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Abstract

Visible-infrared person re-identification (VI-ReID) aims to
retrieve the person images of the same identity from the RGB
to infrared image space, which is very important for real-world
surveillance system. In practice, VI-ReID is more challenging
due to the heterogeneous modality discrepancy, which further
aggravates the challenges of traditional single-modality person
ReID problem, i.e., inter-class confusion and intra-class varia-
tions. In this paper, we propose an aggregated memory-based
cross-modality deep metric learning framework, which ben-
efits from the increasing number of learned modality-aware
and modality-agnostic centroid proxies for cluster contrast
and mutual information learning. Furthermore, to suppress the
modality discrepancy, the proposed cross-modality alignment
objective simultaneously utilizes both historical and up-to-date
learned cluster proxies for enhanced cross-modality associa-
tion. Such training mechanism helps to obtain hard positive ref-
erences through increased diversity of learned cluster proxies,
and finally achieves stronger “pulling close” effect between
cross-modality image features. Extensive experiment results
demonstrate the effectiveness of the proposed method, sur-
passing state-of-the-art works significantly by a large margin
on the commonly used VI-ReID datasets.

Introduction
Person re-identification (ReID) aims at retrieving a person of
interest from a large-scale image gallery set, captured across
multiple non-overlapping cameras (Cheng et al. 2016). It
plays an important role in video surveillance, security, and
pedestrian analysis, and has obtained great attention over
the past decades. Conventional person Re-ID mainly focuses
on single-modality, i.e., all person images are RGB images
taken by visible cameras during day time. In recent years,
impressive performances have been obtained on most bench-
mark datasets (Fu et al. 2021; Cheng et al. 2022), even under
the unsupervised learning scenarios. However, the visible
cameras cannot image clearly under poor lighting conditions,
e.g., in the dark environment, which greatly limits the appli-
cation of person Re-ID in the real-world surveillance system.
To overcome this obstacle, many infrared (IR) images are
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equipped in surveillance scenarios to overcome the illumi-
nation variants under different lighting conditions, which
assists the visible cameras. Therefore, this greatly shows the
importance of VI-ReID for real-world surveillance system.

In practice, VI-ReID is more challenging due to the hetero-
geneous modality discrepancy, which is caused by different
wavelength of RGB and IR images captured with different
imaging equipments. Such modality discrepancy further ag-
gravates the challenges of traditional person ReID problem,
i.e., inter-class confusion and intra-class variations (e.g., pose,
viewpoints, illumination, background cluster, occlusion, etc.).
Some detailed analysis (Liu et al. 2022) points out that, some-
times the image features corresponding to different identifies
under the same modality are even similar than those with the
same identity but under different modalities. Therefore, the
key solution to cross-modality object recognition is to achieve
modality unification, either from the image-level or feature-
level (Wei et al. 2021), or their combinations. Among all
these methods, we have found that the feature-level modality-
alignment-based methods (or their combinations) show more
impressive experiment results for the cross-modality object
recognition task. As for the feature-level alignment, exist-
ing studies mainly focus on learning modality shared or in-
variant features. The representative works include the dual-
path networks (Lu et al. 2020) to learn modality-specific and
modality-shared feature representations, and the one-stream
weight-sharing network (Hao et al. 2019) to directly extract
modality-shared features.

To reduce the modality discrepancy in feature level, we
propose a aggregated memory-based deep metric learning
framework for cross-modality VI-ReID. Recently, memory-
based contrastive learning has been extensively explored in
deep metric learning(Dai et al. 2021; He et al. 2020; Deng
et al. 2021; Liu et al. 2022). We analyze that most of these
successes owe to the increase of negative features from the
memory bank, which greatly assists the contrastive learn-
ing. While in our work, the memory-based cross-modality
deep metric learning not only benefits from the increasing
modality-aware and modality-agnostic negative examples for
cluster contrast, but also the model drift phenomena (Wang
et al. 2020; Liu et al. 2022), which adopts the historical
learned modality-aware and modality-agnostic proxies to en-
hance modality alignment with hard positive references, and
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consequentially suppress the modality discrepancy.
Specifically, the proposed memory-based cross-modality

deep metric learning consists of three components: the
modality-aware and modality-agnostic cluster contrast ob-
jective, the historical memory centroid based cross-modality
mutual information constraint, as well as the global modality-
agnostic feature matching. In the first component, the pro-
posed method learns three modality-aware proxies (RGB, IR
and auxiliary modality) and one modality-agnostic proxy for
each identity, simultaneously. To further enhance the cross-
modality association, we propose the cross-modality mutual
information constraint and the global modality-agnostic fea-
ture matching objective, assisted by the model-drift proxies
(i.e., historical modality-aware and modality-agnostic prox-
ies). Obviously, we can clearly see that our proposed cross-
modality deep metric learning simultaneously utilizes both
historical and up-to-date learned proxies for cluster contrast
based modality alignment, which increases the diversity of
proxies in the memory bank. Besides, since these historical
cluster centroids are relatively farther away from the modal-
ity/identity boundary than up-to-date dynamically learned
proxies stored in the memory bank, they could help to get
hard positive references and result in stronger “pulling close”
effect between cross-modality image features with the same
identity. Thus, the modality discrepancy can be greatly sup-
pressed, and we can learn modality-shared features while
keeping high discriminability.

The contributions can be summarized as follows:
• This paper proposes an aggregated memory-based cross-

modality deep metric learning framework, which bene-
fits from the increasing number of modality-aware and
modality-agnostic proxies for cluster contrast and mutual
information learning.

• To suppress the modality discrepancy, the proposed cross-
modality alignment objective simultaneously utilizes both
historical and up-to-date learned proxies for enhanced
cross-modality association. This mechanism helps to get
hard positive references through increased diversity of
learned proxies, and finally achieves stronger “pulling
close” effect between cross-modality image features.

• Extensive experiment results demonstrate the effective-
ness of the proposed method, which surpass the state-of-
the-art methods significantly by a large margin on the
commonly used VI-ReID datasets.

Related Work
Visible-Infrared Person Re-identification (VI-ReID)
aims to retrieve person images with the same identity from
RGB to infrared image space, or vice versa. The main chal-
lenge is the heterogeneous modality discrepancy. Therefore,
almost all works devote to achieving modality alignment
through suppressing the modality discrepancy and learning
modality-shared feature representations. Here, we roughly
divide existing works into the following categories: feature-
level and image-level modality alignment algorithms.

Feature-Level Modality Alignment aims to learn
modality-shared feature representations, which mitigates the
modality difference in feature level. The following lists some

representative works. (Wu et al. 2017) proposed a deep zero-
padding network to align data of different modalities. (Ye
et al. 2018) adopts a two-stream network architecture to ex-
tract features of different modalities, and uses a combination
of feature learning and metric learning to compensate for
the differences in modalities. (Dai et al. 2018) proposed a
cross-modal generative adversarial network (GAN), which
utilizes the generator to learn features under different modali-
ties, and uses the discriminator to classify the modalities. (Ye
et al. 2020) considers both intra-modality feature connections
and inter-modality adjacent structural information, for dual-
attentive aggregation learning. (Wu et al. 2021) proposed
a modality alignment network to discover cross-modality
nuances for VI-ReID. Overall, these methods mainly focus
on suppressing modality discrepancy though aligning the
distributions of cross-modality features.

Image-Level Modality Alignment approaches try to alle-
viate modality discrepancy by generating some intermediate
modality images. The representative GAN-based methods
for modality transfer include AlignGAN (Wang et al. 2019a),
D2RL (Wang et al. 2019b). AlignGAN proposed a pixel and
feature alignment network to generate IR image from RGB
image. D2RL introduced a dual-level discrepancy reduction
strategy by training an image-level sub-network to trans-
late a RGB image to its infrared counterpart, and vice versa.
There also contain some works trying to generate interme-
diate modality images for joint learning to achieve modality
alignment, such as X-modality (Li et al. 2020), CAJ (Ye et al.
2021), SMCL (Wei et al. 2021). Specifically, X-modal adopts
a lightweight generator to generate intermediate modality
from RGB images. CAJ randomly extracts a channel from
RGB images and expands it to three dimensions as auxiliary
modality. SMCL applies RGB and IR images to generate an
intermediate modality and learn it jointly to guide the gener-
ation of modality-invariant representations. Usually, GAN-
based methods are often difficult to train and the network
is more complex, while the methods based on intermediate
modality are often simpler and more effective.

There also contain some other methods for VI-ReID.
(Chen et al. 2021) proposed a neural feature search strategy
to select features that can reduce modality difference while
keeping feature discriminability. (Fu et al. 2021) proposed
a Batch-Norm oriented cross-modality neural architecture
search method. Such methods are theoretically feasible, but
are often difficult to get optimal solution in practice.

Memory-Based Deep Metric Learning has been exten-
sively explored in supervised, semi-supervised and unsu-
pervised learning recently (Dai et al. 2021; He et al. 2020;
Deng et al. 2021; Liu et al. 2022). Contrastive learning based
on memory bank has achieved good results in many sce-
narios(Dai et al. 2021; He et al. 2020). In MOCO(He et al.
2020), it builds a large and consistent dictionary on-the-fly to
facilitate contrastive unsupervised learning. The MUAM (Liu
et al. 2022) method proposed to learn memory-augmented
unidirectional metrics for cross-modality person ReID. In
(Deng et al. 2021), it proposed a variational prototype learn-
ing mechanism with memorized feature being injected into
the prototypes, for face recognition. Different from existing
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Figure 1: Overall framework of the proposed aggregated memory-based deep metric learning for VI-ReID. The framework
contains the weight-sharing backbone network, the historical and dynamically updated memory bank to store the modality-aware
and modality-agnostic centroids. The network is optimized simultaneously by the memory-based cluster contrast, cross-modality
mutual information constraint and the global modality-agnostic cluster contrast objective.

memory-bank based supervised contrastive learning, our pro-
posed cross-modality deep metric learning simultaneously
utilizes both historical and up-to-date learned proxies for
cluster-contrast-based modality alignment, which increases
the diversity of proxies in the memory bank.

The Proposed Method
Problem Definition
Let X v = {xv

i }N
v

i=1 and X r = {xr
i }N

r

i=1 denote the respec-
tive visible RGB images and the infrared images in a cross
modality dataset, where Nv and Nr are the number of RGB
and IR images, then the total number of training images is
N = Nv +Nr. The corresponding ground-truth label space
can be denoted as Y = {yi}N

p

i=1, where Np is the total num-
ber of person identities in the dataset. Given a certain query
person image in one modality, cross-modality person ReID
task aims to retrieve the pedestrian images in another modal-
ity with the same identity, according to the learned image
feature similarities.

As shown in Figure 1, it illustrates the overall framework
of the proposed aggregated memory-based deep matric learn-
ing for IR-ReID. The framework contains the weight-sharing
backbone network, the historical and dynamically updated
memory bank to store the modality-aware and modality-
agnostic centroids. Specifically, we adopt Resnet50 (He et al.
2016) pre-trained on ImageNet dataset to work as our back-
bone network. Then, each image corresponds to one feature
vector. Here, we denote fvi ∈ R2048×1 and fri ∈ R2048×1 as
the i-th extracted features for the corresponding images xv

i
and xri , respectively. The CNN architecture is jointly opti-
mized by the memory-based modality-aware and modality-
agnostic cluster contrast objective, the cross-modality mutual
information constraint, and the global modality-agnostic clus-
ter contrast objective.

We note that the intermediate modality is very useful for
reducing the modality discrepancy in VI-ReID. In our work,

we also adopt the channel augmentation strategy proposed
by (Ye et al. 2021) as the auxiliary modality. Therefore, our
framework contains three modality inputs, i.e., RGB, IR,
and the auxiliary modality which is generated by randomly
exchanging the color channels of the RGB image. We de-
note X a = {xai }N

a

i=1 as the auxiliary modality dataset corre-
sponding to the visible modality, where Na = Nv, and its
corresponding feature vector is denoted as fai ∈ R2048×1.

Learning Modality-Aware and Modality-Agnostic
Proxies
In the vallina memory-based cluster contrast learning (Dai
et al. 2021; Yao and Xu 2021), the most important compo-
nent is the cluster-based memory bank, where each cluster is
represented by a mean feature vectorWm (also denoted as
cluster center), and all the cluster feature vectors are updated
based on the individual features. In the following, we take
the training images in the RGB modality as example. Given
the training images X v = {xv

i }N
v

i=1, we can extract the corre-
sponding features Fv = {fvi }N

v

i=1. Then, the cluster memory
bankWv ∈ Rd×Np

for the RGB modality is initialized by
the mean of feature vectors in each cluster, where d and Np

represent the feature dimension and number of identities/-
clusters, respectively. Specifically, the cluster centroidWv

k
for the k-th class can be initialized as follows,

Wv
k =

1

|Fv
k |

∑
fvi ∈Fv

k

fvi , (1)

where Fv
k denotes the subset of training images belonging to

the k-th class in the RGB feature space, | · | represents the
number of instances in the cluster set. The cluster centroids
stored in the memory bank are updated with the correspond-
ing cluster feature vectors during model training.

Then, the memory-bank-based cluster-wise contrastive
learning can be derived as Eq. 2, which also acts as a non-
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parametric classifier.

Lv = − log
exp(fvi · Wv

yi
/τ)∑Np

k=1 exp(f
v
i · Wv

k/τ)
, (2)

where τ is the temperature hyper-parameter, yi is the cor-
responding ground-truth label for the image feature fvi , and
Wv

yi
is its positive cluster centroid stored in current memory

bank. The objective function Lv encourages the feature fvi to
have higher similarity with its corresponding ground-truth
cluster centroidWv

yi
and dissimilarity with the other Np − 1

cluster centroids.
During model training process, we adopt the mean of in-

stance features belonging to one specific cluster in a mini-
batch to momentum update the corresponding cluster center
in the memory bank, as follows,

Wv
yi
← γWv

yi
+ (1− γ)̄fvyi

, (3)

where γ is the momentum updating factor, Wv
yi

is the yi-
th cluster centroid in the memory bank, f̄vyi

is the mean of
instance features belonging to the yi-th class in current mini-
batch.

Optimizing the memory-based cluster contrast objective
function Lv in the RGB modality, we can obtain the corre-
sponding parameters of the centroids in the memory bank
Wv = {Wv

k}N
p

k=1. Corresponding, we can optimize the whole
network architecture with other modality data in the same
way, simultaneously. The loss function and centroid param-
eter set can be represented as Lr,Wr = {Wr

k}N
p

k=1 and La,
Wa = {Wa

k}N
p

k=1, for the IR modality and auxiliary modal-
ity, respectively. Meanwhile, we also construct a modality-
agnostic brunch to suppress the modality discrepancy with
all the training data in the same way, and the corresponding
loss function and parameter set can be represented as Lu,
Wu = {Wu

k }N
p

k=1.
Therefore, the memory-based cluster contrast learning un-

der the whole cross-modality data arrives at,

LW = Lv + Lr + La + Lu. (4)

Cross-Modality Mutual Information
To further enhance the modality association and suppress the
modality discrepancy, we also propose the cross-modality
mutual information constraint. As previously introduced, we
have learned the identity centroids for each modality sepa-
rately. That is to say, the centroids stored in the memory bank
only learn knowledge from their corresponding modalities.
Therefore, given a pedestrian image feature ( denoted as f ),
no matter which modality it belongs to, if its relatively near-
est centroids in different modalities correspond to the same
identity, it means that our model extracts modality-shared
image features and the modality discrepancy is eliminated.

Specifically, we propose the cross-modality mutual infor-
mation constraint according to the Kullback-Leibler diver-
gence (Wu et al. 2021). To this end, we first transform the
obtained image feature fvi into the probability response, based
on the learned image centroids in different modalities.

In the memory-based cluster contrast learning, we have
observed that we can benefit more from the historical learned

cluster centroids. Because some historical cluster centroids
are relatively farther away from the modality/identity bound-
ary than up-to-date dynamically learned centroids in the mem-
ory bank, which could result in enhanced “pulling close”
effect on the counterpart-modality distributions. Therefore,
we propose to use the centroids learned at the end of previ-
ous epoch to act as the classifier, thus the parameters of the
centroids in the following training epoch always keep fixed.

To be specific, the probability response P v
v (fvi | Cv) for

the input feature fvi under the cluster centroids in the RGB
modality Cv = {cvk}N

p

k=1, can be denoted as follows,

P v
v (fvi | Cv) =

exp
(
fvi · cv+/τ

)∑Np

k=1 exp (f
v
i · cvk/τ)

. (5)

Correspondingly, the probability response P v
r (fvi | Cr) for

the input feature fvi under the cluster centroids in the IR
modality Cr = {crk}N

p

k=1, can be denoted as follows,

P v
r (fvi | Cr) =

exp
(
fvi · cr+/τ

)∑Np

k=1 exp (f
v
i · crk/τ)

. (6)

Please note that, the historical cluster centroid param-
eters C = {Cv,Cr,Ca,Cu} here are a little different
from the centroids stored in up-to-date memory bankW =
{Wv,Wr,Wa,Wu}, though both of which could represent
the cluster centers of the identities. The historical cluster cen-
troids C = {Cv,Cr,Ca,Cu} are computed by the mean of
feature vectors within the same identity in its own modality
space, where the feature vectors are extracted by the model
obtained at the end of the previous training epoch.

Therefore, the Kullback-Leibler divergence (Wu et al.
2021) between probability responses in the RGB modality
and the IR modality arrives at,

Lv↔r
MI = P v

r (fvi | Cr) log
P v
r (fvi | Cr)

P v
v (fvi | Cv)

+

P r
v (fri | Cv) log

P r
v (fri | Cv)

P r
r (fri | Cr)

.

(7)

Obviously, objective function in Eq. 7, encourages the input
feature vector fvi in the RGB modality to have the consis-
tency probability response on both its original RGB modality
centroids and the IR modality centroids, and vice versa for
the input features in another IR modality. By this way, we
can encourage the model to learn knowledge among different
modalities, and further learn modality-irrelevant features.

As our framework contains another auxiliary modality
data X a, which is generated from the corresponding RGB
modality data X v through the channel augmentation strategy,
we also build the mutual information constraint between the
auxiliary modality and the IR modality to further suppress
the modality discrepancy. It can be denoted as La↔r

MI , which
is built in the same way as Lv↔r

MI . Therefore, the overall
cross-modality mutual information constraint can be written
as,

LMI = Lv↔r
MI + La↔r

MI . (8)

428



Global Modality-Agnostic Cluster Contrast
To further suppress the modality discrepancy, we also propose
the global modality-agnostic cluster contrast learning, on top
of the learned historical modality-agnostic cluster centroids
Cu. The objective function can be expressed as follows,

LGC = max

[∥∥fi − cuyi

∥∥
2
− min

k ̸=yi

∥fi − cuk∥2 + α, 0

]
,

(9)
where fi can be any input feature vector in all the modality
space, yi is its corresponding label/identity, Cu = {cuk}N

p

k=1
is the learned historical modality agnostic cluster centroids.
cuyi

is the positive centroid corresponding to feature fi, and α
is the least margin parameter between the positive distance
and the minimum negative distance. Through minimizing the
above loss function, we can suppress the modality discrep-
ancy in an overall modality-agnostic way.

Overall Objective Function
Finally, the proposed method will consider both the modality-
aware and modality-agnostic, as well as the historical and
up-to-date memory-based cluster contrast learning, for effi-
cient feature-level modality alignment. The overall objective
function L can be expressed as follows,

L = LW + λ1LMI + λ2LGC , (10)

where λ1 and λ2 are two hyper-parameters to balance the
above three terms in the overall loss function.

Experiment
Dataset and Evaluation Protocol
Dataset. We evaluate our proposed method on two widely
used VI-ReID datasets: SYSU-MM01 (Wu et al. 2017) and
RegDB (Nguyen et al. 2017).
• SYSU-MM01 is one relatively large benchmark VI-

ReID dataset, including 491 identities collected from four
visible and two near-infrared cameras. The training set con-
tain 395 identities with 22,258 RGB and 11,909 infrared
images, and the test set contain the remaining 96 identities.
Following (Wu et al. 2017), we evaluate the proposed method
under two search modes, the All-search mode and the Indoor-
search mode, every mode contains single-shot and multi-shot
settings. In All-search mode, the gallery set contains all vis-
ible images, while for indoor-search mode, the gallery set
only contain images captured from indoor cameras. In both
of these two modes, the query set contain all infrared testing
images. For single-shot setting, we randomly sample 301
images of 96 identities in the gallery set, while 3010 images
in multi-shot setting.
• RegDB dataset is captured by a pair of aligned visible

and infrared cameras (Nguyen et al. 2017). It contains 412
identities with 8240 images, where randomly selecting 206
identities for training and the remaining 206 identities for test-
ing, and each identity corresponds to 10 RGB and 10 infrared
images. During model evaluation, we adopt the commonly
used two experiment settings on RegDB dataset: Visible-
to-Infrared and Infrared-to-Visible, representing querying
visible image from infrared image gallery, and vice versa.

Evaluation Protocol. All experiments follow the common
evaluation protocols used for VI-ReID (Wu et al. 2017; Ye
et al. 2018). The Cumulative Matching Characteristic (CMC)
and mean Average Precision (mAP) are adopted as evaluation
matrix. We run the code five times under each experiment
setting, and report the mean precision for all experiments.

Implementation Details. We adopt ResNet-50 (He et al.
2016) pre-trained on ImageNet as our backbone network. Our
model is implemented by PyTorch and trained on a single
RTX3090 GPU platform. Following CAJ (Ye et al. 2021),
We inserted nonlocal (Wang et al. 2018) structure inside
Resnet-50 network architecture. During model optimization,
we adopt the Adam optimization method, the weight decay
is set to 0.0005, the initial learning rate is set to 0.00035 with
a warmup strategy, and it is divided by 10 at the 20-th and
40-th epochs. The input images are re-scaled to the size of
384×128 with data augmentation like randomly flipping and
erasing used. We train the whole model for 80 epochs overall.
For each training step, the batch-size is set to 64, where we
randomly sample 8 identities, and each with 4 RGB and 4
infrared images. The momentum update factor in Eq. 3 is set
to 0.1 for the modality-agnostic centers and 0.3 for other three
modality-aware centers. The hyper-parameters λ1 and λ2 in
Eq. 10 is set to 1.2 and 1.0, respectively. All the temperature
parameter τ in Eq. 2 5 6 is set to 0.05, and α in Eq. 9 is set
to 0.3, empirically.

Comparison with State-of-the-Art Methods
We compare the proposed method with existing state-of-
the-art approaches, including Zero-Pad(Wu et al. 2017),
HSME(Hao et al. 2019), D2RL(Wang et al. 2019b), Align-
GAN(Wang et al. 2019a), X-modal(Li et al. 2020), cm-
SSFT(Lu et al. 2020), DDAG(Ye et al. 2020), HAT(Ye, Shen,
and Shao 2020), CM-NAS(Fu et al. 2021), MPANet(Wu et al.
2021), CAJ(Ye et al. 2021), FMCNet(Zhang et al. 2022),
MAUM(Liu et al. 2022).

Results on SYSU-MM01 Dataset. As shown in Table 1,
the proposed method yields the best results, outperforming all
existing state-of-the-art methods. In the four experiment set-
tings: All-search Single-shot, All-search Multi-shot, Indoor-
search Single-shot, Indoor-search Multi-shot, our method
achieves 72.01%, 65.77%, 86.06% and 80.64% in terms of
mAP, surpassing the second best method by a margin of
3.22%, 2.86%, 4.12% and 5.53%, respectively.

Results on RegDB Dataset. As shown in Table 2, our
proposed method also achieves the best performances over all
the compared methods. In the Visible-to-Infrared experiment
setting, we achieve 93.15% and 88.32% in terms of Rank-1
and mAP evaluation matrices, surpassing the second best by
a margin of 4.03% and 3.23%, respectively. While for the
Infrared-to-Visible experiment setting, we achieve 93.42%
Rank-1 accuracy and 87.95% mAP, surpassing the second
best by a margin of 5.04% and 3.61%, respectively.

Ablation Study
The proposed cross-modality deep metric learning framework
contains three novel ingredients corresponding to three terms
as shown in Eq. 10: 1) the modality-aware and modality-
agnostic cluster contrast objective LW ; 2) the historical
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Methods Venue
All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

Zero-Pad(Wu et al. 2017) ICCV-17 14.80 15.95 19.13 10.89 20.58 26.92 24.43 18.86
HSME(Hao et al. 2019) AAAI-19 20.68 23.12 - - - - - -

D2RL(Wang et al. 2019b) CVPR-19 28.9 29.2 - - - - - -
AlignGAN(Wang et al. 2019a) ICCV-19 42.40 40.70 51.50 33.90 45.90 54.30 57.10 45.30

X-Modal(Li et al. 2020) AAAI-20 49.92 50.73 - - - - - -
cm-SSFT(Lu et al. 2020) CVPR-20 61.60 63.20 63.40 62.00 70.50 72.60 73.00 72.40

DDAG(Ye et al. 2020) ECCV-20 54.75 53.02 - - 61.02 67.98 - -
HAT(Ye, Shen, and Shao 2020) TIFS-20 55.29 53.89 - - 62.10 69.37 - -

CM-NAS(Fu et al. 2021) CVPR-21 61.99 60.02 68.68 53.45 67.01 72.95 76.48 65.11
MPANet(Wu et al. 2021) CVPR-21 70.58 68.24 75.58 62.91 76.74 80.95 84.22 75.11

CAJ(Ye et al. 2021) ICCV-21 69.88 66.89 - - 76.26 80.37 - -
FMCNet(Zhang et al. 2022) CVPR-22 66.34 62.51 73.44 56.06 68.15 74.09 78.86 63.82

MAUM(Liu et al. 2022) CVPR-22 71.68 68.79 - - 76.97 81.94 - -
Ours - 74.77 72.01 78.35 65.77 83.48 86.06 88.43 80.64

Table 1: Comparison with the state-of-the-art VI-ReID methods on SYSU-MM01 dataset.

Methods Venue Visible-to-Infrared Infrared-to-Visible
Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP

Zero-Pad(Wu et al. 2017) ICCV-17 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82
HSME(Hao et al. 2019) AAAI-19 50.85 73.36 81.66 47.00 50.15 72.40 81.07 46.16

D2RL(Wang et al. 2019b) CVPR-19 43.4 66.1 76.3 44.1 - - - -
AlignGAN(Wang et al. 2019a) ICCV-19 57.9 - - 53.6 56.3 - - 53.4

X-Modal(Li et al. 2020) AAAI-20 62.21 83.13 91.72 60.18 - - - -
cm-SSFT(Lu et al. 2020) CVPR-20 72.3 - - 72.9 71.0 - - 71.7

DDAG(Ye et al. 2020) ECCV-20 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
HAT(Ye, Shen, and Shao 2020) TIFS-20 71.83 87.16 92.16 67.56 70.02 86.45 91.61 66.30

CM-NAS(Fu et al. 2021) CVPR-21 84.54 95.18 97.85 80.32 82.57 94.51 97.37 78.31
MPANet(Wu et al. 2021) CVPR-21 83.7 - - 80.9 82.8 - - 80.7

CAJ(Ye et al. 2021) ICCV-21 85.03 95.49 97.54 79.14 84.75 95.33 97.51 77.82
FMCNet(Zhang et al. 2022) CVPR-22 89.12 - - 84.43 88.38 - - 83.86

MAUM(Liu et al. 2022) CVPR-22 87.87 - - 85.09 86.95 - - 84.34
Ours - 93.15 96.91 98.54 88.32 93.42 97.10 98.53 87.95

Table 2: Comparison with state-of-the-art VI-ReID methods on RegDB dataset.

Methods Channels
SYSU-MM01(Single-shot) RegDB(Visible-to-Infrared)All-search Indoor-search

Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP
LW 2 57.81 92.65 97.14 57.45 62.30 95.76 98.91 69.73 89.68 95.53 97.77 85.27

LW + LMI 2 69.79 95.48 98.64 67.65 79.99 98.51 99.46 83.09 92.01 96.59 98.36 87.15
LW + LMI + LGC 2 69.94 95.35 98.70 67.92 79.94 98.71 99.65 83.23 91.78 96.56 98.38 87.45

CE 3 65.97 94.17 97.79 62.61 71.53 97.25 99.47 76.62 83.20 93.69 96.26 77.18
Lu 3 67.93 95.20 98.45 65.58 76.61 98.52 99.76 80.94 91.59 96.34 97.99 86.49
LW 3 66.99 94.44 98.09 64.85 75.74 97.61 99.32 79.82 91.16 96.28 98.05 87.16

LW + LD
MI 3 71.95 96.35 98.78 68.80 79.81 98.79 99.84 83.11 93.03 96.74 98.30 88.20

LW + LMI 3 73.97 96.64 99.13 71.27 83.68 98.52 99.54 85.69 93.05 96.96 98.47 88.28
LW + LD

MI + LD
GC 3 71.88 96.46 98.72 69.12 80.10 98.66 99.81 83.67 93.19 96.85 98.32 88.27

LW + LMI + LGC 3 74.77 96.80 99.11 72.01 83.48 98.96 99.90 86.06 93.15 96.91 98.54 88.32

Table 3: Ablation study on SYSU-MM01 and RegDB datasets. 2 channels represents the model only adopts RGB and IR images
as inputs, while 3 channels means that we also add another auxiliary modality (Ye et al. 2021) as input.

memory-based cross-modality mutual information constraint
LMI ; 3) the global modality-agnostic cluster contrast ob-
jective LGC . To real how each ingredient contributes to the
performance improvement, we conduct comprehensive abla-

tion study to analyze different elements in Eq. 10.

Specifically, we implement five variants of the proposed
method as follows: 1) “CE”: Using only the cross-entropy
loss to train network as one baseline; 2) Lu: Using only the
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Figure 2: Rank-1 and mAP accuracies with varying values of
λ1 on SYSU-MM01 under Single-shot All-search mode.
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Figure 3: Rank-1 and mAP accuracies with varying values of
λ2 on SYSU-MM01 under Single-shot All-search mode.

modality-agnostic cluster contrast objective as illustrated
in the last term of Eq. 4; 3) LW : Training the network
with objective function LW ; 4) LW + LMI : Training the
network jointly with these two items LW and LMI ; 5)
LW +LMI +LGC : Our final algorithm which optimizes the
network jointly with these three items. In order to illustrate
the effectiveness of the proposed historical memory-based
training mechanism, we also implement their corresponding
up-to-date dynamic memory-based mutual information con-
straint (denoted asLD

MI ) and global modality-agnostic cluster
contrast (denoted as LD

GC ), which means that the cluster cen-
troids used in Eq. 8 and Eq. 9 are from the centroids stored in
up-to-date memory bank. Corresponding, we also implement
another two variants of the method: 6) LW + LD

MI : Training
the network joint with LW and LD

MI ; 7)LW + LD
MI + LD

GC :
The dynamically trained network with the overall objective.

The performances of these method variants are summa-
rized in Table 3, where the ablation experiments are con-
ducted on both SYSU-MM01 and RegDB datasets under
three experiment settings. By comparing the performance of
methods “CE” and Lu, we can conclude that the memory-
bank based cluster contrast learning is better than that of
the baseline cross-entropy method. When we add the mutual
information constraint LMI and the global cluster contrast
objective LGC into the baseline method LW step by step, the
performance under all the experiment settings could be fur-
ther improved gradually. Specifically, comparing the methods
LW +LMI with LW +LD

MI , as well as LW +LMI +LGC

with LW + LD
MI + LD

GC , we can clearly conclude the su-
periority of our proposed training mechanism by simultane-
ously utilize both historical and up-to-date learned proxies
for enhanced cross-modality association, which improves
the corresponding baseline method by an average margin of
2.68% mAP under All-search Single-shot experiment setting,
and 2.48% mAP under Indoor-search Single-shot setting, on
SYSU-MM01 dataset.

As we implement our method based on existing channel
augmented method (Ye et al. 2021) which manually generates
color-irrelevant images as the auxiliary modality, we also im-
plement another baseline version of the proposed method (2
channels) without using auxiliary modality data. Experiment
results shown in Table 3 also illustrate the effectiveness of
the proposed method.

Hyper-Parameter Sensitivity Analysis As is shown in
Figure 2 and Figure 3. As defined in Eq. 10, the overall
objective function contains two hyper-parameters (i.e., λ1 and
λ2 ) to balance the following three components: LW , LMI

and LGC . To investigate the effect of hyper-parameters on the
model performance, we conduct comprehensive experiments
with various values of these parameters. Figure 2 illustrates
the model performance in terms of Rank-1 accuracy and mAP
with varying values of λ1 from 0.8 to 2.0 when λ2 is set to
1.0, on SYSU-MM01 dataset under All-search Single-shot
experiment setting. We can clearly see that the model could
obtain best performance when λ1 = 1.2. Correspondingly,
Figure 3 shows model performance with varying values of λ2

from 0.0 to 2.5 when λ1 = 1.2, under the same experiment
setting as that in Figure 2. It can be seen that our method
yields best performance when λ1 = 1.2 and λ2 = 1.0.

Conclusion
In this paper, we propose a aggregated memory-based cross-
modality deep metric learning for VI-ReID. The proposed
method can not only benefit from the increasing number of
learned modality-aware and modality-agnostic centroid prox-
ies for cluster contrast and mutual information learning, but
also simultaneously utilizes both historical and up-to-date
learned cluster proxies to further suppress the modality dis-
crepancy. This training mechanism helps to achieve stronger
“pulling close” effect between two modality features. Exten-
sive experiment results demonstrate the superiority of the
proposed method. In the future, we would like to further
study the memory-based multi-proxy deep metric learning,
and extend our work to other cross-modality matching tasks.
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