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Abstract

Zero-shot learning (ZSL) aims to predict unseen classes
whose samples have never appeared during training. As an-
notations for class-level visual characteristics, attributes are
widely used semantic information for zero-shot image classi-
fication. However, the current methods often fail to discrimi-
nate those subtle visual distinctions between images due to
not only the lack of fine-grained annotations, but also the
issues of attribute imbalance and co-occurrence. In this pa-
per, we present a transformer-based end-to-end ZSL method
named DUET, which integrates latent semantic knowledge
from the pre-trained language models (PLMs) via a self-
supervised multi-modal learning paradigm. Specifically, we
(1) developed a cross-modal semantic grounding network to
investigate the model’s capability of disentangling semantic
attributes from the images; (2) applied an attribute-level con-
trastive learning strategy to further enhance the model’s dis-
crimination on fine-grained visual characteristics against the
attribute co-occurrence and imbalance; (3) proposed a multi-
task learning policy for considering multi-model objectives.
We find that DUET can achieve state-of-the-art performance
on three standard ZSL benchmarks and a knowledge graph
equipped ZSL benchmark, and that its components are effec-
tive and its predictions are interpretable.

Introduction
Zero-shot learning (ZSL) aims to mimic human’s inference
ability to learn novel concepts based on prior experience
without seeing them beforehand. Early embedding-based
ZSL methods project the input into a common vector space
where the unseen class prediction can be implemented by
searching the nearest class. Generative ZSL methods cre-
ate synthetic data via the side information of unseen classes,
which transforms ZSL into a standard supervised learning
problem with less bias toward seen or unseen classes.

As annotations for image visual characteristics, attributes
are among the most popular semantic information for ZSL.
However, the attributes in real world are typically not an-
notated to image regions but to a whole class. Recently,
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Figure 1: (a) Attribute imbalance. (b) Attribute co-
occurrence. (c) Our attribute-level contrastive learning strat-
egy which chooses those distinctive classes as positive refer-
ences when they are associated with one common attribute
(e.g., “spotted”) and those similar classes as negative ref-
erences when they have mutually exclusive attributes (e.g.,
“striped”) toward the same aspect (e.g., “wing pattern”).

some attention-based ZSL methods (Chen et al. 2022b,a)
emerge to distinguish the discriminative regions in image
classification under the guidance of attentive attribute infor-
mation. As pointed out by (Wang et al. 2021), these sys-
tems suffer from the imbalanced attribute distribution (i.e.,
some attributes are highly frequent while some are rare),
as well as the attribute co-occurrence which impacts at-
tributes’ discrimination capability. For example, in a zero-
shot scene classification dataset SUN (Patterson and Hays
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2012), the attributes “trees” and “clouds” are associated with
301 and 318 classes, respectively, while “railroad” and “fire”
only appear in 15 and 10 classes. Also, “flowers” appears
with “leaves” 39 times, but “flowers” alone only appears
10 times; Such distribution bias may influence the model’s
judgment on those unseen classes which contain rare at-
tributes or new attribute combinations.

To address these issues, we propose a novel end-to-
end ZSL framework named DUET (Cross-moDal Seman-
tic GroUnding for ContrastivE Zero-shoT Learning). Unlike
previous ZSL methods in Figure 2(a) that emphasize uti-
lizing more external class knowledge, augmenting data, or
developing better vision encoders, we focus on transferring
knowledge from PLMs to vision encoder in a self-supervised
manner, as shown in Figure 2(b), giving model the ability
for fine-grained semantic grounding (i.e., the ability for lo-
cating relevant visual characteristics in an image given a
textual attribute). Specifically, a prompt-based Feature-to-
Sequence Transformation (FST) proxy is utilized to trans-
form different types of attributes into a textual sequence,
making our model compatible to multiple ZSL tasks with
diverse side information. A Cross-modal Semantic Ground-
ing (CSG) network is developed to leverage the semantics
in a PLM via a multi-task learning procedure. Moreover, we
propose an attribute-level contrastive learning (ACL) mech-
anism as shown in Figure 1(c), where distinctive classes
are selected as positive references when they are associated
with one common attribute (e.g., “spotted”) and those sim-
ilar classes as negative references when they have mutually
exclusive attributes (e.g., “striped”) toward the same aspect
(e.g., “wing pattern”) of the image. This mechanism enables
the model to distinguish subtle attribute differences between
closed images, and find out the overlapped features between
different images. The contributions can be summarized as:

• To the best of our knowledge, DUET is the first to inves-
tigate PLMs for zero-shot image classification. It includes
a novel end-to-end multi-modal learning paradigm.

• A cross-modal semantic grounding network is developed
for effective knowledge transfer from the PLM to the vi-
sion transformer encoder. An attribute-level contrastive
learning mechanism is proposed to address the attribute
imbalance and co-occurrence issues, which further en-
hances the model’s ability for distinguishing fine-grained
vision characteristics in both seen/unseen images.

• Experiments is conducted on various ZSL benchmarks
equipped with attributes and knowledge graphs. Our code
is available at https://github.com/zjukg/DUET.

Related Work
Zero-shot Image Classification
The core idea of zero-shot image classification is to trans-
fer semantic knowledge from seen classes to unseen classes
based on their semantic information (Chen et al. 2021a,b).

Embedding-based ZSL methods (Frome et al. 2013) in-
tend to build mapping functions toward the images and/or
the classes, and whether a class is the label of a sample
can be determined by matching their vectors in the same

Figure 2: (a) The paradigm of previous ZSL methods. (b)
The paradigm of our method DUET which exploits the se-
mantics of PLMs to augment the transformer-based vision
encoder via reconstructing masked attributes (e.g., “spot-
ted”) with a cross-model attention mechanism.

space using similarity metrics. The Generative ZSL meth-
ods (Chen et al. 2021d,c; Geng et al. 2021a) are introduced
to use various generative models (e.g., VAEs and GANs
) for creating synthetic data based on semantic features,
which can compensate for the shortage of unseen classes
and convert ZSL into a supervised classification task. Re-
cently, some Attention-based methods begin to explore the
discriminative region features guided by attentive semantic
information. Specifically, RGEN (Xie et al. 2020) devises
the attention technique to construct a region graph for trans-
ferring knowledge among different classes. GEM-ZSL (Liu
et al. 2021) utilizes gaze embedding to improve the localiza-
tion of discriminative attributes. MSDN (Chen et al. 2022b)
incorporates mutually visual-attribute attention sub-net for
semantic distillation, while TransZero (Chen et al. 2022a)
further extends MSDN via improving the attention layers by
transformers. However, they are still confused by the univer-
sal phenomena of the attribute imbalance and co-occurrence
(Zhao et al. 2019; Wang et al. 2021), as shown in Figure 1.

In contrast to these methods, we leverage the seman-
tic knowledge in PLMs, and design a cross-modal seman-
tic grounding network to encourage the model to separate
those attributes from images. Furthermore, we develop an
attribute-level contrastive learning mechanism to address the
attribute imbalance and co-occurrence issues, which further
enhances the model’s discrimination of different indepen-
dent characteristics in a self-supervised manner.

Methodology
Let Ds = {(xs, ys)|xs ∈ X s, ys ∈ Ys} be the train-
ing set, where xs is an image with label ys attached, and
Du = {(xu, yu)|xu ∈ X u, yu ∈ Yu} be the unseen dataset,
where Yu and Ys are disjoint. Each label y corresponds to
a class c ∈ C = Cs ∪ Cu. Specifically, ZSL aims to recog-
nize images of unseen classes (Cu) by transferring learned
knowledge from seen classes (Cs) using their side informa-
tion (e.g., attributes). In this study, we assume attributes an-
notated to classes are given, where each attribute is some-
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Figure 3: DUET consists of three parts: (1) a Feature-to-sequence transformation (FST) module which unifies attributes of each
class into a textual format; (2) a Cross-modal semantic grounding (CSG) module which enables the knowledge transfer from
PLM to vision transformer encoder via cross-modal mask reconstruction (CMR); and (3) a Attribute-level contrastive learning
(ACL) module which enhances the signal in CSG in a self-supervised manner.

times associated with a real or binary value for indicating
its degree. All the attributes of a dataset are denoted as
A = {a1, . . . , a|A|}, and the attributes of a class c is de-

noted as zc =
[
zc1, . . . , z

c
|A|

]⊤
.

Feature-to-Sequence Transformation
For ZSL datasets with binary format attributes, we assume
ai ∈ A is in the attribute set Ac of class c if zci = 1. Specif-
ically, we propose a prompt-based policy to semi-serialize
these discrete attributes to accommodate the sequential in-
puts of PLMs, inspired by the structured tabular data pre-
training (Yin et al. 2020). Concretely, we cluster fine-grained
attributes to define k class-specific prompt set P (i.e., ab-
stract attribute set) where A = P1 ∪ ... ∪ Pk. Then, given a
class c, we semi-serialize its attributes with prompt (name)
put ahead of eachPc, and take special symbol “|” for prompt
set separation. Taking the encoded attribute sentence Âc for
the class “Otter” in AWA2 (Xian et al. 2019) dataset as an
example:

..| color︸ ︷︷ ︸
Prompt

: brown︸ ︷︷ ︸
Attribute

| haspart︸ ︷︷ ︸
Prompt

: tail, flippers, ...︸ ︷︷ ︸
Attributes

|.. . (1)

Obviously, compared to annotating large-scale fine-grained
attributes for each image, it is easier to cluster limited at-
tribute names. Since many ZSL datasets already have their
incipient attribute divisions such as SUN (Patterson and
Hays 2012), we just need to make little adjustments like re-
moving the repeated prefixes (e.g., “has”) and revising some
ambiguous P . For knowledge-based ZSL (a.k.a. K-ZSL)

datasets such as AWA2-KG in OntoZSL (Geng et al. 2021a),
given a triple (c, rel, a), e.g., (Zebra, hasPart, Four legs), we
simply take the relation rel as the prompt of attribute a.

Cross-modal Semantic Grounding
Attribute Phrase Masking (APM). We apply an APM
strategy to mask a complete attribute phrase at each step
and then urge the model to recover it. We think discrimi-
native attributes with low frequency within the attribute col-
lection are more important. Therefore, we sample the target
attribute at to be masked via a linear weighted random sam-
pling (LWRS) strategy: at = LWRS(A). Given a class c,
the probability P (at = aj |Ac) for sampling attribute aj as
the act is:

P =
wj∑

ai∈Ac wi
, wj =

1∑
c′∈Cs I[aj ∈ Ac′]

, (2)

where I[aj ∈ Ac′] is an indicator function (i.e., it is 1 when
aj ∈ Ac′, otherwise 0).

Since the scale of non-repetitive attribute sentence Â is
normally much smaller than X s (i.e., |Cs| ≪ |X s|), we
propose random attributes pruning (RAP) over the Ac to
remove part of the attributes (except at) toward a class
within each training step. Specifically, we denote Arap =
RAP (rrap,A) with hyperparameter rrap as the pruning ra-
tio. This will make the model to recover the attribute based
on relevant visual information rather than trickily utilizing
attribute co-occurrence. Thus, the masked attribute sentence
constructed based on Arap, denoted as Ârap\t, is the input
of PLM encoder.
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Cross-modal Mask Reconstruction (CMR). We lever-
age the transformer architecture to encode both the visual
features and textual attributes. Specifically, we split an im-
age x (in class c) into patches sequence and feed them into
the vision transformer encoder with 1-D position embedding
attached. Meawhile, a learnable embedding vcls (marked
with [CLS]) is prepended whose state at the output serves
as the representation of the image. Subsequently, as shown
in Figure 3, K cross attention layers are stacked behind the
parallel encoders for cross-modal information transfer. Each
of them consists of one bi-directional cross-attention block,
two self-attention blocks and two feed-forward blocks. A
residual connection and layer normalization are added be-
hind each block. The keys and values (Vaswani et al. 2017)
from each modality are passed as the input to other modal-
ity’s multi-headed attention blocks. Let ṽ and ã be the output
representation of image x and the masked target attribute,
respectively. The objective Lcmr for CMR is

Ex∼X s [−zat

∑Len(w)

i=1
logP (wi | Ârap\t, x)] , (3)

where w represents the token sequence of target attribute
at in PLM’s vocabulary V , Specifically, zat

is the expres-
sive degree score for attribute at in class c, which adaptively
gives more weights to those highly confident attributes (i.e.,
conspicuous characteristics in a class). Moreover, we denote

P (wi | Ârap\t, x) = exp (ãi · ewi
)/
∑

w′∈V
exp (ãi · ew′),

(4)
where ew refers to the token embedding of w.

Basic ZSL Classification. Following (Chen et al. 2022a;
Xu et al. 2020), we present the attribute regression loss Lar

to encourage DUET to accurately map the image represen-
tation into corresponding attribute embedding:

Lar = Ex∼X s∥ṽ − z∥22 , (5)

where z is the class-level attribute vector for image x. Mean-
while, we utilize the cross-entropy loss to enforce the image
to have the highest compatibility score with its correspond-
ing class semantic vector:

Lcc = Ex∼X s [− log
exp (ṽ · z)∑

ĉ∈Cs exp (ṽ · zĉ)
] . (6)

To further strengthen DUET’s discriminative ability towards
different classes with limited samples, we define a class-
level supervised contrastive loss:

Lcon = Ex∼X s [− log fθ(ṽ | s, x)] , (7)

where s is the input sentence on language side. Specifically,
let ṽ+ be the representation of positive image which has the
same class label as ṽ, those features with distinct label inside
the mini-batch make up a negative samplesN (ṽ). We define
fθ(ṽ|s, x) as:

fθ =
exp(D(ṽ, ṽ+)/τ)

exp(D(ṽ, ṽ+)/τ) +
∑

ṽ′∈N (ṽ) exp(D(ṽ, ṽ′)/τ)
,

(8)
where τ is the temperature hyper-parameter. D(ṽ, ṽ+) de-
notes the cosine similarity between H(ṽ) and H(ṽ+), where
H(.) is a non-linear projection head (Chen et al. 2020).

Multi-task Learning. As the core part of cross-modal se-
mantic grounding (CSG), the multi-task learning procedure
(Sener and Koltun 2018; Whitehead et al. 2021) forces the
model to spread attribute information between the vision
side and the language side via a task switching strategy.
Namely, DUET conducts CMR at stage TCSG by access-
ing the visual patches and Ârap, and conducts simple image
classification task at stage TCLS without seeing the textual
attributes. Specifically, the input sequence stmp at TCLS is
fixed as the prompt template to mimic the single-modal test-
ing phase:

..| color︸ ︷︷ ︸
Prompt

: | haspart︸ ︷︷ ︸
Prompt

: | pattern︸ ︷︷ ︸
Prompt

: | shape︸ ︷︷ ︸
Prompt

: |.. . (9)

Let LCLS , LCSG be the loss function of basic ZSL classi-
fication and CSG, respectively. At each step, we apply the
objective LCLS (for TCLS) with probability 1− ρ, or LCSG

(for TCSG) with probability ρ:

LCLS = Lzsl + λconLcon , (10)
LCSG = Lzsl + λcmrLcmr , (11)

where we denote Lzsl = Lcc + λarLar as the “ZSL loss”.

Attribute-level Contrastive Learning
To further strengthen the model’s sensitivity on subtle vi-
sual differences against the attribute co-occurrences, we in-
troduce an attribute-level contrastive learning (ACL) module
with the adaptive loss function:

Lacl = Ex∼X s [−Min(za, za+) log fϕ(ã | s, x)] , (12)

where fϕ(ã | s, x) follows the base formulation of Eq. (8),
but there are 3 main differences between fϕ and fθ:

(i) Target Object and Stage. fϕ targets at the mean-
pooling representation of ã on language side of stage TCSG,
where the input sentence s is Ârap\t. While fθ targets at the
feature (ṽ) on vision side, which is applied at stage TCLS

with a fixed prompt template (9) as the stmp.
(ii) Sampling Strategy. For class-level fθ, we simply pick

those images, which share the same class label with original
sample as positive, and then define the rest as in-batch neg-
ative. While for attribute-level fϕ, we design an attribute-
based sampling strategy: Given a class c and its target at-
tribute act , we assume ac−t as the negative attribute from seen
class c−, and ac+t as the positive attribute from seen class c+.
We claim the precondition as:

c ̸= c+ ̸= c−, act = ac+t ̸= ac−t , (13)

act , a
c−
t ∈ Pt, ac−t /∈ Pc

t , a
c
t /∈ Pc−

t , (14)

where Pt is the original class-agnostic prompt set that at
belongs to, and Pc

t , Pc−
t is the class-specific prompt set in

class c, c−. All c+, c− that satisfies this precondition make
up the candidate class set C+ and C−, respectively.

(iii) Sampling Probability. We employ a heuristic process
to let the model select those c+ whose Ac+ are more incon-
sistent, and c− whoseAc− are more similar, compared with
Ac. Then, we non-repetitively choose instances (i.e. xc− and
xc+) from these classes, and encode them by DUET to get
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Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
T1 U S H T1 U S H T1 U S H

†

TF-VAEGAN (ECCV) (2020) 64.9 52.8 64.7 58.1 66.0 45.6 40.7 43.0 72.2 59.8 75.1 66.6
Composer (NeurIPS) (2020a) 69.4 56.4 63.8 59.9 62.6 55.1 22.0 31.4 71.5 62.1 77.3 68.8

CE-GZSL (CVPR) (2021) 77.5 63.1 66.8 65.3 63.3 48.8 38.6 43.1 70.4 63.1 78.6 70.0
GCM-CF (CVPR) (2021) – 61.0 59.7 60.3 – 47.9 37.8 42.2 – 60.4 75.1 67.0

FREE (ICCV) (2021c) – 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1
HSVA (NeurIPS) (2021d) 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 – 59.3 76.6 66.8

AGZSL (ICLR) (2021) 57.2 41.4 49.7 45.2 63.3 29.9 40.2 34.3 73.8 65.1 78.9 71.3

⋆

APN (NeurIPS) (2020) 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 57.1 72.4 63.9
DVBE (CVPR) (2020) – 53.2 60.2 56.5 – 45.0 37.2 40.7 – 63.6 70.8 67.0

DAZLE (CVPR) (2020b) 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
RGEN (ECCV) (2020) 76.1 60.0 73.5 66.1 63.8 44.0 31.7 36.8 73.6 67.1 76.5 71.5

GEM-ZSL (CVPR) (2021) 77.8 64.8 69.3 67.2 62.8 38.1 35.7 36.9 67.3 64.8 77.5 70.6
MSDN (CVPR) (2022b) 76.1 68.7 67.5 68.1 65.8 52.2 34.2 41.3 70.1 62.0 74.5 67.7

TransZero (AAAI) (2022a) 76.8 69.3 68.3 68.8 65.6 52.6 33.4 40.8 70.1 61.3 82.3 70.2

DUET (Ours) 72.3 62.9 72.8 67.5 64.4 45.7 45.8 45.8 69.9 63.7 84.7 72.7

Table 1: Results (%) of our method and the baselines. † and ⋆ indicate generative methods and non-generative methods,
respectively. The best results in baselines are marked with underline, and we highlight our results with bold when we achieve
new SOTA. For CZSL, results are reported with the top-1 classification accuracy (T1). For GZSL, results are reported in terms
of T1 accuracy of unseen (U ) and seen (S) classes, together with their harmonic mean (H) where H = (2× S ×U)/(S +U).

the final ã− and ã+. Note that ac−t and ac+t are not masked
to accelerate the convergence.

Finally, we stack this pluggable ACL module into CSG:

LCSG ←− LCSG + Lacl . (15)

Remark 1 Considering the example in Figure 1, we assume
“Pied Kingfisher” as the original bird class (c) with target
attribute “spotted” (at) in the prompt set “wing pattern”
(Pc

t ). We are likely to sample “Chuck will’s widow” as the
positive class c+ which contains spotted wing pattern, but
has a low class similarity (28.6% after normlization) com-
pared with “Pied Kingfisher”. Besides, we prefer to sample
“Black-and-white Warbler” as the negative class c− whose
wing pattern is striped (not “spotted”) but the class charac-
teristic is pretty closed (73.8%) to “Pied Kingfisher”.

Zero-Shot Prediction
We use the cosine metric space for zero-shot recognition
with two evaluation settings: conventional ZSL (CZSL) clas-
sifies the testing samples with candidate classes from Cu;
generalized ZSL (GZSL) extends the candidate classes to
Cs ∪ Cu. Specifically, we take the prompt template stmp to-
gether with an test image x as the input. Following (Liu et al.
2021; Chen et al. 2022b), we predict the label c∗ via:

c∗ = argmax
c∈Cu/C

(ṽ · zc)− γI [c ∈ Cs] , (16)

where I = 1 if c is a seen class and 0 otherwise. γ is the cal-
ibration factor tuned on a held-out validation set, and Cu/C
corresponds to the CZSL/GZSL setting respectively.

Experiments
Datasets
We select three standard attribute equipped ZSL benchmarks
AWA2 (Xian et al. 2019), CUB (Welinder et al. 2010),

SUN (Patterson and Hays 2012) with their splits proposed
in (Xian et al. 2019), as well as a knowledge graph (KG)
equipped benchmark AWA2-KG which has the same split
as AWA2 but includes semantic information about hierarchi-
cal classes and attributes, for evaluation. In AWA2-KG, we
assume that the class c has the attribute ai when the length
of the shortest same-direction relation path between them in
KG is h, where h is a hyperparameter. For example, given
two triples (Zebra, hasPart, Four legs) and (Four legs, sub-
ClassOf, Leg), the attribute of class “Zebra” is “Four leg”
when h=1 and “Leg” when h=2. Since we observe that the
attribute a become more coarse-grained when they are far
away from the class c in KG, we simply define h as 1.

Experimental Settings
Unlike previous ZSL studies which pre-extract the image
features using a pre-trained CNN model e.g., ResNet (He
et al. 2016), we take as input the raw images and apply vision
transformer to interact with the PLM for knowledge transfer.
For those coefficients in AWA2, we set λar to 0.01, λcon to
0.05, λcmr to 1, λacl to 0.01, rrap to 0.5, ρ to 0.4 and γ to
0.8. We report the class-averaged (macro) accuracy as the
basic metric, following the current literature (Xu et al. 2020;
Chen et al. 2022a).

Overall Results
Standard ZSL Datasets. We compare our method with
14 representative or state-of-the-art (SOTA) methods pro-
posed in recent three years. These baselines are divided into
two categories: non-generative (Xu et al. 2020; Min et al.
2020; Huynh and Elhamifar 2020b; Xie et al. 2020; Liu et al.
2021; Chen et al. 2022b,a) and generative (Narayan et al.
2020; Huynh and Elhamifar 2020a; Han et al. 2021; Yue
et al. 2021; Chen et al. 2021c,d; Chou, Lin, and Liu 2021).
All those non-generative methods are attention-based except
for DVBE (Min et al. 2020).
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SUN contains more than 700 scene classes but each class
has only 10-20 images instances, where the attribute im-
balance and co-occurrence problem are universal. We find
that DUET achieves the best accuracy (45.8%) on H with
a large margin (2.5%) compared with those SOTA meth-
ods, and surpass MSDN by 4.5% on H , which is the SOTA
no-generative methods on SUN. On AWA2, DUET gains
1.2% improvements over the SOTA performance, and out-
performs the transformer-based method TransZero on all the
GZSL metrics. On CUB, DUET achieves competitive per-
formance, surpassing all generative methods on H , except
for the attention-based methods TransZero and MSDN. We
own this to the fact that the prompts in CUB are mostly
region-related (e.g., ““breast color” and “wing color”), but
DUET simply attaches the image patches with sequential 1-
dimensional positional embedding as the input, making it
hard to capture the fine-grained positional relationship. In-
stead, TransZero takes 2D center coordinates to construct
learnable relative region geometric embeddings for feature
augmentation, which gets accurate position representations
and helps the model achieve good performance. Notably,
when it does not use feature augmentation from relative ge-
ometry relationships, the H on CUB dramatically decreases
to 66.5% (Chen et al. 2022a).

Moreover, DUET also achieves great performance on
seen classes (S) on all three datasets, outperforming all base-
lines on SUN and AWA2 by at least 5.1% and 2.4% respec-
tively. This proves that DUET well preserves the predictive
ability on seen classes in addressing unseen classes.

K-ZSL Dataset. We evaluate on AWA2-KG (Geng et al.
2021a) to validate DUET’s flexibility on various ZSL at-
tribute formats. Specifically, we pick the KG from (Geng
et al. 2021b) as the knowledge resource, and compare with
baselines including DeViSE (Frome et al. 2013), SYNC
(Changpinyo et al. 2016), DGP (Kampffmeyer et al. 2019),
LsrGAN† (Vyas, Venkateswara, and Panchanathan 2020).
We abandon the real-value attributes for fairness, and follow
(Geng et al. 2021a, 2022; Chen et al. 2021e) to take the KG
embedding (Bordes et al. 2013) for entity class representa-
tion toward Lar and Lcc. As shown in Figure 4(a), DUET
achieves higher performance among all other methods. In
particular, it achieves a 30.2% improvement on metric H
compared to the non-generative method DGP.

ViT-based DUET. To get further insights into our model,
we report the results of DUET with ViT-base (Dosovitskiy
et al. 2021) as the vision encoder. Remarkably, since the
released ViT-base is pre-trained on ImageNet-21K which
may contain unseen objects, we only select 2 recent ViT-
based ZSL methods, ViT-ZSL (Alamri and Dutta 2021)
and IEAM-ZSL (Narayan et al. 2020), for comparison. As
shown in Figure 4(b), DUET surpasses these two methods
by a large margin (14.1% improvement on U and 10.3% im-
provement on H) and also exceeds our SOTA performance
(H) by 4.8%. This supports that our DUET greatly amelio-
rates the ZSL ability where the original vision transformer
is poor. We believe that the performance will be further im-
proved by plugging in a better vision transformer encoder.

Figure 4: (a) Results (%) on AWA2-KG from OntoZSL. The
attribute values in this dataset are all represent in 0/1 binary
form. We marks those generative methods with “†”. (b) Re-
sults (%) on AWA2 with ViT-base as the vision encoder.

Ablation Studies

Methods H △
Only ENCvis 64.1 8.6↓
1) CSGfreeze ENClan

66.5 6.2↓
2) CSGw/ only Prompt 61.7 11.0↓
3) CSGw/o Prompt 64.9 7.8↓
4) CSGw/o LWRS 66.9 5.8↓
5) CSGw/o RAP 67.4 5.3↓
6) CSGw/o Lcon

68.4 4.3↓
7) CSG 69.2 3.5↓
DUET (Full model) 72.7 -

Table 2: Results (%) of ablation studies on AWA2 by GZSL.
The metric is harmonic mean (H) accuracy. △ indicates the
performance drop compared with our full model.

Component Analysis. We evaluate various stripped-down
versions of our model to compare the (H) performance gain
brought by different components on AWA2. Concretely, we
observe that the performance drops sharply when (1) freez-
ing the language transformer encoder ENClan. Although
it can reduce the overall learnable parameters, it makes the
model harder to understand the special relationship among
prompts, textual attributes, and visual features. From the re-
sults of taking (2) only the prompt and (3) only concatenat-
ing attribute as sequence input without the prompt, we ob-
serve that employing our FST strategy for semi-serializing
attributes indeed benefits our model with 4.3% improve-
ment. We also exploit the influence of (4) randomly mask-
ing attributes, (5) not conducting attribute pruning, which
leads to 2.3%, 1.8% falls compared with (7) applying the full
CSG, proofing the necessity of both sampling target attribute
with adaptive weight and pruning part of the attribute. Be-
sides, (6) abandoning class-level contrastive learning leads
to 0.8% decrease. We own this to the fact that contrastive
learning can help model learn better visual representations
by narrowing the distance within a class in the latent space.
Most importantly, our pluggable ACL module further boosts
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the performance by 3.5% based on CSG, which illustrates
that both of these modules are beneficial.

Figure 5: A parameter analysis of coefficients λcmr, λacl,
rrap (the pruning ratio for RAP (.)), ρ (the probability
for employing LCSG). Baseline denotes the pure vision
trasnformer encoder. H accuracy on AWA2 is reported.

Hyperparameter Analysis. By comparing DUET’s per-
formance in Figure 5, we conclude that: (i) The performance
decrease when λcmr and λacl are extreme large, since the
weak signal from the self-supervised objectives (i.e., Lcmr

and Lacl) will gradually overwhelm the signal from super-
vised class label (i.e., Lar and Lcc). (ii) When ρ is close
to 1 or 0, the protocol all drops below the baseline. This
is because the model turns into a single-modal task with-
out multi-task learning when ρ = 0. While when ρ = 1,
DUET is forced to classify the image with attribute attached
throughout the training, leading to model’s poor generaliza-
tion capability at test stage. (iii) Furthermore, we try a wide
range of rrap, i.e. rrap = {0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8}, and
find that DUET works best when rrap is set to 0.5.

Interpretation
To proofs DUET’s capability on disentangling image-
specific semantic attributes, we feed an image into the
well-trained DUET together with a crafted template:
“...|P̂:[MASK]|...”, where each prompt name P̂ is in-
volved with the [MASK] followed to recover attribute to-
kens Figure 6 shows the prediction results from the cases in
SUN’s testing set. We observe that DUET can successfully
retrieve most relevant attributes from the image given a con-
crete prompt, e.g., the “sport” function from a “basketball
arena” and the “natural” light from an open-air “bus depot”.

Sometimes, there also exist unreasonable attribute pairs
within a class in GT attribute sets. For example, (i) “oil-
rig” has both “still water” and “waves” as its attributes,

Figure 6: Attribute prediction for interpretation.

which is contradictory; (ii) there is no “carpet” in this “liv-
ing room” image, but it has high confidence. These situa-
tions occur when mutually exclusive attributes are indepen-
dently contained in different images within the same class,
since the class-level attribute values in SUN are collected
by averaging the binary labels from annotators. In contrast,
our DUET could achieve instance-level semantic grounding,
correctly giving “waves” high score in this “oilrig”, and ig-
noreing “carpet” in this “living room”. Besides, the scarce
attribute “fire” is confidently predicted in the “oilrig” image,
while in “living room”, the “flowers” are recovered with-
out “leaves” bound together, which demonstrate the capa-
bility of DUET in addressing the attribute imbalance and
attribute co-occurrence issues shown in Figure 1. Moreover,
DUET can ground not only obvious visual attributes (e.g.,
“fire”) but also those abstract properties (e.g., “soothing” for
“feeling” and “competting” for “technical function”), which
shows its potential capability for knowledge inference.

Conclusion
In this paper, we propose an end-to-end ZSL framework
named DUET to address the well known issues of attribute
imbalance and co-occurrence in zero-shot image classifica-
tion. We design a cross-modal semantic grounding network
with a novel attribute-level contrastive learning mechanism
to enhance the model’s discriminative ability towards novel
classes, which could well address the issues of attribute im-
balance and co-occurrence in zero-shot learning. With ex-
tensive ablation studies and the comparison with quite a few
state-of-the-art methods on four ZSL benchmarks with real-
valued and binary-valued attributes, we demonstrate the ef-
fectiveness of DUET as well as its support for interpretation.
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