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Abstract

Source-free object detection (SFOD) aims to transfer a de-
tector pre-trained on a label-rich source domain to an unla-
beled target domain without seeing source data. While most
existing SFOD methods generate pseudo labels via a source-
pretrained model to guide training, these pseudo labels usu-
ally contain high noises due to heavy domain discrepancy.
In order to obtain better pseudo supervisions, we divide the
target domain into source-similar and source-dissimilar parts
and align them in the feature space by adversarial learning.
Specifically, we design a detection variance-based criterion
to divide the target domain. This criterion is motivated by
a finding that larger detection variances denote higher recall
and larger similarity to the source domain. Then we incor-
porate an adversarial module into a mean teacher framework
to drive the feature spaces of these two subsets indistinguish-
able. Extensive experiments on multiple cross-domain object
detection datasets demonstrate that our proposed method con-
sistently outperforms the compared SFOD methods. Our im-
plementation is available at https://github.com/ChuQiaosong.

Introduction
Despite the promising performance, deep object detection
still heavily relies on numerous manually annotated train-
ing data. It leads to a significant performance drop in real-
world scenarios when the detection system faces a new en-
vironment with the domain shift. As collecting labels for all
conditions is impractical, it requires detectors to efficiently
adapt to new environments without further annotations. To
this end, Unsupervised Domain Adaptive (UDA) object de-
tection has gained increasing attention in recent years (He
and Zhang 2019; Saito et al. 2019; Wu et al. 2021).

The aforementioned methods are based on the assumption
that both source and target domain data are accessible. How-
ever, this assumption may not hold in many real-world appli-
cations due to infeasible data transmission, computation re-
source restrictions, or data privacy. It poses a new challenge,
which is named source data-free or source-free, i.e. only a
well-trained source model is provided during adapting to the
target domain without having access to source data (Kundu
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Figure 1: Basic idea of A2SFOD. We propose a variance-
based criterion to divide the target domain data into source-
similar and source-dissimilar subsets, based on a finding that
larger detection variances denote higher recall and larger
similarity to the source domain. We can achieve the domain
alignment by simulating the source and target domains with
the divided source-similar and source-dissimilar subsets.

et al. 2022; Wang et al. 2022a; Yazdanpanah and Moradi
2022; Machireddy et al. 2022).

While the source-free challenge has been well studied
for image classification tasks (Xia, Zhao, and Ding 2021;
Liang, Hu, and Feng 2020), there are much fewer works
that focus on Source-Free Object Detection (SFOD) (Zhang
et al. 2021; VS, Oza, and Patel 2022). Due to complex back-
ground, obscured objects, and numerous negative samples,
directly applying conventional source-free domain adapta-
tion methods to SFOD cannot achieve satisfactory detection
accuracy. Therefore, it is desirable to develop effective do-
main adaptation methods to solve the source-free problem
for object detection.

As there is no manually labeled data available during
adaptation, most existing SFOD methods train the model
by using pseudo-labels generated by a source-pretrained
model (Yuan et al. 2022; Zhang et al. 2021). However, the
domain shift inevitably introduces high noises in pseudo la-
bels, which deteriorates the detection performance (Deng
et al. 2021). Though various data augmentation methods (Li
et al. 2021a) have been developed to improve the quality of
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pseudo labels, the domain discrepancy has not been well nar-
rowed. The source-pretrained knowledge is difficult to adapt
to these hard samples far dissimilar from the source data.

To address this problem, we propose an adversarial learn-
ing based source free object detection method (A2SFOD).
As shown in Figure 1, we aim to drive the source-dissimilar
features close to the source-similar ones, such that pseudo
labels generated by the source-pretrained model are of high
quality over the whole target domain. To this end, we design
a detection variance-based criterion to separate the target
domain data into source-similar ones and source-dissimilar
ones. This criterion is motivated by a finding that larger
detection variances denote higher recall and larger similar-
ity to the source domain. Given source-similar and source-
dissimilar subsets, we propose to apply adversarial learning
to the mean teacher structure to learn a model for feature
space alignment. We conduct extensive experiments on five
widely used detection datasets to validate the superiority of
our method.

The contribution of this paper can be summarized as: 1)
we find the detection variance and the similarity to source
data are positively correlated, and further propose a crite-
rion to divide the target domain; 2) we present an adver-
sarial alignment method to refine the feature space to obtain
pseudo labels of higher quality; 3) we achieve consistent and
significant improvement on 5 datasets and 4 settings.

Related Work
Domain Adaptive Object Detection (DAOD) (Cai et al.
2019; Chen et al. 2018; Xu et al. 2020b; Gu, Sun, and Xu
2020; Zhang, Ma, and Wang 2021; Csaba et al. 2021) aims to
address the domain shift problems in object detection task.
Existing DAOD methods can be divided into two categories:
feature alignment methods and self-training methods. The
former ones aim to align source domain and target domain
by learning a domain-agnostic feature space (Chen et al.
2018; Saito et al. 2019; Chen et al. 2020; Li et al. 2021b;
Zheng et al. 2020; Wang et al. 2022c). For example DA-
Faster (Chen et al. 2018) first proposed to tackle domain
shift on image-level and instance-level to learn a domain-
invariant region proposal network (RPN). SWDA (Saito
et al. 2019) attempted to align distributions of foreground
objects rather than the whole image based on strong local
alignment and weak global alignment. The latter ones train
the model recursively by using self-training to gradually in-
crease the accuracy of generated pseudo labels on the tar-
get domain (Inoue et al. 2018; Khodabandeh et al. 2019;
Kim et al. 2019; RoyChowdhury et al. 2019). These methods
vary by different strategies to refine pseudo labels and up-
date models. For example, WST (Kim et al. 2019) proposed
weak self-training for stable training and designed adversar-
ial background score regularization to tackle domain shifts.
NL (Khodabandeh et al. 2019) formulated domain adaption
as training with noisy labels and refined pseudo labels by
using a classification module.

In real-world scenarios, the source data is usually inac-
cessible due to data privacy, leading to the SFOD prob-
lem (Lee et al. 2022; Zong et al. 2022; Ding et al. 2022;

Kothandaraman et al. 2022; Wang et al. 2022b). Due to com-
plex background and negative examples, SFOD is far more
challenging than conventional source-free image classifica-
tion (Agarwal et al. 2022; Ambekar et al. 2022; Bohdal et al.
2022; Xia, Zhao, and Ding 2021). SFOD-Mosaic (Li et al.
2021a) first formulated the SFOD problem and proposed to
search for a fairly good confidence threshold and enabled
self-training via generated pseudo labels. SOAP (Xiong
et al. 2021) then added a domain-specific perturbation on the
target domain and optimized the source-pretrained model
via self-supervised learning. HCL (Huang et al. 2021) ex-
ploited historical source hypothesis to make up for the
lack of source data. S&M (Yuan et al. 2022) proposed a
Simulation-and-Mining framework that modeled the SFOD
task into an unsupervised false negatives mining problem.
Recently, more new methods have been developed (Li et al.
2022; Liang et al. 2022). However, these methods cannot
well narrow the gap between the source domain and the tar-
get domain. All in all, SFOD is far from being fully explored
and more effective SFOD methods are desired to develop.

Method
Source-free object detection (SFOD) aims to adapt a de-
tector pre-trained on the source domain to an unlabeled
target domain. In this process, the data in the source do-
main is untouched. Specifically, given an unlabeled target
dataset {Xt

i}Ni=1 (N is the number of images) and a detec-
tor F with source pre-trained parameters θs (e.g. a Faster-
RCNN (Ren et al. 2015) model), we need to update the pa-
rameters to θt for the target domain. In this paper, we pro-
pose a method for this task, called A2SFOD, whose over-
all framework is shown in Figure 2. In A2SFOD, we first
divide the target data into two subsets, source-similar and
source-dissimilar, via the variance of the predictions from
the source-pretrained detector Fθs . Then we align these two
subsets via adversarial learning and finetune the detector via
mean-teacher learning. In the following sections, we will de-
tail each stage.

Target Self-Division
Aligning source and target domain is a widely-used method
for conventional domain adaptation tasks (Kang et al. 2019;
Zhu et al. 2019; Wang et al. 2019). Given the source and tar-
get data, we can intuitively achieve the alignment in the data
space (Chen et al. 2020) or feature space (Saito et al. 2019).
However, the lack of source data poses a new challenge for
domain alignment.

Although we have no access to source data, the source-
pretrained model does convey rich information about the
source domain. Accordingly, we propose to self-divide the
target data into two subsets by the pre-trained model to ex-
plicitly simulate the source and target domain. To achieve
this goal, we design a detection variance-based division cri-
terion, where the detection variance is calculated based on
predictions yielded by the source-pretrained model on target
data. It is motivated by a finding that larger detection vari-
ances denote higher similarity to the source data. Specifi-
cally, the pre-trained model tends to yield more predictions
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Figure 2: Framework of A2SFOD. It contains four stages, source pre-training, target self-division, adversarial alignment, and
fine-tuning with MT, where the first stage is unseen during adaptation.

of hard samples for source-similar images while directly ig-
nore these hard samples for source-dissimilar images. These
predictions of hard samples usually have high uncertainty,
and hence have larger variances during adaptation.

We formulate the calculation of the detection variance as:

vi = E[(Fθs(Xi)− E[Fθs(Xi)])
2], (1)

where Fθs(Xi) represents the predictions of image Xi via
the source-pretrained model. As such calculation is in-
tractable in practice, we instead approximate this calcu-
lation with Monte-Carlo sampling. Inspired by (Gal and
Ghahramani 2016), we formulate the sampling function with
dropout, which is a widely-used stochastic regularization
tool in deep learning (Blundell et al. 2015). This approxi-
mation is easy to perform via M stochastic forward passes
without changing the detection model.

As the corresponding outputs Fθs(Xi) = (bi, ci) are
composed of localization coordinates and classification
scores, we formulate the detection variance as the product
of two terms, box localization variance vbi and classifica-
tion score variance vci. Given a prediction with Ni boxes
and K classes, we have {bij = (x1

ij , y
1
ij , x

2
ij , y

2
ij)}

Ni
j=1 and

{cij = (c1ij , c
2
ij , ..., c

K
ij )}

Ni
j=1. We can formulate vbi and vci

as follows:

vbi =
1

MNi

Ni∑
j=1

M∑
m=1

||bmij − bij ||2, (2)

vci =
1

MNi

Ni∑
j=1

M∑
m=1

||cmij − cij ||2, (3)

where bmij , cmij denote the localization coordinates and clas-
sification scores of the m-th forward pass of the j-th bound-

ing box in Xi respectively, and bij , cij denote the corre-
sponding average value of total M forward passes. Then we
have the detection variance of Xi as vi = vbivci. We or-
der these images according to their variances from small to
large, and use ri to denote the ranking of Xi. We define the
variance level of the i-th image as vli = ri

N . We consider
Xi as source-similar if vli ≥ σ and source-dissimilar oth-
erwise, where σ ∈ (0, 1) is a pre-defined threshold. In this
way, we divide the target domain data into source-similar
and source-dissimilar subsets for the preparation of adver-
sarial alignment.

Adversarial Alignment
In this subsection, we introduce how to achieve domain
alignment with the divided source similar and source dissim-
ilar subsets. As shown in Stage 3 in Figure 2, we incorporate
an adversarial training procedure into a mean-teacher archi-
tecture to achieve domain alignment in the feature space.
Specifically, we build a teacher model Ftea and a student
model Fstu, which apply the same network architecture with
pretrained model F and are initialized with parameters θs.
The parameters of the student model are quickly updated for
domain alignment while the parameters of the teacher model
are slowly updated. There are two loss functions in our ad-
versarial alignment process to learn the student model: mean
teacher loss for model adaptation and adversarial loss for do-
main alignment.

The goal of the mean teacher loss is to use the pseudo
labels generated with the pretrained teacher model to su-
pervise the training of the student model. First, we feed the
teacher model with source similar data Xs

i and feed the stu-
dent model with the data augmentation version Aug(Xs

i ).
Then the mean teacher loss is formulated with the outputs of
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both teacher and student models as:
Lmt = Lcls(Fstu(Aug(X

s
i ), Ftea(X

s
i )))

+ Lreg(Fstu(Aug(X
s
i ), Ftea(X

s
i ))),

(4)

where Lreg is the location regression loss which calculates
the L1-smooth distance for predicted and supervised bound-
ing box and Lcls is the cross-entropy loss for classification
supervision. Both Lreg and Lcls are widely-used losses in
the field of object detection, such as Faster-RCNN (Ren et al.
2015).

To align the feature spaces of source similar and source
dissimilar subsets, we further conduct adversarial learning
with the outputs of the student model. We take the student
model as the “generator” and build extra “discriminators”
to play a min-max adversarial game, where the “generator”
tries to fool the “discriminators” by generating features that
can’t be distinguished as source similar or source dissimi-
lar. To capture both local and global information, we follow
SW-Faster (Saito et al. 2019) to build a local discriminator
Dl and a global discriminator Dg , where Dl focus on the
foreground objects and Dg focus on the background.

The adversarial losses with global and local discrimina-
tors can be formulated as:

Llocal =
1

WHNs

Ns∑
i=1

W∑
w=1

H∑
h=1

Dl(Fl(X
s
i ))

2
wh

+
1

WHNd

Nd∑
j=1

W∑
w=1

H∑
h=1

(1−Dl(Fl(X
d
j ))

2
wh,

(5)

Lglobal =− 1

Ns

Ns∑
i=1

(1−Dg(Fg(X
s
i )))

γ log(Dg(Fg(X
s
i )))

− 1

Nd

Nd∑
j=1

Dg(Fg(X
d
j ))

γ log(1−Dg(Fg(X
d
j ))),

(6)
where Xs

i , Xd
j denote the i-th source similar image and j-th

source dissimilar image; Fl, Fg denote different layers on
the backbone that capture the local feature (feature maps)
and global feature (a feature vector) respectively; W,H de-
note width and height of local feature map on the backbone;
Ns, Nd denote the total number of source similar images
and source dissimilar images, and γ is a Focal loss (Lin
et al. 2017) parameter which controls the model to focus on
hard-to-classify examples but not the easy ones. Compared
with the local adversarial loss, the global one applies the
Focal loss to focus on the hard examples and ignore easy-to-
classify examples to achieve a weak alignment, without hurt-
ing the performance of the local model (Saito et al. 2019).

Finally, we update the student model by fusing the mean
teacher loss and adversarial losses as

max
D

min
F

Lmt − λLadv, (7)

where Ladv = Llocal+Lglobal. With this loss function, these
embeddings are encouraged to have similar distributions for
both source-similar and source-dissimilar images (achieved
by adversarial loss Ladv) and have a great discriminative
ability for the target domain detection (achieved by mean
teacher loss Lmt).

Fine-Tuning with Mean Teacher

After adversarial alignment, we can get pseudo labels of
high quality over the whole target data. Hence, we fine-
tune the detector by using both source-similar and source-
dissimilar data to make full use of the information of the
whole target domain. Both teacher and student models are
initialized with the parameters of the student model learned
in stage 3. As the detection error mainly comes from false
negative objects (Li et al. 2021a), we employ mosaic aug-
mentation (VS, Oza, and Patel 2022; Wang et al. 2021) to
simulate the false negatives to better detect small-scale and
obscured objects.

As shown in Figure 2 Stage 4, we feed the teacher model
with four independent target images {Xt

i1, X
t
i2, X

t
i3, X

t
i4}

and generate independent predictions {Y t
i1, Y

t
i2, Y

t
i3, Y

t
i4}.

Then we resize and mosaic these four images with data aug-
mentation into a combined image Xim, with the same size
as the original input Xt

i1. Likewise, we obtain the mosaic
pseudo label Yim. We formulate the loss during the fine-
tuning stage as follows:

Lmt2 = Lcls(Fstu(Xim), Yim) + Lreg(Fstu(Xim), Yim),
(8)

where Lreg and Lcls are basic location regression and clas-
sification losses respectively, which are the same as the ones
in Equ. (4).

Experiments
We have conducted extensive experiments to evaluate our
method, including comparisons with other SFOD methods,
detailed ablation studies, and analysis.

Datasets

We evaluated our method on five popular object detec-
tion datasets. The detailed information of these datasets
is summarized in the following: (1)Cityscapes (Cordts
et al. 2016) collects different scenes from various cities
on the street, which contains 2,975 training images and
500 validation images. We utilized the rectangle of the
instance mask to obtain bounding boxes following previ-
ous work. (2)Foggy-Cityscapes (Sakaridis et al. 2018) is
constructed from Cityscapes by simulating three levels of
foggy weather. It contains the same amount of images as
the Cityscapes. We inherited the annotations of Cityscapes.
(3)KITTI (Geiger, Lenz, and Urtasun 2012) is a dataset con-
taining 7,481 training images for autonomous driving differ-
ent from Cityscapes. (4)Sim10k (Johnson-Roberson et al.
2017) is a simulation dataset generated from a popular com-
puter game Grand Theft Auto V. It contains 10,000 images
of the synthetic driving scene with 58,071 bounding boxes
of the car. (5)BDD100k (Yu et al. 2018) is a large dataset
including 100k images with six types of weather, six differ-
ent scenes, and three categories for the time of day. Follow-
ing (Xu et al. 2020a), we applied the daytime subset of the
dataset in our experiment, where 36,728 images were used
for training and the other 5,258 images for validation.
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Methods truck car rider person train motor bicycle bus mAP
Source only 10.7 30.2 30.8 23.6 9.2 16.3 24.7 19.7 20.6

DA-Faster (Chen et al. 2018) 19.5 43.5 36.5 28.7 12.6 24.8 29.1 33.1 28.5
SW-Faster (Saito et al. 2019) 23.7 47.3 42.2 32.3 27.8 28.3 35.4 41.3 34.8
MAF (He and Zhang 2019) 23.8 43.9 39.5 28.2 33.3 29.2 33.9 39.9 34.0

CR-DA-DET (Xu et al. 2020a) 27.2 49.2 43.8 32.9 36.4 30.3 34.6 45.1 37.4
AT-Faster (He and Zhang 2020) 23.7 50.0 47.0 34.6 38.7 33.4 38.8 43.3 38.7

HCL (Huang et al. 2021) 26.9 46.0 41.3 33.0 25.0 28.1 35.9 40.7 34.6
SFOD-Mosaic (Li et al. 2021a) 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5

A2SFOD(Ours) 28.1 44.6 44.1 32.3 29.0 31.8 38.9 34.3 35.4
Oracle 38.1 49.8 53.1 33.1 37.4 41.1 57.4 48.2 44.8

Table 1: Adaptation from Normal to Foggy Weather: Cityscapes → Foggy-Cityscapes

Methods AP of car
Source only 35.7

DA-Faster (Chen et al. 2018) 38.5
SW-Faster (Saito et al. 2019) 37.9
MAF (He and Zhang 2019) 41.0

AT-Faster (He and Zhang 2020) 42.1
Noise Labeling (Khodabandeh et al. 2019) 43.0

SOAP (Xiong et al. 2021) 42.7
SFOD-Mosaic (Li et al. 2021a) 44.6

A2SFOD(Ours) 44.9
Oracle 58.5

Table 2: Adaptation to a New Sense: KITTI → Cityscapes

Implementation Details
We followed the setting in (Chen et al. 2018) that adopted
Faster-RCNN (Ren et al. 2015) with VGG-16 pretrained
on ImageNet (Russakovsky et al. 2015) for our detection
model. In all experiments, the shorter side of each input
image was resized to 600. The detector was trained with
Stochastic Gradient Descent (SGD) with a learning rate of
0.001. To stabilize the training of Mean Teacher (Tarvainen
and Valpola 2017), we only updated the teacher model every
2500 iterations using exponential moving average (EMA)
weights of the student model. In the pseudo label genera-
tion process, we filtered out the bounding boxes whose clas-
sification scores were lower than 0.7 to control the qual-
ity of pseudo labels. In the testing phase, we evaluated the
adaptation performance by reporting mean average precision
(mAP) with an IoU threshold of 0.5. Following (Saito et al.
2019), we set λ = 0.1 for Sim10k → Cityscapes in Equ. (7)
and λ = 1 for other tasks. We set the threshold parameter
σ = 0.7 as it is empirically found to result in the best per-
formance. All experiments were implemented with PyTorch
1.7.1.

Comparisons with Other SFOD Methods
In this subsection, we evaluated the transferability of our
method in 4 aspects, including from a normal environ-
ment to foggy weather, from training dataset to unseen new
scenes, from synthetic to real images, and from a data-
limited source to a large-scale target. For a fair compari-

Methods AP of car
Source only 33.7

DA-Faster (Chen et al. 2018) 38.5
SW-Faster (Saito et al. 2019) 40.1
MAF (He and Zhang 2019) 41.1

AT-Faster (He and Zhang 2020) 42.1
HTCN (Chen et al. 2020) 42.5

Noise Labeling (Khodabandeh et al. 2019) 43.0
SFOD-Mosaic (Li et al. 2021a) 43.1

A2SFOD(Ours) 44.0
Oracle 58.5

Table 3: Adaptation from Synthetic to Real Images: Sim10k
→ Cityscapes

son, we strictly followed the experiment setting of SFOD-
Mosaic (Li et al. 2021a) and applied the similar source-only
model, even if a more complex source-only model results in
better performance. Specifically, we mainly compared our
method A2SFOD with multiple recent methods such as DA-
Faster (Chen et al. 2018), SW-Faster (Saito et al. 2019), DA-
Detection (Hsu et al. 2020), MAF (He and Zhang 2019), AT-
Faster (He and Zhang 2020), and Noise Labeling (Khoda-
bandeh et al. 2019); the baseline method SFOD-Mosaic (Li
et al. 2021a); the “Source only” method trained with only
source training data as the lower bound; and the “Oracle”
method trained using labeled target data as the upper bound.
Generally speaking, we achieved significant performance
improvement over other methods in all settings.

Adaptation from Normal to Foggy Weather Weather
condition shift is very common in real-world applications,
such as autonomous driving, which requires the strong trans-
ferability of models in different weathers, especially for
the obscure objects caused by extreme weather. Thus, we
employed Cityscapes as the source domain and Foggy-
Cityscapes (a dataset in the foggy weather) as the target do-
main to benchmark the methods. The results of A2SFOD
and other methods are summarized in Table 1. Compared
with the baseline method SFOD-Mosaic (Li et al. 2021a), we
achieved a 1.9% mAP score improvement on average. For a
closer look at different classes, A2SFOD obtained great suc-

456



Methods truck car rider person motor bicycle bus mAP
Source only 14.0 40.7 24.4 22.4 14.5 20.5 16.1 22.6

DA-Faster (Chen et al. 2018) 14.3 44.6 26.5 29.4 15.8 20.6 16.8 24.0
SW-Faster (Saito et al. 2019) 15.2 45.7 29.5 30.2 17.1 21.2 18.4 25.3

CR-DA-DET (Xu et al. 2020a) 19.5 46.3 31.3 31.4 17.3 23.8 18.9 26.9
SFOD-Mosaic (Li et al. 2021a) 20.6 50.4 32.6 32.4 18.9 25.0 23.4 29.0

A2SFOD(Ours) 26.6 50.2 36.3 33.2 22.5 28.2 24.4 31.6
Oracle 53.4 53.5 42.8 41.9 37.3 38.8 58.1 47.1

Table 4: Adaptation to Large-Scale Dataset: Cityscapes → BDD100k

Figure 3: mAP/recall-variance relation curves in four adaption tasks. We compute the variance of each image and split data into
image groups by the level of their variance. We then measure the mAP/AP and the recall of these image groups. The recall is
computed under the prediction confidence = 0.5.

cess in the long-tail classes such as truck and train, while got
limited improvement in the main classes such as car and bus.
It is because our method which aligns the source-dissimilar
images to source-similar ones encourages the model to give
more confident detection. For the easy main classes, it may
bring more false detection, while for long-tail classes, it ef-
fectively reduces the missing detection.

Adaptation to Unseen New Scenes Besides, intelligent
systems are always required to robustly adapt from a training
environment to unseen new environments. To evaluate the
transferability of our method to unseen new scenes, we mea-
sure the detection performance of methods that are trained
on KITTI and tested on Cityscapes with camera setup dif-
ferences. The experiment results are shown in Table 2.

We found that the performance improvement was not as
significant as in other settings like weather changing. It may
be because the variance of the target dataset, Cityscapes,
is limited, and the difference between KITTI-similar and
KITTI-dissimilar sets is not significant.

Adaptation from Synthetic to Real Images In au-
tonomous driving, labeling real-world data is expensive and
time-consuming. One potential solution is to simulate the
real world and train the model with synthetic data. How-
ever, there is a large domain gap between the synthetic data
and the real environment. It motivates us to transfer the
knowledge learned from synthetic data to real images. In
this experiment, we selected a synthetic dataset, Sim10k, as
the source domain and Cityscapes as the target domain. As
shown in Table 3, our method consistently outperforms the

baseline SFOD-Mosaic (Li et al. 2021a) and other methods.

Adaptation to Large-Scale Dataset Despite easily col-
lecting large amounts of image data, the data annotation is
expensive and labor intensive. Therefore, the transferability
from limited labeled data to an unlabeled large-scale target
dataset matters. In this experiment, we used Cityscapes as
the source domain and BDD100k as the target domain to
train the model and evaluated the detection results on only
7 common categories of the two datasets including “truck”,
“car”, “rider”, “person”, “motor”, “bicycle”, and “bus”. In
Table 4, A2SFOD obtained 31.6% mAP, which achieves
+2.6% mAP improvement than the existing best result.

Ablation Studies and Further Analysis
In this subsection, we conducted ablation studies to inves-
tigate the effectiveness of each component and gave more
analysis. We are to answer the following questions.

Q: Why the detection variance of the pretrained model
can be regarded as a criterion for target division. A: It is
because of a finding that the images with larger detec-
tion variances are more similar to the data in the source
domain. Target division aims to divide the target data into
a source-similar set and a source-dissimilar set for aligning
the target data and untouched source data. In this paper, we
proposed to use detection variance as the criterion for tar-
get division since we found the larger detection variance
denotes higher recall and more similar to the source data.
The pretrained model tends to give more predictions on the
source-similar images. It causes a higher recall since more
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Methods truck car rider person train motor bicycle bus mAP
Baseline 20.0 43.7 37.8 26.6 13.0 24.8 37.1 36.4 29.9

Baseline + MT 23.7 44.0 42.9 32.5 12.9 29.7 38.1 37.0 32.6
Baseline + MT + TSD (Our A2SFOD) 28.1 44.6 44.1 32.3 29.0 31.8 38.9 34.3 35.4

Table 5: Ablation study with regarding to different components of A2SFOD.

predictions mean less missed detection. On the other hand,
more predictions indicate that some predictions are uncer-
tain, which have a large variance with different dropout sam-
plings. We designed two experiments to verify our findings.

To verify the relation between the detection variance and
the similarity to source data, we designed a qualitative ex-
periment to show the source images and target images at
different variance levels. While it is difficult to quantitatively
identify this relation due to the lack of the similarity metric,
we can clearly observe that the images with larger variance
are more similar to the source data from Figure 4. As we set
the threshold parameter σ = 0.7, (a), (b) and (c) are con-
sidered to be source-dissimilar images and (d), (e) represent
source-similar images.

To verify whether the detection variance and recall are
positively correlated, we provided a quantitative evaluation.
Specifically, given a pre-trained model, we first sorted the
testing data by the variance value and split them into several
groups. Then we tested the model on the groups with differ-
ent variance levels and calculated the recall score. As shown
in Figure 3, we conducted experiments on four settings in-
cluding Cityscapes → Foggy − Cityscapes, KITTI →
Cityscapes − Car, Sim10k → Cityscapes − Car, and
Cityscapes → BDD100k, where A → B denotes that
we pretrained the model on A and tested the model on B.
In all settings, we found the variance level and recall score
have highly positive correlations, with correlation coeffi-
cients R2 = 0.962, 0.933, 0.848, 0.927 respectively.

Besides, we also provided the mAP performance in the
blue curves of Figure 3, which shows that we can obtain
better detection results in images with larger variances. Gen-
erally speaking, we can obtain better detection results with
the source pretrained model on the source similar images,
which also demonstrates the positive relation between large
variance and source similarity.

(a) vl = 0.2 (b) vl = 0.4 (c) vl = 0.6

(d) vl = 0.8 (e) vl = 1 (f) source

Figure 4: Examples of images with different variance level
from 0.2 to 1.0 and images of source domain.

Q: Can we directly apply the recall as the criterion? A:
No. Recall is a metric that evaluates the detection of a set of
images. However, the criterion is a metric for each image to
divide the source-similar and source-dissimilar sets. When
considering recall in a single image, the number of objects
is variant and may mislead the division.

Q: What are the effects of each component in the
method? A: Both target self-division (TSD) based align-
ment and Mean Teacher (MT) based fine-tuning are
critical for our method. The main differences between
A2SFOD and other methods are the target self-division
(TSD) based alignment and Mean Teacher (MT) based fine-
tuning. To explore the effectiveness of each component, we
implemented an ablation study experiment on Cityscapes →
Foggy-Cityscapes. The experiment results are summarized
in Table 5. We remove the Mean-Teacher based fine-tuning
and target self-division from A2SFOD as our baseline.
When adding the MT to the baseline, we can achieve +2.7%
mAP improvement. When applying TSD-based alignment,
we can further achieve the 35.4% mAP score with +2.8%
improvement. These significant improvements demonstrate
that both components are critical for our method.

Conclusion
In this work, we have proposed an adversarial learning based
method A2SFOD to enable better object detection perfor-
mance in source-free circumstances. The basic idea is to
self-divide the target dataset into source-similar and source-
dissimilar parts and align them in the feature space. The
source-pretrained model can generate high-quality pseudo
supervisions for the aligned target domain. To achieve this,
we developed a detection variance-based self-division cri-
terion. We evaluated our proposed method on five cross-
domain object detection datasets. Experimental results show
our superiority over compared SFOD methods as well as the
effectiveness of each component. In the future, we will ex-
plore to integrate our proposed A2SFOD to various detection
backbones.
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