗ ✓ ✓ 6.135 4.28 M

Table 3: Different compression performance when using dif-
ferent modules on ScanNet dataset with setting the depth to
9. ✗ denotes removing and ✓ denotes retaining.

context window sizes and train different models on ScanNet.
From the table, we can observe that the method achieves up
to 0.395 Bpp savings when setting the depth of the octree
to 9. The model with larger context window size obtains
better results, for larger window size has more context fea-
tures. The experiment results demonstrate the effectiveness
of large receptive field contexts.

Effectiveness of Proposed Modules As shown in Table.3,
we perform ablation study on our proposed OctLeFF and
OctPEG module. In the experiments, both the hidden size
and channel size are set to 256. One can find that the origi-
nal APE has little effect for the model, as we expected. The
comparison shows that the OctLeFF and OctPEG modules
effectively improve compression performance and parame-
ters reduce 1.38M.

Runtime Analysis As shown in Table.4, we compare the
runtime performance of different methods under different
parameter settings. We can observe that both the encoding
and decoding time in VoxelContext-Net increase with the
voxel size, due to the more computationally expensive 3D
convolution on voxel grids. But for transformer-based meth-
ods, when the context window size is larger, the efficiency
of parallelism in the transformer is higher. OctAttention de-
coding one octree node needs the previous sibling nodes to
be decoded, while our method can achieve much faster de-
coding since our encoding and decoding processes are the
same for feature extraction and parallel computing. Exper-
imental results show that our method achieves a significant
improvement in runtime performance. We can observe that
the method can be applied to efficient point cloud encoding
and decoding.

Performance on Segmentation Application
The effect of the compression method on downstream tasks
is another important metric. As shown in Fig.7, we evalu-

Methods Time (s)
Encode Decode

VoxelContext-Net (V=5) 0.3889 0.3741
VoxelContext-Net (V=7) 0.4010 0.4148
VoxelContext-Net (V=9) 0.4265 0.4199
VoxelContext-Net (V=11) 0.4523 0.4495
OctAttention (N=8) 0.1672 1.2710
OctAttention (N=32) 0.0476 1.3635
OctAttention (N=128) 0.0114 1.3737
OctAttention (N=512) 0.0030 1.4091
OctAttention (N=1024) 0.0023 2.0602
Ours (N=8) 0.4457 0.4561
Ours (N=32) 0.0765 0.0866
Ours (N=128) 0.0283 0.0369
Ours (N=512) 0.0096 0.0107
Ours (N=1024) 0.0052 0.0073

Table 4: The comparison of time performance of different
methods. ’V’ is the voxel size for VoxelContext-Net and ’N’
represents the context window size for both our method and
OctAttention.

Ours: IOU: 43.91 Bpp: 4.80

(a) Segmentation visualization. (b) Comparison with others.

Figure 7: Quality performance of semantic segmentation
of different point cloud compression methods on Se-
manticKITTI dataset.

ate the effectiveness of our proposed method on semantic
segmentation, which is a basic task for point cloud (Nguyen
and Le 2013; Hu et al. 2022). We use RandLA-Net (Hu et al.
2020) as the evaluative semantic segmentation method and
intersection-over-union (IOU) as the metric. Experimental
results show that our method can achieve segmentation per-
formance close to the raw data when the Bpp is 4.8. At any
given Bpp, we outperform GPCC and obtain higher IOU.
Overall, experimental results demonstrate the effectiveness
of our method on such downstream tasks (i.e., semantic seg-
mentation).

Conclusion
We propose an octree-based transformer with local enhance-
ment called OctFormer, which can compress point clouds
efficiently. Specifically, we use non-overlapped context win-
dows to construct sequences and share the results of the
multi-head self-attention operation to reduce time overhead.
We further design OctLeFF and OctPEG models to improve
the compression performance. The experimental results on
both datasets and the segmentation algorithm verify the ef-
fectiveness of the proposed method.
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