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Abstract

One major limitation of CNNs is that they are vulnerable to
adversarial attacks. Currently, adversarial robustness in neu-
ral networks is commonly optimized with respect to a small
pre-selected adversarial noise strength, causing them to have
potentially limited performance when under attack by larger
adversarial noises in real-world scenarios. In this research,
we aim to find Neural Architectures that have improved
robustness on a wide range of adversarial noise strengths
through Neural Architecture Search. In detail, we propose a
lightweight Adversarial Noise Estimator to reduce the high
cost of generating adversarial noise with respect to different
strengths. Besides, we construct an Efficient Wide Spectrum
Searcher to reduce the cost of adjusting network architecture
with the large adversarial validation set during the search.
With the two components proposed, the number of adver-
sarial noise strengths searched can be increased significantly
while having a limited increase in search time. Extensive ex-
periments on benchmark datasets such as CIFAR and Ima-
geNet demonstrate that with a significantly richer search sig-
nal in robustness, our method can find architectures with im-
proved overall robustness while having a limited impact on
natural accuracy and around 40% reduction in search time
compared with the naive approach of searching. Codes avail-
able at: https://github.com/zhicheng2T0/Wsr-NAS.git

Introduction
With the tremendous success of Convolutional Neural Net-
works (CNNs) (He et al. 2015; Szegedy et al. 2016; Howard
et al. 2017; Cai et al. 2017), more and more CNNs are ap-
plied in security-sensitive settings. However, CNNs have
a major limitation where they are vulnerable under adver-
sarial attack (Madry et al. 2019; Goodfellow, Shlens, and
Szegedy 2014; Dong et al. 2018), a small and targeted noise
can mislead the network. To deal with such a limitation,
various robust training techniques have been proposed for
CNNs (Madry et al. 2019; Goodfellow, Shlens, and Szegedy
2014; Zhang et al. 2019; Shafahi et al. 2019; Wong, Rice,
and Kolter 2020; Zhang et al. 2020). Moreover, there also
exists a class of techniques which train networks to gain
performance guarantees when the adversarial noise strength
is under a certain strength limit (Cohen, Rosenfeld, and
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Figure 1: Robust accuracy comparison at different adversar-
ial noise strengths between RobNet-large(Guo et al. 2020)
(6.9M parameters, clean accuracy 78.6%) and the proposed
WsrNet-Robust(4.5M parameters, clean accuracy 78.4%).

Kolter 2019; Lütjens, Everett, and How 2019; Li et al. 2019;
Lécuyer et al. 2019). Currently, a few pioneering works have
also attempted to address the adversarial robustness limi-
tation of CNNs in the perspective of Neural Architecture
Search (Guo et al. 2020; Dong et al. 2020; Mok et al. 2021;
Hosseini, Yang, and Xie 2021; Sun et al. 2023).

However, a common limitation of the existing research is
that the robustness of the networks is commonly optimized
on a pre-selected small adversarial noise strength, causing
there to be a potentially limited performance when under
stronger attacks at some larger unseen strengths (as in Fig.
1), leaving the networks vulnerable to adversarial attack un-
der real-world scenarios.

Currently, there are limited works that deal with the is-
sue of simultaneously improving network robustness under
different adversarial noise strengths. From the perspective
of training, the only existing method (Song et al. 2018) re-
quires simultaneously training multiple networks that have
good adversarial robustness at different ranges of adversar-
ial noise strengths. With the different networks, a more ro-
bust combined decision can be made. We argue the design
would not only bring a considerable increase in model size
but also brings a considerable increase in the computational
cost when training and testing the network.

In this research, we aim to address the limitations in the
existing research by finding Neural Architectures with wide
spectrum adversarial robustness (WsrNets). When trained
with the commonly used adversarial training techniques (i.e.
TRADES (Zhang et al. 2019) or PGD (Madry et al. 2019)),
on a single model without having a significant increase in
model parameters (opposing to the multiple models trained
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in parallel as in (Song et al. 2018)), the WsrNets found
have improved average robust accuracy (average model ac-
curacy on adversarial examples with different adversarial
noise strengths) while maintaining high clean accuracy (ac-
curacy on clean data without adversarial noises). To find
such WsrNets, we propose a search algorithm named Neu-
ral Architecture Search for Wide Spectrum Adversar-
ial Robustness(Wsr-NAS) leveraging the One-Shot-NAS
framework (Liu, Simonyan, and Yang 2018; Xu et al. 2020).

To prevent a significant increase in computational costs
when simultaneously generating adversarial noise at differ-
ent strengths during the search, we propose a lightweight
Adversarial Noise Estimator (AN-Estimator). The AN-
Estimator can be trained to generate adversarial noises for
each input based on a few existing adversarial noises corre-
sponding to the input, allowing adversarial noises at differ-
ent strengths to be generated at a much lower cost.

On the other hand, in the One-Shot-NAS framework, ad-
justing network architecture during search requires calculat-
ing gradient w.r.t. to the architecture weights on the valida-
tion set. To reduce the cost of performing such an operation
on multiple adversarial validation sets, we propose an Effi-
cient Wide Spectrum Searcher (EWSS). To adjust the net-
work architecture during the search, only a backward pass
over the lightweight EWSS is required, significantly reduc-
ing the computational cost.

One may find it counter-intuitive that architectural search
can benefit adversarial robustness. An intuitive example is
that in DSNet(Du et al. 2021), by having multiple branches
with vastly different designs in its network blocks, the dif-
ficulty for the adversarial noise to simultaneously attack all
branches increases, hence increasing the adversarial robust-
ness of the network. In our research, by using NAS, we give
the algorithm freedom in finding architectures with various
properties beneficial for improving adversarial robustness.

With extensive experiments, we found that by having a
much richer search signal in robustness, our proposed Wsr-
NAS algorithm can find WsrNets that have improved over-
all robustness while having around 40% reduction in search
time relative to the naive technique of searching. Moreover,
we have also empirically validated that the WsrNets gener-
alizes cross different training techniques (e.g. TRADES and
PGD), different datasets (e.g. CIFAR-10(Krizhevsky and
Hinton 2009) and ImageNet(Deng et al. 2009)) and under
different attack algorithms (e.g. FGSM(Goodfellow, Shlens,
and Szegedy 2014), PGD(Madry et al. 2019) and Black-Box
attack(Papernot, McDaniel, and Goodfellow 2016a)).

Related Works
Adversarial Attack. In terms of adversarial attack, the most
commonly used attack techniques are FGSM (Goodfellow,
Shlens, and Szegedy 2014) and PGD (Madry et al. 2019).
Some other existing techniques includes (Dong et al. 2018;
Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy 2015;
Papernot, McDaniel, and Goodfellow 2016b). The goal of
the adversarial attacks are defined as finding a noise δ with
strength smaller than ϵ on a datasetD, so that when the noise
is added on input x (with labels y), the Neural Network un-
der attack (represented by θ) would output a prediction de-

sired by the adversary (through maximizing loss L set by the
adversary). More formally, the attack model is defined as:

δ = argmaxδ,s.t.||δ||<ϵL(θ, x+ δ, y). (1)

In this research, we follow the same formulation.
Adversarial Training. To improve the adversarial robust-
ness of deep learning models, currently there exist vari-
ous forms of adversarial training techniques (Goodfellow,
Shlens, and Szegedy 2014; Madry et al. 2019; Shafahi et al.
2019; Zhang et al. 2019, 2020; Wong, Rice, and Kolter
2020). Within adversarial training, to reduce the impact of
adversarial noise on the networks, adversarial examples are
generated to train the networks. However, adversarial train-
ing commonly comes at the cost of slightly reducing net-
work accuracy on natural images(Zhang et al. 2019).
One-Shot Neural Architecture Search. The overall goal
of Neural Architecture Search (NAS) is to automatically
discover network architectures leveraging search. The NAS
method used in this research is a class of differentiable One-
Shot NAS algorithms (Liu, Simonyan, and Yang 2018; Xu
et al. 2020; Li et al. 2020) that is highly efficient in time.
In terms of performing robust-NAS, the differentiable One-
Shot NAS framework is commonly leveraged (Dong et al.
2020; Mok et al. 2021; Zoph et al. 2018; Bai et al. 2021).
Within this class of search, a super-network is maintained
to allow different sub-networks to be sampled and evaluated
according to architecture weights assigned to different op-
erations in the network blocks (cells). By updating the ar-
chitecture weights through back-propagation on a validation
set following a search objective function, the cell architec-
ture can be adjusted efficiently.

Neural Architecture Search for Wide
Spectrum Robustness

To find Neural Architectures with wide spectrum adversar-
ial robustness (WsrNets) that have improved robustness on
a wide range of adversarial noise strengths, we propose an
algorithm named Neural Architecture Search for Wide Spec-
trum Adversarial Robustness (Wsr-NAS). To reduce the cost
of generating adversarial noises at different strengths, we
proposed an Adversarial Noise Estimator. To reduce the
cost of updating network architecture during the search, we
leverage a variant of the One-Shot-NAS framework(Liu, Si-
monyan, and Yang 2018; Xu et al. 2020) named PVLL(Li
et al. 2020), where it facilitates search by leveraging a vali-
dation loss estimator.

Preliminaries on Super-Network and Search Space
Within Wsr-NAS, we maintain a super-network with micro
search space (Liu, Simonyan, and Yang 2018). The super-
network has a hierarchical architecture and the entire net-
work is formed by a stack of cells with identical configu-
rations. Within the super-network, the cells can be repre-
sented by a Directed-Acyclic-Graph where each cell con-
tains 7 nodes denoted as nodes = {I(i)|0 ≤ i ≤ 6} (each
node represents a set of hidden feature maps). Within the 7
nodes, I(0) and I(1) are outputs from the two previous cells,
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Figure 2: (a) Architecture of hidden cells (Fb or Ff ) in the AN-Estimator. (b) Architecture of the AN-Estimator. (c) Illustration
of Efficient Wide Spectrum Searcher. Given different α, β and βi, architectures can be updated accordlingly.

node I(2) to node I(5) are calculated by:

I(j) =
∑
i<j

K∑
k=1

h
(k)
i,j ·O

(k)(I(i)), (2)

where O(k)(·) represents the kth candidate operation (such
as convolution with different kernel sizes, pooling layer or
residual connections) on the edge from I(i) to I(j); h(k)i,j ∈ H
represents the weighting calculated using GumbelSoftmax
function according to adjustable weight a(k)i,j ∈ A corre-
sponding to each operations on each edges. The output node
is formed by I(6) = ∪5i=2I

(i). By adjusting the weight a(k)i,j
and having it normalized by the GumbelSoftmax function,
the architecture of the super-network can be adjusted. By
having the weight a(k)i,j adjusted according to a search objec-
tive and sampling a sub-cell according to the largest weights
in a(k)i,j , a final cell that minimizes the loss of the search ob-
jective can be obtained to form the final network.

Adversarial Noise Estimator
Within Wsr-NAS, we propose an AN-Estimator to reduce
the high cost of simultaneously generating adversarial noises
at different strengths using the super-network during the
search. When given an clean input x ∈ Rc×w×h (c is the
number of channels, w and h are the width and height of the
image) where adversarial noises at different strengths need
to be generated, the proposed AN-Estimator takes in x, a
set of N1 adversarial noises {δϵ1 , ..., δϵN1

} corresponding
to x that have different strengths and generate a new ad-
versarial noise δ̂ϵ̂ for x at a different strength. Hence, the
AN-Estimator can be expressed as:

δ̂ϵ̂ = ϕ(x, δϵ1 , ..., δϵN1
, ϵ̂). (3)

To facilitate AN-Estimator training during the search, we in-
clude a memory

Ma = {({xt, δt,ϵ1 , ..., δt,ϵN1
, ϵ̂t}, δϵ̂t), ∀1 ≤ t ≤ Ta}, (4)

where the memory has size Ta, δϵ̂t is the label for the in-
put {xt, δt,ϵ1 , ..., δt,ϵN1

, ϵ̂t} at index t and the memory is
a queue with a limited length. As the Wsr-NAS algorithm

progresses, we generate a small set of new training data for
the AN-Estimator once the super-network is updated and
trained. in this way, the latest, most efficient adversarial
noises for the super-network can be stored in the memory
for training the AN-Estimator, while the older, less effec-
tive ones will be discarded. Such a design allows the AN-
Estimator to be trained and updated as the super-network
changes during the search.

To train the AN-Estimator, we propose to minimize the
MSE loss defined as:

La(ϕ) =
1

Ta

Ta∑
t=1

∥ϕ(xt, δt,ϵ1 , ..., δt,ϵN1
, ϵ̂t)− δϵ̂t∥22. (5)

To reduce computational cost when searching for Ws-
rNets, we impose a lightweight requirement on the AN-
Estimator. Hence, to generate adversarial noise with good
quality, the architecture of the AN-Estimator requires care-
ful design. In this research, we propose three potentially ef-
fective architecture designs to be investigated empirically.
Weighted Average AN-Estimator. As a naive baseline, we
propose the weight-less Weighted Average AN-Estimator
(WA-ANE). This WA-ANE generates a new adversarial
noise with strength ϵ̂ of an input x by calculating the
weighted average of existing adversarial noises of input x
that has neighboring strengths with ϵ̂. More formally:

ϕWA(x, δϵ1 , ..., δϵN1
, ϵ̂)

=


( |ϵ̂−ϵ−|
|ϵ̂−ϵ−|+|ϵ̂−ϵ+| )δϵ− + ( |ϵ̂−ϵ+|

|ϵ̂−ϵ−|+|ϵ̂−ϵ+| )δϵ+ ,

if ϵ1 < ϵ̂ < ϵN1

ϵ̂
ϵ1
δϵ1 , if ϵ̂ ≤ ϵ1

ϵ̂
ϵN1

δϵN1
, if ϵ̂ ≥ ϵN1 .

(6)

Where ϵ− indicate the largest ϵi in the existing adversar-
ial noises that is smaller than ϵ̂, ϵ+ indicate the smallest ϵi
in the existing adversarial noises that is larger than ϵ̂. With
such design, with the transferability property of adversar-
ial noises (Papernot, McDaniel, and Goodfellow 2016a), we
can potentially remove the cost of training an AN-Estimator
during the search.
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Attention AN-Estimator. The Attention AN-Estimator (A-
ANE) generates a new adversarial noise for input x by first
obtaining a result δ̇ leveraging the WA-ANE, then using a
proposed encoder with trainable weights, the A-ANE gener-
ate an ”adjustment signal” δ̈ to be added onto the WA-ANE
output. More formally, we have

ϕE(x, δϵ1 , ..., δϵN1
, ϵ̂) = δ̇ + δ̈

= ϕWA(x, δϵ1 , ..., δϵN1
, ϵ̂)+

FA(x, δϵ1 , ..., δϵN1
, ϵ̂, θA), (7)

where FA(·) is the encoder with trainable weights θA.
With such a design, we provide more flexibility for the AN-
Estimator when the naive result δ̇ is not sufficient for per-
forming an effective attack.

To model the sequential relationship within the adversar-
ial noise sequence {δϵ1 , ..., δϵN1

}, we take inspiration from
Neural Machine Translation (Bahdanau, Cho, and Bengio
2014), where the architecture proposed for FA(·) is demon-
strated in Fig.2. Within FA(·), we include a bi-directional
RNN module to model the adversarial noises in the form of
a sequence and an attention mechanism to aggregate infor-
mation in the sequence to form the new adversarial noise.

The hidden cells Ff (·) and Fb(·) in the bi-directional
RNN are formed by Fully-Connected layers (FC-layer) and
Convolution-Pooling-Reshape (CPR) modules. The hidden
cells take in both the output hidden state from the previous
hidden cell and an adversarial noise in the form of feature
maps as inputs. To reduce computational costs, the normal-
ized adversarial noise would be encoded into a noise encod-
ing vector using the CPR module, and the norm of the adver-
sarial noise would be encoded into a norm encoding vector
using an FC-layer. The previous hidden state vector and the
two newly encoded vectors would be concatenated to form
vector hc representing the combined information of the ad-
versarial noise sequence until the current time step. By using
another FC-layer, the output hidden-state vector can be en-
coded according to hc. The initial state of the bi-directional
RNN is formed by encoding the natural input x into the form
of a hidden-state vector using a CPR module.

Within the attention mechanism, we encode query vec-
tors by extracting hidden states δϵ− and δϵ− from the for-
ward and backward RNN sequence. To form h̃q and hq as in
Fig.2(b), within Fb and Ff , we use the hidden-state vectors
extracted as previous cell hidden-state so that information in
the adversarial noise sequence near target strength ϵ̂ can be
included in the query; we encode the norm encoding vector
according to ϵ̂ to indicate the target strength to be generated
in the query and we use zero vector as the noise encoding
vector. With hc in Ff and Fb formed, the query can be en-
coded. To form the key vectors, we directly concatenate the
hidden-state vector pairs from the bi-directional RNN, since
the hidden-state vector sequence is a compressed represen-
tation of information in the adversarial noise sequence. To
form the value feature maps, we process the adversarial
noise sequence using a shared convolutional module. With
the query, keys, and values, the new adversarial noise can be
aggregated by leveraging the attention mechanism.

Algorithm 1: Wsr-NAS algorithm
1: Split training data D into Dt and Dv

2: Initialize a warm-up architecture population:
P = {Hi|i = 1, ..., N}

3: for each Hi ∈ P do
4: Warm-up architecture Hi for 1 epoch
5: end for
6: Initialize memory Mv and Ma

7: for each Hi ∈ P do
8: Adversarially train arch. Hi on Dt for 1 epoch
9: Update Ma using Hi and B random samples from Dt

10: Train AN-Estimator over Ma for Ka iterations
11: for each xj in Dv do
12: Generate {δϵ1 , δϵ2 , ..., δϵN1

} using Hi

13: Generate {δ̂ϵ̂1 , δ̂ϵ̂2 , ..., δ̂ϵ̂N2
} using the AN-Estimator

14: Evaluate Hi over {x, ...,x+ δϵN1
, ...,x+ δ̂ϵN2

}
15: end for
16: Update Mv according to evaluation results over Dv

17: end for
18: Train VLE in EWSS over Mv for Kv times
19: for t = 1 → T do
20: Sample an architecture with Hi

21: Adversarially train arch. Hi on Dt for 1 epoch
22: Update Ma, AN-Estimator and Mv as in line 9 - 16
23: Update VLE in EWSS over Mv

24: Update A using the EWSS
25: end for

With such architectural design, we gain three advantages.
(1) Instead of processing each adversarial noise separately,
the bi-directional RNN architecture allows the A-ANE to
leverage the sequential information in the adversarial noise
sequence. (2) The attention mechanism allows information
across the entire adversarial noise sequence to be freely ex-
tracted according to the target adversarial noise strength ϵ̂.
(3) The raw adversarial noise sequence can be processed and
filtered before being aggregated as Values by the attention
mechanism to form δ̈.
Encoding AN-Estimator. Similar to the A-ANE, the En-
coding AN-Estimator (E-ANE) has a WA-ANE branch and
an encoding branch with trainable weights, where the encod-
ing branch of the E-ANE is also formed by a bi-directional
RNN and an attention mechanism. However, within the E-
ANE, in the bi-directional RNN, instead of processing the
hidden states in the form of vectors, the hidden states are in
the form of feature maps. To allow this configuration, the
hidden cells are formed by convolutional layers. The query
vector is encoded from the hidden states with strength neigh-
boring ϵ̂ in a pipeline similar to encoding the query vectors
in the A-ANE; the key vectors and the value feature maps
are encoded from the hidden-state feature map sequence.

The potential advantage of the E-ANE design is that we
allow more processing before forming the Values, poten-
tially allowing a better quality for the value feature maps.
Empirical Result. Across the three designs, we find empir-
ically that the A-ANE design has the best performance, po-
tentially due to good compatibility between the A-ANE ar-
chitecture and the task of generating adversarial noise based
on existing noises given limited estimator capacity.
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NAS
Type Model Name Train Type Params (M) Natural (%) Avg. Rob.

(%)
FGSM Acc.

(%)

Standard WRN-34-10
(Zagoruyko and Komodakis 2017) Standard 46.2 95.01 - 0

Adv.
Train

ResNet-50*(He et al. 2015) Multi-Adv 23.5 80.2 14.8 -
ResNet-18(He et al. 2015) PGD-7 11.2 78.4 - 49.8
ResNet-50(He et al. 2015) PGD-7 23.5 79.2 - 53.6

WRN-34-10*
(Zagoruyko and Komodakis 2017) TRADES-1 46.2 88.6 20.8 -

Standard
NAS

AmoebaNet(Real et al. 2019) PGD-7 3.2 83.4 - 56.4
PVLL*(Li et al. 2020) PGD-7 3.5 81.3 18.6 -

NAS-Net*(Zoph et al. 2018) TRADES-1 3.3 91.8 17.4 -
DARTS*

(Liu, Simonyan, and Yang 2018) TRADES-1 3.2 91.5 14.4 -

Robust
NAS

RobNet-S(Guo et al. 2020) PGD-7 4.4 78.1 - 53.9
RobNet-M(Guo et al. 2020) PGD-7 5.7 78.3 - 54.6
RobNet-L(Guo et al. 2020) PGD-7 6.9 78.6 13.8 55.0
RACL*(Dong et al. 2020) PGD-7 3.6 80.7 23.4 57.7

AdvRush*(Mok et al. 2021) PGD-7 4.2 82.0 21.7 -
RobNet-S(Guo et al. 2020) TRADES-1 4.4 90.5 15.8 -
RACL*(Dong et al. 2020) TRADES-1 3.6 91.0 15.4 -

AdvRush*(Mok et al. 2021) TRADES-1 4.2 91.6 15.8 -
E2R-NAS*(Yue et al. 2020) TRADES-1 4.0 90.1 18.0 -
NAS-OOD*(Bai et al. 2021) TRADES-1 4.4 91.2 21.3 -

Wsr-NAS
(Naive)

WsrNet-Naive-1 TRADES-1 4.4 89.6 21.7 -
WsrNet-Naive-3 TRADES-1 4.5 89.6 22.1 -
WsrNet-Naive-6 TRADES-1 4.4 91.2 22.9 -

Wsr-NAS
(Full)

WsrNet-Basic PGD-7 4.5 80.8 24.8 62.2
WsrNet-Robust PGD-7 4.5 78.3 27.9 67.2

WsrNet-Plus PGD-7 4.7 80.7 25.7 -
WsrNet-Basic TRADES-1 4.5 90.4 22.4 -
WsrNet-Plus TRADES-1 4.7 91.3 24.2 -

Table 1: Comparisons between WsrNets and existing baselines. * indicates recreated results.

Efficient Wide Spectrum Searcher
In the process of searching for WsrNets, in the case of
naively applying the One-Shot-NAS framework, a major
source of time consumption is the process of calculating gra-
dient to update architecture weights H over the validation
set formed by not only normal inputs but alsoN1+N2 times
more adversarial validation data. To address such a limi-
tation, we propose an Efficient Wide Spectrum Searcher
(EWSS). as in Fig.2(c), the EWSS is formed by two com-
ponents, a Validation Loss Estimator (VLE) formed by an
RNN architecture encoder combined with a multi-head out-
put layer to estimate the adversarial and non-adversarial val-
idation loss based on architecture weight H and a Robust
Search Objective designed to allow proper balancing be-
tween clean accuracy and robustness at different adversarial
noise strengths. With the EWSS, when given an architec-
ture weight H and appropriate configurations in the Robust
Search Objective, gradient direction to update the architec-
ture weight H can be calculated, significantly reducing the
cost of updating architecture weight during the search.

More formally, we describe the VLE in EWSS as:

L̂ = {L̂natural, L̂ϵ1 , ..., L̂ϵN1+N2
} = ψ(H). (8)

Within Eqn.8, L̂ ∈ RN1+N2+1 is the set of estimates on

the natural validation loss and adversarial validation loss on
N1 + N2 different adversarial noise strengths for network
obtained basing on architecture weight H; the VLE ψ(·) is
formed by an RNN as architecture encoder followed by a
dense layer with n + 1 outputs. To store training data for
the VLE, a memory Mv = {(Ht,Lt), ∀1 ≤ t ≤ T} with
size T is included (for a reason similar to the memory in
the AN-Estimator). To train the VLE, during the search, we
minimize the mean square error (MSE) loss defined as

Lv(ψ) =
1

T

T∑
t=1

∥ψ(Ht)− Lt∥22 (9)

over the memory Mv , where t represents the index in the
memory, Lt is the validation loss values evaluated on Ht.

Leveraging the VLE defined, we propose the Robust
Search Objective in EWSS as:

min
A
αL̂natural + β

n∑
i=1

βiL̂ϵi

s.t. H = GumbelSoftmax(A, ξ, τ),∑n
i=1 βi = 1, α+ β = 1, α > 0, β > 0, βi > 0 ∀i

(10)

where ξ is an i.i.d sample from Gumbel(0,1) and τ is tem-
perature. With the value of α, β and different βi selected, the
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Model Train
Type

Para.
(M)

Acc.
(%)
0.03

Acc.
(%)
0.1

Acc.
(%)
0.17

Acc.
(%)
0.25

WRN-34
-10 S 46.2 0 - - -

ResNet-50 MA 23.5 37.0 12.5 6.3 3.5
ResNet-18 P7 11.2 45.6 - - -
ResNet-50 P7 23.5 45.8 - - -
WRN-34

-10* T1 46.2 46.1 18.1 11.2 7.9

Amoeba
-Net P7 3.2 39.5 - - -

PVLL* P7 3.5 47.4 15.7 7.3 3.8
NAS-Net* T1 3.3 49.1 15.5 4.4 0.5
DARTS* T1 3.2 46.9 9.3 1.23 0.1
RobNet-S P7 4.4 48.3 - - -
RobNet-M P7 5.7 49.1 - - -
RobNet-L P7 6.9 49.4 3.1 1.8 0.7
RACL* P7 3.6 47.9 22.4 14.0 9.4

AdvRush* P7 4.2 48.7 22.3 10.8 4.9
RobNet-S T1 4.4 46.9 11.6 4.11 1.27
RACL* T1 3.6 46.9 11.6 2.8 0.3

AdvRush* T1 4.2 48.2 11.8 3.1 0.3
E2R

-NAS* T1 4.0 40.5 14.5 10.2 6.9

NAS
-OOD* T1 4.4 50.3 20.6 10.5 3.8

WsrNet-N1 T1 4.4 45.8 19.1 13.3 8.6
WsrNet-N3 T1 4.5 45.9 20.3 13.3 8.7
WsrNet-N6 T1 4.4 46.3 20.1 15.6 9.41
WsrNet-B P7 4.5 48.9 22.3 15.7 12.4
WsrNet-R P7 4.5 48.4 27.2 20.3 15.5
WsrNet-P P7 4.7 48.9 23.1 17.0 13.7
WsrNet-B T1 4.5 45.9 20.0 14.1 9.4
WsrNet-P T1 4.7 47.5 22.1 16.0 11.3

Table 2: Model performances at different adversarial noise
strengths. (S: Standard, MA: Multi-Adv, PX: PGD-X, TX:
TRADES-X, ”-B”: -Basic, ”-R”: -Robust, ”-P”: -Plus),
”NX”: -Naive-X

architecture weight A in the super-network can be adjusted
according to the gradient of Eqn. 10 by A

′ ← A+ c∇A.
Within Eqn. 10, by having the α and β terms, we allow

customized priority over accuracy and overall robustness.
With different βi being summed up to 1, by adjusting cer-
tain βi to be larger relative to others, the clean accuracy of
the WsrNet found would not be impacted while increasing
robustness at the corresponding adversarial noise strength.

Search Procedure
The algorithm for Wsr-NAS is demonstrated in Algorithm.
1. The search is split into two phases, the warm-up phase and
the search phase. In the warm-up phase, the super-network
is first warmed-up (lines 3 - 5). Then, in lines 7 - 17, we
simultaneously warm up the AN-Estimator and the VLE in
EWSS. With the warm-up phase, we allow the EWSS to be

Search
Config

WsrNet
-Basic

WsrNet
-Plus

WsrNet
-Naive-1

N1, N2 3,3 3,8 1,0
Total Time 3.6 days 4.0 days 2.6 days

Search
Config

WsrNet
-Naive-3

WsrNet
-Naive-6

WsrNet
-Naive-11

N1, N2 3,0 6,0 11,0
Total Time 3.4 days 5.2 days 7.4 days∗

Search
Config RobNet MetaQNN AmobaNet

N1, N2 1,- -,- -,-
Total Time 22.6 days∗ 450 × 7 days 10 × 8 days∗

Table 3: total GPU time for different search algorithms or
search configurations. ∗ indicates estimated time.

equipped with prior knowledge on the validation loss land-
scape of natural images, normal adversarial examples and
adversarial examples generated by the AN-Estimator before
the search phase. In the search phase, at each step, we first
update the network architecture weight using the EWSS, fol-
lowed by training for the VLE and AN-Estimator. Such con-
figuration allows the EWSS and the AN-Estimator to be up-
dated as the super-network changes during the search.

Within the search, by applying the AN-Estimator and the
EWSS, by reducing the cost of generating adversarial noises
and avoiding the cost of naively performing the search on the
adversarial validation set, we perform Wsr-NAS efficiently.

Experiments
Within this research, we perform Wsr-NAS on CIFAR-
10 only, where the discovered architectures are tested on
CIFAR-10 and ImageNet. We let dataset Dt and Dv to be
different halves of the CIFAR-10 training set, let Ma be
600, let Ka be 1 and let B in the Wsr-NAS algorithm to
be 10. To generate N1 + N2 adversarial noises at different
strengths, we first divide the strengths intoN1 intervals, each
interval contains (N1+N2)/N1 adversarial noise strengths.
Within each interval, the adversarial noise corresponding to
the first strength is generated normally, while the remaining
noises are generated with the AN-Estimator. To find WsrNet
using a moderate number or a large number of adversarial
noise strengths, we search for WsrNet-Basic and WsrNet-
Plus by setting (N1, N2) to be (3,3) and (3,8) respectively.
α and β are set as 0.8 and 0.2 by default. A-ANE has been
used for all search experiments except when searching for
WsrNet-Plus, where a modified AN-Estimator has been used
to generate adversarial noises at 8 strengths. Within all ex-
periments, the step size of the PGD attack would be set to
ϵi × 2.5/20 at adversarial noise strength ϵi as in (Madry
et al. 2019). Also, we used Linf norm bound for limiting
adversarial noise strengths within the main paper.

Main Results
To illustrate the performance of WsrNets found by Wsr-
NAS, we search for WsrNets under different configura-
tions and compare their retraining results with the retrain-
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Model
Name Params

Nat.
Acc.
(%)

Rob.
Acc.
(%)

Acc.
ϵ1

(%)

Acc.
ϵ3

(%)

Acc.
ϵ5

(%)
ResNet50 23.5M 55.5 - 30.3 - -

RACL 12.0M 56.1 8.5 30.3 4.9 1.1
AdvRush 12.2M 31.5 4.1 15.4 2.1 0.2
WsrNet
-Basic 13.1M 57.2 9.0 31.0 5.3 1.3

Table 4: Generalizing different Robust-NAS architectures to
ImageNet. Tained under Fast Adversarial Training(Wong,
Rice, and Kolter 2020), ϵ1 = 0.015, ϵ3 = 0.045, ϵ5 = 0.075.

ing results of various existing baseline models in Tab.1 and
Tab.2. To perform comparisons in average adversarial ro-
bustness, we retrained the models leveraging either PGD-7
or TRADES. Within Table 1 and 2, to evaluate the overall
robustness of a model, we calculate the average accuracy of
the model across four different adversarial noise strengths
across a wide range (ϵ = 0.03, 0.10, 0.17, 0.25).

To compare the performance of WsrNet-Basic and
WsrNet-Plus with models found using existing robust-
NAS, we train WsrNet-Basic, WsrNet-Plus, RobNet-
small, RACL, AdvRush E2R-NAS and NAS-OOD under
TRADES-1 (Zhang et al. 2019). As in Tab.1, the WsrNet-
Basic and WsrNet-Plus model has a clean accuracy of 90.4%
and 91.3% respective, which is comparable to the five exist-
ing models. At the same time, WsrNet-Basic and WsrNet-
Plus have a large improvement on overall adversarial ro-
bustness (22.4% and 24.2%) relative to the five existing
models (15.8%, 15.4%, 15.8% 18.0% and 21.3%). When
the WsrNet-Basic, WsrNet-Plus and the different existing
models are trained on PGD-7, we can also find a simi-
lar result. Note that on PGD-7, the retraining hyperparam-
eters of RACL, AdvRush, WsrNet-Basic, WsrNet-Robust
and WsrNet-Plus have been tuned to trade-off clean accu-
racy and average robust accuracy for easier comparisons.
The WsrNet-Robust is WsrNet-Basic with hyper-parameter
tuned so that it gains a lower 78.3% clean accuracy but bet-
ter average robust accuracy of 27.9% for comparison with
RobNet-L at the same clean accuracy.

To compare the performance of WsrNets with robust
models gained solely relying on single strength adversarial
training, we also compare WsrNet-Basic with WRN-34-10,
where both models are trained under TRADES-1. Although
having a parameter count more than 10 times smaller than
WRN-34-10, the WsrNet-Basic gained a 1.8% higher clean
accuracy and 1.6% higher overall robustness.

To compare the performance of WsrNet-Basic with multi-
strength adversarial training, we train ResNet-50 using
PGD-7 (Madry et al. 2019). In detail, for each batch of
natural images obtained during training (with batch size
64), we generate adversarial examples for the batch at ϵ =
{0.03, 0.045, 0.06, 0.075, 0.09, 0.105}. By combining the 6
batches of adversarial examples generated as a new batch
and training the ResNet-50 using the generated batch, we
achieve multi-strength adversarial training. As in Tab.1, we

Avg.
Nat.
Acc.

Avg.
Rob.
Acc.

A
-ANE

WA
-ANE

E
-ANE−

E
-ANE

73.0% 38.7% 43.6% 67.4% 71.1% 48.9%

Table 5: Attack performance of different AN-Estimators.

Case
Adv.
Train

(s)

A.E.
Gen. (s) Search (s) EWSS

(s)

AN-E
Train

Test(s)
Basic 610.6 1151.5 191.3 - -
Wsr

-NAS 610.6 576.3 - 37.1 27.6

Table 6: Average GPU time required for different parts in a
single search loop iteration of Wsr-NAS (on CIFAR-10).

found the resulting ResNet-50 model has a clean accuracy of
80.2% and an average robust accuracy of 14.8%, being 0.5%
lower and 10.0% lower than WsrNet-Basic respectively.

AN-Estimator Ablation Study
Evaluation of Wsr-NAS Algorithm
Searching Under More Adversarial Noise Strengths. As
in Tab.1, in WsrNet-1, 3, 6, by increasing the number of ad-
versarial noise strengths from 1 to 6, we were able to gain
an average robustness increase from 21.7% to 22.9%. More-
over, on TRADES-1 retraining, by comparing the WsrNet-
Basic searched with 6 adversarial noise strengths with
WsrNet-Plus searched with 11 adversarial noise strengths,
we find that WsrNet-Plus was able to gain a 24.2% aver-
age robust accuracy, being 1.8% higher than WsrNet-Basic.
With the results, we confirm that a richer search signal al-
lows WsrNet with better overall robustness to be searched.

As in Tab.3, for Msr-NAS applied with the AN-Estimator
(MsrNet-Basic, Plus), by increasing the number of adver-
sarial noise strengths from 6 to 11, the search time increased
by 0.4 days, which indicates that the time increase required
per adversarial noise strength increase is 0.08 days. For Msr-
NAS without applying the AN-Estimator (MsrNet-1,3,6,11),
by increasing adversarial noise strength from 1 to 11, the
search time increased by 4.8 days. Hence, the time increase
required per adversarial noise strength increase is 0.48 days.
Such a result confirms that the AN-Estimator indeed allows
the Msr-Net to scale more efficiently. With such a capabil-
ity, relative to WsrNet-Naive-6, WsrNet-Plus can achieve a
better performance of 91.3% clean accuracy and 24.2% av-
erage robust accuracy (0.1% and 1.3% higher), while having
a search time reduction of 1.2 days.
Speed Analysis. To perform search time comparisons with
existing NAS techniques, we have included the search time
required for Msr-NAS and multiple existing NAS techniques
in Tab.3. For RobNet(Guo et al. 2020), the algorithm re-
lies on random sampling for discovering new architectures,
where the search time required is estimated to be 22.6 days.
For MetaQNN(Baker et al. 2017), Reinforcement Learning
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has been leveraged to perform the search, where search-
ing for clean accuracy alone requires 7 days on 450 GPUs.
Search time would further increase if adversarial examples
need to be generated. Similarly, for AmobaNet(Real et al.
2019), to search for clean accuracy leveraging Evolution-
ary Algorithms, 8 days would be required on 10 GPUs.
Compared with the Msr-NAS, which requires 3.6 to 4.0
GPU days to perform NAS under multiple adversarial noise
strengths, the Msr-NAS is more efficient in time.

To evaluate the contribution of different design compo-
nents in reducing search time, we include Tab.6. Within
Alg.1, for the setting of searching under 6 adversarial noise
strengths, within the second loop (line 7 - 18) and the third
loop (line 19 and 24), for a single iteration of search, with-
out the AN-Estimator and the EWSS, the average total time
required are 1953.4s (610.6s + 1511.5s + 191.3s). However,
by leveraging the AN-Estimator and the EWSS, the average
time required for a single iteration in the loops would be
reduced to 1251s (610.6s + 576.3s + 37.1s + 27.6s). In de-
tail, the time of performing adversarial training under PGD-
7 over Dt for one epoch remains unchanged (610.3s), but
the average time required to generate adversarial example on
the sampled networks has reduced to 575s, since adversarial
noises are required to be generated using the networkH only
on three adversarial noise strengths. For the AN-Estimator,
generating the adversarial noises for training over the mem-
ory Ma and performing inference over the validation set Dv

requires only 27.6s. The total time required by the EWSS is
37.1s, where 27.2s is consumed for generating training data
for the EWSS and 9.9s is consumed (when between lines 20
- 25 of Alg.1) for training the EWSS and using it to update
the architecture weights.
Generalization. To demonstrate the robustness obtained
through Wsr-NAS is not restricted to being effective only
for PGD attacks, we trained WsrNet-Basic using PGD-7
and evaluated its performance under FGSM. As in Tab. 1,
by being attacked by the FGSM, the WsrNet-Basic gained
an accuracy of 62.2%, being 4.5% higher than the second
best model RACL, indicating that the model architecture
found generalizes across attacks. More attack generaliza-
tion results (e.g. Black-Box attack (Papernot, McDaniel, and
Goodfellow 2016a), AutoAttack (Croce and Hein 2020))
have been included in the Appendix.

To demonstrate the WsrNets searched on CIFAR-10 gen-
eralizes across datasets, we retrain WsrNet-Basic on Ima-
geNet to compare with various baseline models. As in Tab.
4, on the ImageNet dataset, the WsrNet-Basic model has
gained a clean accuracy of 57.2% and average robust accu-
racy of 9.0% (average robust accuracy tested on adversarial
noise strengths {0.015,0.03,0.045,0.06,0.075,0.09}) which
is consistently higher than RACL, AdvRush and ResNet-50.

In this section, the performance of AN-Estimators is com-
pared under a lightweight constraint, so that designs more
suitable for the needs of Wsr-NAS can be discovered.

To perform the comparison, on CIFAR-10, we pre-trained
7 different networks with different architectures and a dif-
ferent number of epochs to simulate the different networks
obtained from the super-network in Wsr-NAS. On the train-
ing set of CIFAR-10, we generate training data for the AN-

Estimator, where the network used to generate the adversar-
ial noises is changed every 10 batches. Each version of the
AN-Estimator is trained on the training data for 1 epoch.
To evaluate the performance of different AN-Estimators, on
the CIFAR-10 test set, using the AN-Estimators trained, we
generate adversarial noises on strengths ϵ = 0.03, ϵ = 0.06
and ϵ = 0.09 to attack the 7 pre-trained models.

As in Tab.5, the average test accuracy of the pre-trained
networks is 73.0%, whereas the average robust accuracy
of the pre-trained networks is 38.7%. With naive averag-
ing, the adversarial noise generated by the WA-ANE can
only reduce the performance of the pre-trained models by
5.6%, indicating the design to be ineffective. The E-ANE−

model included is E-ANE without the attention stage, where
the Query (feature maps) obtained from encoding the bi-
directional RNN hidden states are used as the output of the
AN-Estimator. By comparing the performance of 71.1% for
E-ANE− with the performance of 48.9% for E-ANE, we can
conclude that the attention mechanism included in E-ANE
is essential for the AN-Estimator to gain good performance.
With direct access to the entire hidden state sequence, better
encoding can be obtained. The performance of the A-ANE
is 43.6%, outperforming the E-ANE by 5.3%, indicating
that in E-ANE, by having limited capacity, the bi-directional
RNN has potentially over-compressed the adversarial noise
sequence, causing the Value feature maps encoded from the
RNN hidden-states to contain fewer useful information.

Conclusions
In our research, we proposed the Wsr-NAS algorithm that
finds WsrNets with improved robustness over a wide range
of adversarial noise strengths while maintaining sufficiently
high clean accuracy. With extensive experiments, we find the
WsrNets found to generalize across different datasets, attack
types and training techniques. By proposing a lightweight
AN-Estimator that is trained to efficiently generate adversar-
ial noises during the search and an Efficient Wide Spectrum
Searcher, considerable time reduction has been obtained.
Limitations A limitation of our research is that, although
our method can find architectures with improved overall ro-
bustness, but at the small adversarial noise strength of 0.03,
the robust accuracy of WsrNet can be 1% or 2% lower than
existing SOTA models. We find overcoming this limitation
to be a potential future work of the research.
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