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Abstract

Since rain streaks exhibit diverse geometric appearances and
irregular overlapped phenomena, these complex characteris-
tics challenge the design of an effective single image derain-
ing model. To this end, rich local-global information repre-
sentations are increasingly indispensable for better satisfy-
ing rain removal. In this paper, we propose a lightweight
Hybrid CNN-Transformer Feature Fusion Network (dubbed
as HCT-FFN) in a stage-by-stage progressive manner, which
can harmonize these two architectures to help image restora-
tion by leveraging their individual learning strengths. Specif-
ically, we stack a sequence of the degradation-aware mix-
ture of experts (DaMoE) modules in the CNN-based stage,
where appropriate local experts adaptively enable the model
to emphasize spatially-varying rain distribution features. As
for the Transformer-based stage, a background-aware vi-
sion Transformer (BaViT) module is employed to comple-
ment spatially-long feature dependencies of images, so as to
achieve global texture recovery while preserving the required
structure. Considering the indeterminate knowledge discrep-
ancy among CNN features and Transformer features, we in-
troduce an interactive fusion branch at adjacent stages to fur-
ther facilitate the reconstruction of high-quality deraining re-
sults. Extensive evaluations show the effectiveness and ex-
tensibility of our developed HCT-FFN. The source code is
available at https://github.com/cschenxiang/HCT-FFN.

Introduction
Single image deraining (SID) is the task of recovering clear
and rain-free background from the given rainy images, since
the images captured under rainy conditions significantly de-
grade the performance of downstream computer vision sys-
tems (including autonomous driving and video surveillance,
etc.), which has drawn widespread attention in recent years.

Early prior-based methods (Kang, Lin, and Fu 2011; Luo,
Xu, and Ji 2015; Li et al. 2016; Zhang and Patel 2017) at-
tempt to remove the rain by relying on statistical properties
of rain components and clear backgrounds. However, these
hand-crated priors from human observation may not always
hold in case of the complex and varying rainy scenarios.

To circumvent hypothetical priors dependency, numerous
CNN-based networks (Yang et al. 2020; Yu et al. 2022) have
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Figure 1: Comparison results on the Rain100L dataset. Our
method not only reconstructs a high-quality output but also
achieves the best performance-parameter trade-off.

been proposed for SID, which achieves remarkable progress
thanks to the rapid growing complicated architectures (Jiang
et al. 2020; Zamir et al. 2021; Mou, Wang, and Zhang 2022)
and learning strategies (Zhou et al. 2021; Xiao et al. 2021;
Chen et al. 2022). However, these approaches still encounter
performance bottlenecks due to the local receptive fields of
the CNN-based operations, which limits the ability to cope
with long-range dependency information. To this end, recent
Transformers have emerged in computer vision field (Doso-
vitskiy et al. 2020; Chen et al. 2021), which is attributed
to the unique advantage of self-attention with global feature
interaction. Since then, several modified Transformer-based
architectures (Xiao et al. 2022; Wang et al. 2022; Zamir et al.
2022) have also been developed for SID task achieving su-
perior performance over previous CNN-based models.

Since the rain streak layer and rain-free background layer
are highly interlaced, global and local representation learn-
ing are equally important for the challenging SID task, while
the self-attention in Transformer does not manipulate the lo-
cal invariance that CNNs do well. Afterwards, some studies
(Yuan et al. 2021; Wu et al. 2021) attempt to introduce con-
volutional operations into vision Transformers, but they do
not play a full role for low-level image restoration. To miti-
gate this problem, a few recent works (Guo et al. 2022; Jiang
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et al. 2022) try to combine these two structures to construct
a hybrid model aiming to inherit advantages of CNN and
Transformer. This naturally raises a crucial question: how
to effectively integrate both CNN features and Transformer
features? In fact, an intuitive observation is that there are
indeterminate knowledge discrepancies among convolution-
based CNN features and self-attention-based Transformer
features (Park and Kim 2022), thus simply concatenating
or adding these features is inefficient for significant perfor-
mance gain. Therefore, it is of great interest to tailor design
fusion models so that they can better facilitate rain removal.

In this work, we present a new hybrid network that com-
bines the features by CNN and Transformer for compre-
hensive rain distribution prediction, which is expected to
produce better deraining results than any individual model.
Following the past successful inspired designs (Ren et al.
2019; Jiang et al. 2020), we specifically formulate our fu-
sion framework in a stage-by-stage progressive fashion due
to the complexity of SID. To alleviate the learning difficulty,
we propose to separately extract the intra-stage hierarchical
feature via a backbone branch and adaptively aggregate the
inter-stage complementary feature via an auxiliary branch.
As such, all the stage representations are richer.

Specifically, the body of Hybrid CNN-Transformer Fea-
ture Fusion Network (HCT-FFN) consists of three sequential
stages, which can excavate the useful information from pre-
vious stage to guide the later stage. In the backbone branch,
CNN-based backbone is applied in the first and last stages,
while Transformer-based backbone is used in the intermedi-
ate stage. In terms of the CNN-based stage, we stack a series
of degradation-aware mixture of experts (DaMoE) modules
that adaptively restore an image degraded by the spatially-
varying rain distribution. By doing so, experts (local CNN
operations in parallel) are able to focus on assigning cor-
responding intensity weights for different degradation fac-
tors depending on the inputs, so that we can facilitate the
model to adaptively remove rainy effects of different appear-
ances. As for the Transformer-based stage, a background-
aware vision Transformer (BaViT) module is employed to
eliminate the spatially-long rain degradation by modeling
long-range dependencies, since the multi-head self-attention
facilitates global texture and structure recovery. Instead of
simply concatenating the features of two adjacent stages, we
also introduce an interactive fusion branch (IFB) to encode
the inter-stage correlation among backbone features and re-
construction features. In this way, IFB can allow to explore
complementary components of hybrid features by CNN and
Transformer from each other through stage-wise reconstruc-
tion for further refinement. Finally, comprehensive experi-
ments show that our hybrid fusion model achieves the best
performance-parameter trade-off, as shown in Fig. 1.

Our main contributions are summarized as follows:

• We propose an end-to-end hybrid model for SID, HCT-
FFN, integrating the intra-stage advantages of CNN and
Transformer paradigms to achieve a strong deraining
baseline in a stage-by-stage unified architecture.

• We show that the inter-stage interactive fusion can alle-
viate the knowledge discrepancy among the features by

CNN and Transformer, in order to better facilitate rain
removal.

• We perform extensive experiments to demonstrate the ef-
fectiveness and extensibility of the proposed HCT-FFN.

Related Work
Single Image Deraining
Early deep CNN-based networks (Yang et al. 2017; Fu et al.
2017a; Zhang and Patel 2018; Li et al. 2018) have emerged
for SID as a better option compared to hand-crafted pri-
ors. By further optimizing the network structure, researchers
employ the recursive computation (Ren et al. 2019; Zamir
et al. 2021) or the multi-scale representation (Yasarla and
Patel 2019; Jiang et al. 2020) to effectively produce rain-free
results. Instead of prevailing CNN-based pipeline, Trans-
former is recently introduced as a new network backbone to
account for performance gain. For low-level image restora-
tion, typical architectures include IPT (Chen et al. 2021),
Restormer (Zamir et al. 2022), and Uformer (Wang et al.
2022). However, most of these methods blindly stack pure
Transformer-based components to replace original CNNs,
which inevitably generates high computational cost lead-
ing to a bloated model with an excessive amount of pa-
rameters. For instance, concurrent Restormer (Zamir et al.
2022) requires 26.10 Million parameters to obtain competi-
tive results. Few attempts have been made to fully consider
complementary merits between CNN and Transformer, thus
difficult to enable the model to offer the optimal balance
between size and performance. More recently, ELF (Jiang
et al. 2022) is first presented to unify these two architec-
tures into an association learning-based lightweight hybrid
deraining model. Different from it, inspired by the progres-
sive learning-based formulation, we are committed to design
a new hybrid deraining network by gradually removing rain
streaks in a stage-by-stage manner.

Vision Transformer
Transformer-based models (Vaswani et al. 2017) originally
bring significant breakthroughs to the natural language pro-
cessing (NLP) field. Benefiting from the powerful capability
in modeling long-range information with the help of the self-
attention mechanism, the birth of Vision Transformer (ViT)
(Dosovitskiy et al. 2020) makes computer vision community
shine again, which has witnessed prominent improvements
among high-level vision tasks (Carion et al. 2020; Liu et al.
2021; Zheng et al. 2021). Likewise, recent studies have ap-
plied variants of ViT in a host of low-level vision problems
and opened up a new perspective, such as image dehazing
(Guo et al. 2022), and image super-resolution (Gao et al.
2022). Furthermore, in terms of recent hybrid models, infor-
mation fusion between Transformer features and CNN fea-
tures has become a key step. In (Guo et al. 2022), these fea-
tures are aggregated by learning the modulation matrices to
solve the feature inconsistency issue. However, these fusions
lack interactivity because only limited intra-stage connec-
tions are considered. In this paper, we propose to explore the
inter-stage interactive fusion to guide image reconstruction
by encoding the correlation among these two joint features.
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Figure 2: The overall framework of the proposed Hybrid CNN-Transformer Feature Fusion Network (HCT-FFN), which mainly
contains (1) degradation-aware mixture of experts (DaMoE) module, (2) background-aware vision Transformer (BaViT) mod-
ule, and (3) interactive fusion branch (IFB) with prior guidance block (PGB) and coupled representation block (CRB).

Proposed Method
This section mainly introduces the proposed end-to-end Hy-
brid CNN-Transformer Feature Fusion Network (HCT-FFN)
to remove undesirable rain streaks in a stage-by-stage man-
ner. The whole framework is illustrated in Fig. 2, which con-
tains three recursive stages. In the first and last CNN-based
stages, we stack the degradation-aware mixture of experts
(DaMoE) modules as the network backbone to extract local
features for spatially-varying rain degradation. Meanwhile,
a background-aware vision Transformer (BaViT) module is
employed as the backbone of the intermediate Transformer-
based stage to capture global dependencies for spatially-long
rain appearance. Furthermore, prior guidance block (PGB)
and coupled representation block (CRB) are incorporated in
interactive fusion branch (IFB) to further provide comple-
mentary information for the model, so that high-quality clear
outputs can be gradually reconstructed. To enable the model
to learn richer features during image restoration process, we
fuse the output features of the previous stage with the out-
put features of the current stage using the skip-connection
and stage-level concatenation. With this design, useful in-
formation from the previous stage can be fully excavated to
guide the later stage, allowing the redundant feature to deep
layers without too much processing, thus selectively focus-
ing on more important information. In what follows, we will
describe the details about the above-mentioned components.

Degradation-aware Mixture of Experts
In the CNN-based stages, DaMoE module is the key part to
successfully restore complicated rain distribution. Consider-
ing the design of recent effective CNN models (Suganuma,
Liu, and Okatani 2019), we elaborately select multiple local
CNN operations to form parallel layers, dubbed as experts,
which involve a average pooling with receptive field of 3×3,
separable convolution layers with kernel sizes of 1×1, 3×3,

5×5, 7×7, and dilated convolution layers with kernel sizes
of 3×3, 5×5, 7×7. Different from the conventional mixture
of experts (Jacobs et al. 1991; Ren et al. 2018), our DaMoE
module does not attach an external gating network. Instead,
we make the self-attention scheme (Hu, Shen, and Sun 2018;
Kim, Ahn, and Sohn 2020) become a switcher of different
experts to adaptively select the importance of diverse rep-
resentations depending on the inputs, which will collabora-
tively help context aggregation. Given an input feature map
xc ∈ RC×H×W , we first apply the channel-wise average to
generate C-dimensional channel descriptor zc ∈ RC :

zc =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j), (1)

where xc(i, j) is the (y, x) position of the feature xc. Then,
the attention weight vector of each expert is allocated corre-
sponding to the learnable weight matrices W1 ∈ RT×C and
W2 ∈ RO×T . Here, T is the dimension of the weight matri-
ces. To avoid altering the sizes of its inputs and outputs, we
zero pad the input feature maps computed by each expert.
With this formulation, the extracted degradation features by
feeding a DaMoE module denotes Fdeg , then we have

Fdeg = [fO
exp(W2σ (W1z))], for O = 1, 2, . . . , k (2)

where fexp and O represent the expert layer and the number
of experts respectively. σ(·) is a ReLU function, and [·] de-
notes the channel-wise concatenation. Note that we employ
a skip connection between each DaMoE module to bridge
across continuous intermediate features for stable training.

Finally, the output of the N -th DaMoE module is calcu-
lated by

FN
DaMoE = f1×1(Fdeg) + FN−1

DaMoE , (3)

where f1×1(·) denotes a convolutional layer with C filters.
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Background-aware Vision Transformer
In the Transformer-based stage, we introduce a BaViT mod-
ule to help accurate background recovery, thanks to the ad-
vantage of Transformer in learning long-range dependencies
within the global information. Unlike ViT (Dosovitskiy et al.
2020), we first employ the unfold operation to split the input
feature maps Fin into H ×W patches F ∗

in ∈ Rk×k×C by a
k×k kernel. Intuitively, this pre-processing step naturally re-
flects the position information of each patch. Following that,
these patches are sent directly to the body of BaViT module.
Mathematically, the encoding procedures are expressed as

Fmid = F ∗
in + fMHSA (fNorm (F ∗

in)) , (4)

FBaV iT = Fmid + fFFN (fNorm (Fmid)) , (5)

where fMHSA(·) and fFFN (·) denote the multi-head self-
attention (MHSA) and feed-forward network (FFN), respec-
tively. fNorm(·) refers to the layer normalization operation.
Finally, we use the fold operation to reconstruct feature maps
FBaV iT of the BaViT module.

As shown in Fig. 2, MHSA and FFN are key ingredients
for Transformer, which aim to perform interaction and trans-
formation between tokens. Specifically, in the MHSA part,
we first halve the number of channels using a reduction layer
and then project the input embedding to the Q (query), K
(keys), and V (values) elements through a linear layer. To
enrich the background representation, multi-head attention
(Vaswani et al. 2017) is performed on Q, K and V . Inspired
by (Lu et al. 2022), we adopt feature split operation to divide
Q, K, V into s equal segments along the channel dimen-
sion to obtain {Q1, Q2, . . . , Qs}, {K1,K2, . . . ,Ks}, and
{V1, V2, . . . , Vs}. For each segment, it has Ck = C

S chan-
nels. Each triplet of these segments is usually calculated by
scaled dot-product attention function:

fsdpa = softmax
(
QiK

⊤
i√

Ck

)
Vi, for i = 1, 2, . . . , s. (6)

Lastly, we concatenate all the output of multi-head attention,
and then utilize an extension layer to recover the number of
channels. To keep the block simple, the FFN part is com-
posed of two Multi-Layer Perceptions (MLPs) layers.

Interactive Fusion Branch
To refine the inter-stage representation among CNN features
and Transformer features, we formulate an IFB to provide
additional complementary information to the backbone net-
work. Compared to direct concatenating the features of two
adjacent stages, our IFB tends to be more flexible and effec-
tive. Specifically, we first make full use of image priors to
embed into IFBs as feature guidances, thus facilitating the
stage-wise reconstruction of high-quality results. Similar to
(Li, Tan, and Cheong 2018; Yi et al. 2021), residual channel
prior (RCP) is applied due its advantage in extracting clear
object structure. It is regarded as the residual result of the
maximum and minimum channel values of the rainy image,
which is calculated without any additional parameters:

Frcp(x) = max
c∈{R,G,B}

Ic(x)− min
d∈{R,G,B}

Id(x). (7)

Following it, we adopt SE-Resblocks (Hu, Shen, and Sun
2018) to further enhance channel-wise feature propagation.
Formally, the final output Fpgb of PGB is defined by

Fpgb = f3×3

(
f3
SE (f3×3 (Frcp))

)
+ f3×3 (Frcp) , (8)

where f3
SE(·) is the cascade feature of three SE-Resblocks.

Then, PGB is fed into CRB to encode the mixture rela-
tions among backbone features and reconstruction features,
which can learn redundant components adaptively from each
other for further refinement. Here, two convolution layers
with a kernel size of 3×3 are used to map the backbone fea-
ture Fbac from the output of previous stage (i.e., FN

DaMoE or
FBaV iT ) and reconstructed image feature Fpgb from PGB,
respectively. Next, we use element multiplication to calcu-
late the similarity map S between two branch features:

S = sigmoid (f3×3 (Fbac)⊗ f3×3 (Fpgb)) , (9)
where ⊗ represents pixel-wise product.

Lastly, the original features are further added to the acti-
vated features, and the summed features are concatenated to
return a refined joint representation Fcrb of CRB:
Fcrb = concat (S ⊗ Fbac + Fbac, S ⊗ Fpgb + Fpgb) . (10)
With the help of this interactive fusion pattern architec-

ture, we can not only fully utilize the dependencies of deep
features across stages, but also boost the collaborative repre-
sentation from CNN and Transformer to help image restora-
tion.

Loss Function
To supervise the learning process of the network, we choose
two proper loss functions as training objectives to drive the
model optimization. Mean squared error (MSE) loss (Zhang
and Patel 2018) is widely adopted to compute the pixel-level
difference between the recovered image Bi and correspond-
ing ground truth B, expressed as follows:

Lmse =
1

HWC

H∑
x=1

W∑
y=1

C∑
z=1

∥Bi −B∥2 , i = 1, 2, 3 (11)

where i denotes different stages, and H , W and C are height,
width and number of channels, respectively.

To further improve the deraining results with high fidelity,
we consider the structural similarity (SSIM) to compare the
structural differences, which is calculated as follows:

SSIM(Bi, B) =
2µBi

µB + C1

µ2
Bi

+ µ2
B + C1

· 2σBiB + C2

σ2
Bi

+ σ2
B + C2

,

(12)
where µBi and µB are the average of Bi and B over pix-
els, σBi

and σB are the variances of Bi and B, σBiB is the
covariance between Bi and B. C1 and C2 are two fixed con-
stants. Then, the negative SSIM loss (Ren et al. 2019) for
recovered image is given by:

Lssim = 1− SSIM(Bi, B). (13)
Finally, the overall loss Ltotal for training our network is

the combination of the above two losses as:
Ltotal = Lmse + λLssim, (14)

where the coefficient λ is empirically set to 0.2 for balancing
each loss term.
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Datasets Synthetic Real-world
Rain100L Rain100H Rain12 RainDS-RS100

Methods Param PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rainy Input - 26.90 0.838 13.56 0.370 30.14 0.855 23.58 0.651

Prior-based methods GMM (CVPR’16) - 29.05 0.871 15.23 0.449 32.14 0.914 23.73 0.559
JCAS (CVPR’17) - 28.54 0.852 14.62 0.451 33.10 0.930 24.04 0.556

CNN-based methods

DNN (CVPR’17) 0.06 32.38 0.925 22.85 0.725 34.04 0.933 24.61 0.681
RESCAN (ECCV’18) 0.15 38.52 0.981 29.62 0.872 36.43 0.951 25.84 0.686
PReNet (CVPR’19) 0.17 37.45 0.979 30.11 0.905 36.66 0.961 26.29 0.718

JORDER E (TPAMI’19) - 38.59 0.983 30.50 0.896 36.69 0.962 26.48 0.715
MSPFN (CVPR’20) 13.35 38.73 0.978 30.63 0.898 36.85 0.957 26.55 0.721
MPRNet (CVPR’21) 3.63 39.45 0.982 30.92 0.904 37.26 0.960 26.86 0.725

Transformer-based methods IPT (CVPR’21) 115.5 41.62 0.988 - - - - - -
Uformer-B (CVPR’22) 50.8 39.76 0.983 31.06 0.908 37.10 0.958 26.83 0.728

Hybrid-based methods ELF (MM’22) 1.53 36.67 0.968 30.48 0.896 - - - -
Ours 0.87 39.70 0.985 31.51 0.910 37.54 0.963 27.02 0.734

Table 1: Comparison of quantitative results on four datasets. Bold and underline indicate the best and second-best results.

Experiments
Experimental Settings
Datasets. We conduct deraining experiments on four public
rain streak datasets, including Rain100L (Yang et al. 2017),
Rain100H (Yang et al. 2017), Rain12 (Li et al. 2016), and
RainDS-Real (Quan et al. 2021). With light and heavy types
of synthetic rain streaks, Rain100L and Rain100H contain
1,800 image pairs for training and 100 image pairs for test-
ing. Rain12 contains 12 light rainy images. Based on au-
tonomous driving scenario, (Quan et al. 2021) release var-
ious image pairs corrupted by raindrops and rain streaks,
which consists of two subsets, RainDS-Syn and RainDS-
Real. As we mainly focus on removing rain streaks, we
only adopt a subset of RainDS-Real, named RainDS-RS100,
where 150 real-world rainy images are chosen as training
data and the other 100 pairs are selected for testing. In addi-
tion, we also randomly choose 20 real rainy images without
ground truths from Internet-Data (Wang et al. 2019; Yang
et al. 2020) as the evaluation of generalization performance.

Comparison methods. We compare our method with two
prior-based algorithms (i.e., GMM (Li et al. 2016) and JCAS
(Gu et al. 2017)), six CNN-based approahces (i.e., DDN (Fu
et al. 2017b), RESCAN (Li et al. 2018), PReNet (Ren et al.
2019), JORDER E (Yang et al. 2019), MSPFN (Jiang et al.
2020), and MPRNet (Zamir et al. 2021)), two Transformer-
based networks (i.e., IPT (Chen et al. 2021) and Uformer-B
(Wang et al. 2022)), and one hybrid-based model (i.e., ELF
(Jiang et al. 2022)). Due to hard-ware constraints, IPT is
only evaluated on Rain100L, and the corresponding results
refer to their original paper. As the code of ELF is not avail-
able, we refer to some results presented in their paper. For
other approaches, we retrain the models using the default
settings provided by the authors if there are no pretrained
models, otherwise we evaluate them with their online codes.

Evaluation metrics. Since the ground truths available, we
adopt two commonly-used metrics for quantitative com-
parison, and they are Peak Signal to Noise Ratio (PSNR)
(Huynh-Thu and Ghanbari 2008) and Structural Similarity
(SSIM) (Wang et al. 2004). Following (Wang et al. 2020;

Xiao et al. 2022), we calculate PSNR/SSIM metrics in Y
channel of YCbCr space. For the rainy images without their
clean labels, two popular non-reference indicators, Natural-
ness Image Quality Evaluator (NIQE) (Mittal, Soundarara-
jan, and Bovik 2012) and Blind/Referenceless Image Spatial
QUality Evaluator (BRISQUE) (Mittal, Moorthy, and Bovik
2012), are employed for evaluating deraining performance.

Implementation details. The proposed network is imple-
mented in PyTorch framework using Adam optimizer with a
learning rate of 0.0001 to minimize Ltotal by 400 epochs. In
our model, {N1, N2, N3} are set to {4, 3, 4}. During train-
ing, we run all of our experiments with batch size of 4 and
patch size of 128 on one NVIDIA Tesla V100 GPU (32G).
In the DaMoE module, we set k = 8 for the number of ex-
perts and T = 32 for the weight matrixs. Each convolutional
layer has a C = 16 filter with stride of 1. In the BaViT mod-
ule, we set k = 3 for the kernel size and s = 4 for splitting
segment. The number of heads in MHSA is set to 8. For data
augmentation, vertical and horizontal flips are randomly ap-
plied. The loss trade-off parameter is defined via cross vali-
dation using the validation set, and the whole pipeline is per-
formed in an end-to-end fashion without costly large-scale
pretraining (Chen et al. 2021).

Experimental Results
Synthetic datasets. Tab. 1 presents the quantitative results
on different deraining benchmarks. Apparently, the pro-
posed method significantly competes previous popular de-
rainers on the Rain100H and Rain12 datasets, which re-
veals that our method can properly handle diverse types of
spatially-varying rain streaks. And most remarkably, our de-
signed HCT-FFN achieves prominent improvement in term
of PSNR on the Rain100L and Rain100H benchmarks. Fig.
3 further shows visual comparison between samples gener-
ated by different baselines. It can be seen that Uformer-B is
sensitive to local slender rain streaks. Besides, the results of
pure CNN-based models are flawed in terms of global tex-
ture recovery. By contrast, our results are more consistent
with that of the ground truths.

Real-world datasets. In order to further practical evalution

382



Figure 3: Visual comparison on the Rain100H dataset. Best viewed by zooming in the figures on high-resolution displays.

Figure 4: Visual comparison on the RainDS-RS100 dataset. Best viewed by zooming in the figures on high-resolution displays.

Method PReNet MSPFN MPRNet Uformer Ours
NIQE 5.489 5.626 5.658 5.034 4.743

BRISQUE 33.576 42.159 37.195 33.293 28.709

Table 2: Comparison of quantitative results on Internet-Data
dataset. Note that lower scores indicate better image quality.

Stage Number Stage = 1 Stage = 2 Stage = 3
PSNR / SSIM 36.31 / 0.952 38.87 / 0.974 39.70 / 0.985

Table 3: Ablation analysis for different number of recursive
stages. Stage = 1 also indicates that BaViT module is none.

in real-world rainy scenes, Tab. 2 and the last column of
Tab. 1 compare the deraining results on the RainDS-RS100
dataset quantitatively. As expected, our developed method
continues to achieve the highest PSNR/SSIM values and the
lowest NIQE/BRISQUE scores, demonstrating the effective-
ness and superiority of HCT-FFN, especially in the real rain
with complicated rainy conditions. The reason behind is that
our model enjoys the powerful abilities from the hybrid fea-
ture fusion of CNN and Transformer. Through the compar-
ison in Fig. 4 and Fig. 6, our method successfully removes
most rain perturbation and owns visual pleasant recovery re-
sults on several challenging exemples, which implies that it
can well generalize to unseen real-world data types.

Ablation Studies
We study the individual components and parameter choices
on the final deraining performance. Here, all ablation studies
are conducted within the same training settings and environ-
ment using Rain100L dataset to ensure a fair comparison.

The Number of experts. To analyze the impact of differ-
ent number of experts in each DaMoE module, we perform
an experiment based on the parallel layer configuration in
Fig. 5. When using single expert models, performance is
dramatically degraded compared with multi-expert models.
Unlike setting all experts to the same structure (Kim, Ahn,
and Sohn 2020), our multi-expert structure is more diverse,

Figure 5: Ablation analysis for different number of experts
in each DaMoE module.

which brings their own gains to the performance due to dif-
ferent receptive fields and disparate local CNN operations.

The Number of recursive stages. To analyze the effect
about different number of recursive stage, Tab. 3 records the
PSNR/SSIM of corresponding models. We can observe that:
(1) BaViT module brings a great contribution to the baseline
model, thanks to its advantage of modeling global interac-
tions from non-local regions. (2) Stage-by-stage progressive
learning can gradually eliminate the remaining rain streaks,
thus achieving excellent deraining quality in the final stage.

Sequence of different stages. To analyze the influence of
the sequence of different stages on the deraining perfor-
mance, we perform experiments based on different model
variants in Tab. 4. Compared to the baseline model (C-C-C),
Transformer-based stage provides additional performance
benefits. In addition, we also note that Transformer lacks
the ability to encode local feature in the early stage, lead-
ing to suboptimal results. To ensure that CNN features and
Transformer features alternate with each other in IFB, we set
BaViT at the intermediate stage.
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Figure 6: Visual comparison on the Internet-Data dataset. Best viewed by zooming in the figures on high-resolution displays.

Figure 7: Visual comparison on the SateHaze1k dataset. Best viewed by zooming in the figures on high-resolution displays.

C-C-C T-C-C C-C-T C-T-C
39.48 / 0.974 39.62 / 0.979 39.65 / 0.981 39.70 / 0.985

Table 4: Ablation analysis for sequence of different stages.
“C” and “T” represent CNN/Transformer-based stage.

PGB × ✓ ✓ ✓ ✓
CRB × × ✓ ✓ ✓

skip-connect × × × ✓ ✓
stage-concate × × × × ✓
PSNR (dB) 39.36 39.52 39.59 39.63 39.70

Table 5: Ablation analysis for different fusion components.

Effectiveness of feature fusion. To evaluate the effective-
ness of our fusion strategies, we implement alternative so-
lutions on different variants of HCT-FFN. As evident from
Tab. 5, we consider the following components: (1) PGB, (2)
CRB, (3) skip-connection, and (4) stage-level concatenation.
Compared to direct feature concatenation (i.e., w/o all these
components above), our IFB (i.e., PGB and CRB ) tends to
be more suitable for combining CNN features and Trans-
former features. Meanwhile, we notice that skip-connection
and stage-level feature concatenation also bring out perfor-
mance improvement, which shows that these operations can
reduce the noise during feature propagation so that the net-
work can adaptively learn more useful representations.

Extension to Image Dehazing
We are curious about whether our method can be extended to
the image dehazing task. Here, we make comparison against
different dehazing methods on the SateHaze1k (Huang et al.
2020) dataset, including DCP (He, Sun, and Tang 2010),
DehazeNet (Cai et al. 2016), SAR-Opt-cGAN (Huang et al.
2020), FCTF (Li and Chen 2020), CGAN-SAR (Grohnfeldt,
Schmitt, and Zhu 2018), and SkyGAN (Mehta et al. 2021).
Through Tab. 6, our method produces the highest values. As

Datasets Thin Haze Moderate Haze Thick Haze
DCP 13.15 / 0.724 9.78 / 0.573 10.25 / 0.585

DehazeNet 19.75 / 0.895 18.13 / 0.855 14.33 / 0.706
Huang et al. 20.20 / 0.841 21.66 / 0.794 19.66 / 0.757

FCTF 22.77 / 0.891 24.96 / 0.932 24.14 / 0.821
CGAN-SAR 24.16 / 0.906 25.31 / 0.926 25.07 / 0.864

SkyGAN 25.38 / 0.924 25.58 / 0.903 23.43 / 0.892
Ours 27.99 / 0.925 27.98 / 0.939 25.31 / 0.904

Table 6: Quantitative results on SateHaze1k dataset, which
contains three hazy levels, as thin, moderate, and thick haze.

shown in Fig. 7, our method can generate a clearer image.

Conclusion
We have presented an effective end-to-end HCT-FFN for im-
age deraining. We introduce DaMoE modules into the CNN-
based stage to emphasize the spatially-varying rain distribu-
tion, and also leverage BaViT modules into the Transformer-
based stage to eliminate the spatially-long rain degradation.
Importantly, a progressive IFB is involved between adjacent
stages to aggregate information from CNN and Transformer.
Extensive experiments demonstrate the superiority and ex-
tensibility of our method over the state-of-the-arts.

Limitation. One limitation is that the interaction between
the global and local representation is explored since the hy-
brid fusion network only provides the final feature fusion
between DaMoE and BaViT for each stage. However, the
intermediate features are not considered, which are also cru-
cial for accurate rain distribution.
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