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Abstract

Neural scene representation and rendering methods have
shown promise in learning the implicit form of scene struc-
ture without supervision. However, the implicit representa-
tion learned in most existing methods is non-expandable and
cannot be inferred online for novel scenes, which makes the
learned representation difficult to be applied across differ-
ent reinforcement learning (RL) tasks. In this work, we in-
troduce Scene Memory Network (SMN) to achieve online
spatial memory construction and expansion for view render-
ing in novel scenes. SMN models the camera projection and
back-projection as spatially aware memory control processes,
where the memory values store the information of the partial
3D area, and the memory keys indicate the position of that
area. The memory controller can learn the geometry prop-
erty from observations without the camera’s intrinsic param-
eters and depth supervision. We further apply the memory
constructed by SMN to exploration and navigation tasks. The
experimental results reveal the generalization ability of our
proposed SMN in large-scale scene synthesis and its poten-
tial to improve the performance of spatial RL tasks.

Introduction
Inferring structure from images and reconstructing scenes
for 3D inference are basic abilities of human visual per-
ception. These abilities play important roles in 3D spatial
tasks such as environment exploration and navigation. In re-
cent years, neural scene representation and rendering tech-
niques (Eslami et al. 2018; Tobin, Zaremba, and Abbeel
2019; Sitzmann et al. 2019; Sitzmann, Zollhöfer, and Wet-
zstein 2019; Mildenhall et al. 2020; DeVries et al. 2021;
Chen, Hu, and Chen 2021) have shown promising results
in learning implicit forms of scene structure from observa-
tion without explicit supervision. However, for large-scale
scenes, current methods construct neural scene representa-
tions which are limited in ways that make them imperfect
replacements for explicit scene structure information. For
example, Generative Query Network (GQN) (Eslami et al.
2018) uses a CNN to extract 1D scene representation, but it
has limited generalization ability for complex scenes. Some
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(a) Our proposed spatially
aware memory control.

(b) Camera projection and
back-projection.

Figure 1: Comparison between our proposed memory con-
trol process with camera projection and back-projection.

extended methods of GQN (Tobin, Zaremba, and Abbeel
2019; Chen, Hu, and Chen 2021) solve the generalization
problem but its scene representation is non-expandable, and
therefore can only be applied to the scenes of small rooms.
On the other hand, Neural Radiance Field (NeRF)-based
methods (Mildenhall et al. 2020; DeVries et al. 2021) store
the information of scenes in the weights of neural network,
which is hard to be taken as the input state in RL tasks. Fur-
thermore, the scene representation of NeRF can be updated
only via offline fine-tuning for novel scenes, making real-
time scene construction demanding to achieve.

In this work, we aim to apply implicit scene represen-
tation to spatial RL tasks in large scenes. The abilities of
online inference and memory expansion are important to
this goal. Some researches combine memory augmented net-
work with neural scene representation to achieve these two
abilities but still have their own limitations. For example,
GTM-SM (Fraccaro et al. 2018) stores each 1D image fea-
ture to a separate memory block and does not fuse the spatial
information of different observations. This design makes it
difficult for RL models to recognize the surrounding scene
structure based on the memory. Incremental Scene Synthe-
sis (ISS) (Planche et al. 2019) adopts the recurrent network
to fuse the spatial information of different observations to a
2D structured memory, but it requires additional depth in-
formation. To solve the above shortcomings, we introduce
Scene Memory Network (SMN) with a spatially aware mem-
ory controller. The concept of SMN is shown in Fig. 1a.
It constructs memory blocks that comprise memory values
representing features of partial 3D areas and memory keys

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

369



representing the 3D positions. The memory controller in
SMN determines the information passing between feature
map and memory blocks based on memory keys and pixel
coordinates. For the propose of map expansion, we allocate
new memory blocks with the keys sampled in new 3D area.

Our proposed SMN has the following advantages. First,
the design of spatially aware memory control fuses informa-
tion of the same local 3D area based on multiple observa-
tions and allows the expansion of scene representation for
large-scale scenes. Second, the message passing process is
learned from observations instead of utilizing the camera
projection model (as shown in Fig. 1b). Therefore, the pro-
posed SMN can be trained and inferred without knowing
depth information and camera intrinsic parameters. Third,
the memory constructed by SMN can be applied to spatial
reinforcement learning models by taking the memory as a
local map to supplement the insufficient part of the current
observation. Forth, the entropy of memory can be used as a
measure of intrinsic curiosity, which encourages the agent to
explore the environment. The experimental results prove that
the proposed SMN has good generalization ability for view
rendering in large scenes and the memory of SMN is ben-
eficial for improving the performance of navigation tasks,
which validates the practicality of using implicit scene rep-
resentation in spatial RL tasks.

Related Works
Neural Scene Representation and Rendering
The concept of neural scene representation and rendering
was first proposed in GQN (Eslami et al. 2018). Later
works combine GQN with spatial properties. For example,
GRNN (Tung, Cheng, and Fragkiadaki 2019) constructs the
voxel-based scene representation via a back-projection pro-
cess and E-GQN (Tobin, Zaremba, and Abbeel 2019) con-
structs the feature map of query view on the epipolar line
of the observation feature map. STR-GQN (Chen, Hu, and
Chen 2021) models the geometry transformation as the rout-
ing process between the feature map and the world cells.
The design of routing process enables STR-GQN to be
trained without intrinsic camera parameters. The GQN ex-
tensions can adapt to more complex scenes, but the size of
their scene representations are fixed and therefore cannot
expand the map. Some researches combine external mem-
ory with GQN to achieve expandable scene representation.
GTM-SM (Fraccaro et al. 2018) adopts a differentiable neu-
ral dictionary (DND) (Pritzel et al. 2017) architecture to
record the features of each observation with the camera
pose and retrieve the closest k neighbors of the query pose
in the memory for rendering. Another work is incremental
scene synthesis (ISS) (Planche et al. 2019), which incre-
mentally constructs a 2D grid memory and adopts the cam-
era projection/back-projection process to transform the in-
formation between feature map and memory.

In addition to GQN-based methods, Neural Radiance
Field (NeRF) (Mildenhall et al. 2020) is another neural
scene representation framework which records the color and
density of each position via a neural network. Although the
rendering results of NeRF are realistic, it can only be ap-

plied to a constrained camera pose setting such as limit-
ing the camera to lie on the surface of a sphere, looking
inwards. Generative Scene Network (GSN) (DeVries et al.
2021) learns a 2D feature as the scene prior and takes it
as the input of an conditional radiance field model, which
makes GSN successfully render the indoor scene for free-
movement camera. However, NeRF-like models store the
scene information by the weights of the neural network
and can only be updated via fine-tuning, making it hard to
achieve real-time computation for online scene construction.
In this work, we aim to design a model to address the prob-
lems of non-expandable memory, offline inference, and the
constrained viewpoint in the current neural scene represen-
tation methods.

Memory Augmented Neural Network
Neural Turing Machine (NTM) (Graves, Wayne, and Dani-
helka 2014) first introduced the concept of differentiable
memory control and demonstrated its ability to learn the
operations such as copy and reverse. Differentiable Neu-
ral Computer (DNC) is an extension of NTM, but it is
more efficient in terms of memory usage. Memory Net-
works (Sukhbaatar et al. 2015; Miller et al. 2016) fur-
ther apply differentiable memory control to QA problems
in natural language processing. In the RL field, RL-NTM
(Zaremba and Sutskever 2015) combines NTM with policy
gradient to learn computation tasks. Neural Episodic Control
(NEC) (Pritzel et al. 2017) constructs a differentiable neu-
ral dictionary (DND) with writing and lookup operations.
Given a key-value pair, the writing operation appends the
pair on the memory, and the lookup operation returns the
weighted sum of values in the memory, whose weights are
given by normalized kernel between the lookup key and the
keys in the memory. FRMQN (Oh et al. 2016) combines Q-
network with DND memory to learn the navigation task. In
this work, we introduce the concept of spatially aware mem-
ory control in the proposed SMN model, which can achieve
flexible memory expansion like DND and spatially aware
information fusion similar to geometry-based methods with
structured memory.

Deep Learning-based Map Reconstruction
Neural SLAM methods (Zhang et al. 2017; Chaplot et al.
2019) learn to infer the 2D occupancy grid map from RGB
images, but these methods rely on the ground truth data
of range sensor. SfMLearner (Zhou et al. 2017) and SfM-
Net (Vijayanarasimhan et al. 2017) train the depth estima-
tion network by the re-projection photometric error with-
out external structure supervision. D3VO (Yang et al. 2020)
is the state-of-the-art learning-based SLAM method, which
combines self-supervised depth estimation with back-end
non-linear optimization to achieve better performance. In
addition to the above methods which construct the map of
external structure, some studies focus on constructing the
map in the form of implicit features. Neural Map (Parisotto
and Salakhutdinov 2018) adopts a 2D structured memory to
store the input feature in a memory block whose index repre-
sents the discretized 2D position of the agent. ISS (Planche
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Figure 2: The architecture of the proposed scene memory network.

et al. 2019) projects the feature map on floor plane to con-
struct the 2D structured memory. iMAP (Sucar et al. 2021)
takes RGB-D sequences as input to update the neural radi-
ance field online. Neural topological SLAM (Chaplot et al.
2020) constructs a graph-based map for the image-goal navi-
gation. Each node in the map stores the image representation
and is used for the prediction of explorable area and seman-
tic score. The above mentioned methods requires the intrin-
sic camera parameters (Zhou et al. 2017; Vijayanarasimhan
et al. 2017; Planche et al. 2019; Sucar et al. 2021), structure
information (Zhang et al. 2017; Chaplot et al. 2019; Planche
et al. 2019; Sucar et al. 2021) and semantic label (Chap-
lot et al. 2020) for training. In contrast, we propose SMN
to construct the implicit map and the model can be trained
without any of the above information.

Scene Memory Network
Basic Architecture
The architecture of the proposed SMN is illustrated in Fig. 2,
which comprises two memory control processes, the mem-
ory saving process (denoted by solid arrows) and the mem-
ory loading process (denoted by dashed arrows). We adopt
a CNN encoder for feature extraction and a convolutional
DRAW (Gregor et al. 2016) decoder for view rendering. Let
xo denote the observation image of pose vo, and fo denote
the 2D features extracted by the encoder given the observa-
tion image. Each memory block is composed of the value
Mval to store partial scene representation and the key Mkey

indicating the 3D position of the memory block. The mem-
ory value Mval is an N × C tensor and the memory key
Mkey is an N × 3 tensor, where C is a pre-defined fea-
ture dimension and N is the number of memory blocks that
can be increased dynamically during inference. The memory
saving process passes the information from the observation
to the memory, which can be formulated as Eq. 1.

fo = Encoder(xo),

[R,m] = Controller(Tvo(Mkey)),

fwrite = Write(fo, R,m),

Mval
(new) = Mval

(old) + fwrite,

(1)

where R is the relation matrix between the pixel positions
and the memory blocks, and m denotes the memory mask
that decides which memory blocks are related to the control
process. The details of R and m for memory control will be
described in Sec. . Tvo is the transformation that transforms
the memory keys to the camera space based on the observa-
tion pose vo.

Similar to the memory saving process, let xq denote the
query image of pose vq generated by the model and fq de-
note the feature map of the query view. The memory loading
process passes the information in memory to the query view,
which can be formulated as Eq. 2.

fread = σ(Mval),

[R,m] = Controller(Tvq (Mkey)),

fq = Read(fread, R,m),

xq = Decoder(fq).

(2)

Note that we apply sigmoid operation σ to the memory value
for preserving the scale of the scene representation. This op-
eration can also be treated as transforming the posterior in
the form of log-odds to the probabilistic form, as demon-
strated in STR-GQN (Chen, Hu, and Chen 2021). As for
the objective function, we adopt the ELBO loss proposed in
GQN (Eslami et al. 2018).

Spatially Aware Memory Control
In this subsection, we introduce the concept of spatially
aware memory control, where each memory block stores
partial 3D area information composed of the features on 2D
feature map. To represent the relation between feature map
and memory blocks, we adopt a relation matrix (denoted as
R) with the size (HW ) × N , where (H,W ) are the height
and width of the feature map, respectively. The image only
contains the information in the field of view; thus we apply
a memory mask m to represent whether each memory block
is in the viewing frustum. We design a spatially aware mem-
ory controller that takes the 2D positions pos2D, memory
keys Mkey , and the transformation Tv as input to generate
the relation matrix R and memory mask m. The formulation

371



(a) Save.

(b) Load.

Figure 3: The details of the memory saving process (a) and
memory loading process (b).

of memory controller is shown in Eq. 3 and illustrated in
Fig. 3. Each memory key is first transformed to the camera
space via transformation Tv and is then taken as the input
of the key embedding network netkey to generate the em-
bedding ekey and the mask m of each memory block. The
position embedding network netpos takes the 2D position
pos2D as the input to generate the embedding epos. The re-
lation matrix is constructed by the inner-product of the key
embedding ekey and position embedding epos.

[ekeyk ,mk] = netkey(Tv(Mkey
k )),

eposij = netpos(pos2Dij ),

Rij,k = (ekeyk )T (eposij ),

(3)

where k in the subscript denotes the index corresponding
to the kth memory block and i, j in the subscript denotes
the 2D index corresponding to the 2D pixel position. Due
to the fact that the processes of camera back-projection and
projection are symmetric, the memory loading process and
memory saving process share the same networks in memory
controller (i.e., netkey and netpos). The attention compu-
tation have a similar form of spatial transformation routing
proposed in STR-GQN (Chen, Hu, and Chen 2021). Given
the relation matrix R and mask m, the writing operation is

defined in Eq. 4.

attk(i, j) =
exp (Rij,k)∑

i′,j′ exp (Ri′j′,k)
,

fwrite
k = mk ∗

∑
i,j

attk(i, j) ∗ fo
ij .

(4)

The attention map att is generated by performing the soft-
max operation on the relation matrix along the dimension of
2D positions. This step keeps the scale of features the same
after the saving process , which enables the memory con-
troller to be applicable to different image resolutions. After
fusing the features by the attention map, an element-wise
product is performed on the fused feature and the mask to
construct the writing feature fwrite. As for the reading op-
eration, the attention map is constructed by performing the
softmax operation on the relation matrix R along the dimen-
sion of the key embedding. An element-wise product is per-
formed on the reading feature fread and the mask. The prod-
uct result is then weighted by the attention map to construct
the feature map of the query view as in Eq. 5.

attij(k) =
exp (Rij,k)∑
k′ exp (Rij,k′)

,

fq
ij =

∑
k

attij(k) ∗mk ∗ fread
k .

(5)

Memory Clipping and Efficient Training
The computational cost of the memory control process is
proportional to the size of the memory blocks, and the cost
become impractical as the scene size increases. A solution is
only handling the memory blocks whose memory keys are
close to the position of camera (i.e. memory keys within a
clipping range) in the memory control process. We further
propose a training trick to save the space consumption. Con-
sidering that the learning is mainly based on the prediction
error of the query image and only the memory blocks within
the clipping range are related to the prediction error, we can
only use a small part of the memory blocks to train a query
sample. In practice, we construct a training sample by com-
posing several observation views with only one query view
and then transform each observation pose to the coordinate
system of the query pose. In this way, every query pose in a
batch is at the origin, and hence we can use the same mem-
ory blocks in the clipping range for different training sam-
ples. Based on this training trick, the space complexity of
the memory control process in training phase becomes inde-
pendent of the scene size.

Agent with Scene Memory
To evaluate whether the proposed SMN can improve the
performance of RL tasks, we design a model (named as
SMN-DQN) that takes the memory of the proposed SMN
and the observation images as the input of Q-network. We
adopt Deep Q-Network (Mnih et al. 2015) as the core RL
algorithm with double Q-learning loss (Van Hasselt, Guez,
and Silver 2016) and dueling network structure (Wang et al.
2016). As illustrated in Fig. 4, the embedding of the memory
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Figure 4: The architecture of the SMN-DQN agent.

(a) Scene Exploration (b) Item-Collecting

Figure 5: Rendering examples of the RL tasks in the
Orario3d platform with the maze size of 11× 11.

keys, memory values, and a learnable query vector are taken
as the input of the multi-head attention module (Vaswani
et al. 2017) to generate memory attention features fatt. In
addition, an observation image encoder is adopted to extract
the image features f img . The memory attention features fatt

and the image features f img are concatenated and taken as
the input of the dueling network to generate the Q value.
Moreover, we design an intrinsic curiosity reward based on
the entropy gain of the memory to make the agent explore
sparse reward environments. For every step, we save the in-
formation of the observation to the memory and compute the
intrinsic reward via Eq. 6.

pk(t) = σ(Mval
k (t)),

H(t) = −pk(t)log pk(t)− (1− pk(t))log (1− pk(t)),

rint(t) =
∑
k

[H(t)−H(t+ 1)],

(6)
where k denotes the index of each memory block and t de-
notes the time step. The weights of SMN are fixed during
the training of SMN-DQN.

Experiments
Experimental Setup
Dataset for Scene Rendering. We evaluate the rendering
performance of the proposed model in both small and large
scenes. For small scenes, we adopted Rooms-Free-Camera
(RFC) dataset proposed in GQN (Eslami et al. 2018). As for
large scenes, we design and develop a 3D platform named
Orario3d based on pyrender (Matl 2019) to procedurally
generate 3D mazes with different structures and textures (as
shown in Fig. 5a). A 3-DOF camera is placed on a plane
parallel to xy-plane to render the RGB images. The side
length of one grid in the maze is 1 meter. The size of each

maze is set to 11 × 11 grids and the FOV of the camera is
set to 80◦. Each observation/query image has 64×64 pixels.

Training Setting for Scene Rendering. For training
on the RFC dataset, we sampled 2048 memory blocks with
the keys in the range of −1 ∼ +1. For training on scenes
from Orario3d, the density of the memory blocks is set to
(10 blocks)/m3, and the clipping space is set to a (6m)3

cube with the agent at the center of the cube (averagely
2160 memory blocks in the clipping range). The batch
size and the number of training steps are set as 32 and
1.6M, respectively. We use the Adam optimizer to train the
network with a learning rate of 5e-5. All the experiments
are conducted on a PC with an Intel Core i7-9700K CPU
and NVIDIA Geforce GTX1080Ti GPU.

Reinforcement Learning Environments. We construct
an environment with two different tasks for evaluating the
RL models based on Orario3d platform. The agent can
perform 5 discrete actions, which are {Move Forward,
Clockwise Rotation, Anticlockwise Rotation, Clockwise
Rotation + Move Forward, and Anticlockwise Rotation +
Move Forward}. The two tasks are described as follows and
Fig. 5 illustrates the examples of the RL environments.
• Item-Collecting: 15 red balls are randomly placed in the
maze, and the distance between any two red balls is larger
then 1m. The agent aims to collect as many red balls as
it can in 1000 steps. The agent receives one point when it
collects a red ball.
• Scene Exploration: Only the observation images/poses
are provided, and no extrinsic reward signal is considered.
The agent aims to explore as much areas in 1000 steps.

Training Setting for Reinforcement Learning. We
stack the 5 previous frames to construct the input state of
the image encoder in the DQN model. 1000 memory blocks
are randomly sampled in the clipping range and taken as the
local map of the SMN-DQN model. The discount factor is
set to 0.95 and the batch size for training is set to 32. We
train the RL models by using RMSprop optimizer with a
learning rate of 2e-4 and 1M training steps.

Evaluation of View Synthesis
We use root mean square error between the rendered view
and the ground truth as the metric of quantitative evalua-
tion for view synthesis. We compare the proposed SMN with
GQN (Eslami et al. 2018), GTM-SM (Fraccaro et al. 2018)
and STR-GQN (Chen, Hu, and Chen 2021). The same as
our proposed SMN, these three methods also use the prior-
free setting, i.e., the view is rendered without the depth map
and camera parameters. Tab. 1 shows the results of different
methods on four evaluation sets. The evaluation sets “Lo-
cal”, “Base” and “Large” are collected based on the pro-
posed Orario3d platform with different observation sam-
pling strategies for evaluating different degrees of general-
ization ability. Each evaluation set contains 100 mazes. For
“Local”, we randomly sample 5 observation poses and 10
query poses in the 6 × 6 grids area of each 11 × 11 grids
maze, which is similar to the sampling strategy of the train-
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(a) Maze-Base

(b) Maze-Large

Figure 6: Comparison of the rendering results for different methods based on the Maze-Base and Maze-Large setting.

GQN GTM-SM STR-GQN SMN (Ours)
Rooms-Free-Camera 19.1±13.9 19.1±13.9 15.9±12.8 16.1±13.8
Orario3d (Local) 30.5±24.1 31.1±25.4 22.5±22.0 21.3±20.7
Orario3d (Base) 34.2±25.6 32.8±25.3 22.8±21.5 21.7±21.6
Orario3d (Large) 56.5±28.8 53.8±29.9 52.1±30.8 25.8±22.5

Table 1: The mean and standard deviation of the root mean square error for view synthesis.

ing data. For “Base”, we randomly sample 10 observation
poses and 10 query poses in overall 11 × 11 grids maze. In
“Large” evaluation set, we randomly sample 20 observation
poses and 10 query poses in the overall area of each 17× 17
grids maze.

We can observe that GQN has the worst generalization
ability. GTM-SM is better than GQN in “Base” due to the
DND memory. Benefit from the design of spatially aware
mechanism, STR-GQN has better performance on both “Lo-
cal” and “Base” than GTM-SM, but both of STR-GQN and
GTM-SM cannot handle the rendering of the mazes larger
than the training scene. The proposed SMN has the lowest
rendering error on most of the evaluation sets and is the only
one that can adapt to the “Large” evaluation set. The reason
might be that GQN, GTM-SM and STR-GQN cannot handle
the data whose camera locations are outside the range of the
training data. In SMN, we transform the camera poses and
the memory keys together to the egocentric form and clip
the memory based on the keys, which makes the input of the
network in memory controller always in the same range and
therefore enables the model to adapt to large scenes.

Fig. 6 illustrates the rendering results of “Base” and
“Large” for different methods. The images with blue and
green outer frames are the observation images and the query
images, respectively. The blue and green circles on the top
view of maze are the poses of observation views and query
views, respectively. We visualize the rendering results of two
query poses (indicated by 1⃝ and 2⃝) for each scene to com-
pare different methods. In the results of “Base”, we can ob-
serve that the rendered images of STR-GQN and SMN are
reasonable but the ones of GQN and GTM-SM have wrong
scene structures. As for the results of “Large”, we visualize

(a) Memory Mask m (b) Max Attention Index jmax
k

Figure 7: Visualization of the memory mask m and max at-
tention index jmax

k for the corresponding memory keys.

the rendering result of query pose 1⃝ that is in the range of
the maze size for training samples (11 × 11 grids area de-
noted as the red dotted square) and query pose 2⃝ that is out
of that range. We can find that the result of STR-GQN is rea-
sonable for the query pose 1⃝ but does not perform well for
the query pose 2⃝.

Visualization of the Memory Control Process
We visualize the memory mask m (Eq. 3) and the attention
att (Eq. 5) generated by the memory controller to evaluate
the geometric rationality of the learned memory control pro-
cess. We randomly sample 4096 memory keys on the xy-
plane of 3D space and place the camera at the origin facing
to the positive y-axis. Fig. 7a shows the value of memory
mask for each corresponding memory key. As the value in-
creases, the color changes from blue to red. We can observe
that the memory keys with high mask values correspond
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DQN DQN+Epi. DQN+Ent. SMN-DQN SMN-DQN+Ent.
Item-Collecting 8.85±4.05 9.15±3.42 9.30±3.04 9.75±3.69 11.0±3.29

Table 2: Quantitative evaluation of the item-collecting tasks.

(a) Examples of exploration in an 11× 11 grids maze.

(b) Examples of exploration in a 17× 17 grids maze.

Figure 8: Experimental results of scene exploration based on the proposed intrinsic reward.

to the front viewing area of the camera, indicating that the
memory controller successfully learns the property of view-
ing frustum. As for the visualization of attention, we collect
the pixel position having the max attention value for each
memory key (i.e. [imax

k , jmax
k ] = argmaxi,j [attk(i, j)]),

where i and j denote the index of height and width on the
observation image, respectively. As shown in Fig. 7b, the
color represents the index jmax

k of the corresponding mem-
ory keys. As the value of jmax

k increases (from left to right
on the observation image), the color changes from blue to
red. We can observe that the left/right area in front of the
camera corresponds to the pixels in left/right area on the im-
age, respectively. Furthermore, the memory keys with the
same color correspond to points on the same ray tracing line,
which proves that the proposed memory controller success-
fully learns the concept of camera back-projection.

Evaluation of Reinforcement Learning
We conduct experiments of item-collecting tasks to quan-
titatively evaluate whether the proposed SMN can improve
the performance of the RL model. We randomly generate 20
mazes with different initial poses and item positions for eval-
uating each method. Tab. 2 shows the mean and standard de-
viation of the scores for different methods in item-collecting
task. “DQN+Epi.” is the method that uses DQN with one
of the state-of-the-art episodic intrinsic reward proposed in
NGU (Badia et al. 2020). “DQN+Ent.” is the method that
uses DQN with the proposed entropy-gain intrinsic reward
based on the learned memory of SMN as described in Eq. 6.
“SMN-DQN” is the method that adopts the network archi-
tecture which takes memory blocks as the additional state.
“SMN-DQN+Ent.” is the method that utilizes the network
architecture of “SMN-DQN” with the proposed entropy-gain
intrinsic reward. The experimental results show that the per-

formance of RL model improves after adding information
of memory blocks to the DQN model, which reveals the ad-
vantage of additional scene information constructed by the
proposed SMN in the partial observed environment. The RL
model that combines the memory blocks and the entropy-
gain intrinsic reward achieves the best performance. Fig. 8
demonstrates the trajectories and the rendered images of the
agent trained by the proposed intrinsic reward in the scene
exploration task. We train the SMN-DQN in the 11×11 grids
maze and test the agent on both 11 × 11 grids and 17 × 17
grids maze. The agent successfully generalizes the explo-
ration strategy learned from small scenes to large scenes.
The color on the local trajectory indicates the entropy-gain
of that time step. We can observe that the entropy-gain is
large (colored as red) when the area is unexplored and the
entropy-gain is small (colored as blue) when the agent re-
turns to a place it has observed.

Conclusion and Future Works
In this work, we propose a neural scene representation
method named Scene Memory Network (SMN), which can
construct the scene representation online for view rendering
without the depth map and camera parameters. In SMN, a
spatially aware memory control mechanism is designed to
capture the property of geometry transformation. The pro-
posed memory controller allows expandable memory, which
scales linearly with the size of the map rather than the num-
ber of observations. The memory constructed by the SMN
can further assist navigation and exploration tasks. A lim-
itation of our work is that our model can only be applied
on synthetic environments with simple scene structures. Our
future work is to improve the proposed SMN to adapt to re-
alistic scenes with complex textures and lighting conditions.

375



Acknowledgments
This work was supported in part by the National Science
and Technology Council, Taiwan under Grants NSTC 108-
2221-E-007-106-MY3, NSTC 111-2634-F-002-023, MOST
110-2221-E-002-185-MY2, and in part by an unrestricted
gift from Google.

References
Badia, A. P.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; Piot,
B.; Kapturowski, S.; Tieleman, O.; Arjovsky, M.; Pritzel, A.;
Bolt, A.; et al. 2020. Never give up: Learning directed ex-
ploration strategies. arXiv preprint arXiv:2002.06038.
Chaplot, D. S.; Gandhi, D.; Gupta, S.; Gupta, A.; and
Salakhutdinov, R. 2019. Learning To Explore Using Active
Neural SLAM. In International Conference on Learning
Representations.
Chaplot, D. S.; Salakhutdinov, R.; Gupta, A.; and Gupta, S.
2020. Neural topological slam for visual navigation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 12875–12884.
Chen, W.-C.; Hu, M.-C.; and Chen, C.-S. 2021. STR-GQN:
Scene Representation and Rendering for Unknown Cameras
Based on Spatial Transformation Routing. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 5966–5975.
DeVries, T.; Bautista, M. A.; Srivastava, N.; Taylor, G. W.;
and Susskind, J. M. 2021. Unconstrained Scene Generation
with Locally Conditioned Radiance Fields. arXiv preprint
arXiv:2104.00670.
Eslami, S. A.; Rezende, D. J.; Besse, F.; Viola, F.; Morcos,
A. S.; Garnelo, M.; Ruderman, A.; Rusu, A. A.; Danihelka,
I.; Gregor, K.; et al. 2018. Neural scene representation and
rendering. Science, 360(6394): 1204–1210.
Fraccaro, M.; Rezende, D.; Zwols, Y.; Pritzel, A.; Eslami,
S. A.; and Viola, F. 2018. Generative temporal models with
spatial memory for partially observed environments. In In-
ternational Conference on Machine Learning, 1549–1558.
PMLR.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural Tur-
ing Machines. arXiv preprint arXiv:1410.5401.
Gregor, K.; Besse, F.; Jimenez Rezende, D.; Danihelka, I.;
and Wierstra, D. 2016. Towards conceptual compression.
Advances In Neural Information Processing Systems, 29:
3549–3557.
Matl, M. 2019. Pyrender. https://github.com/mmatl/
pyrender. Accessed: 2021-04-20.
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.;
Ramamoorthi, R.; and Ng, R. 2020. Nerf: Representing
scenes as neural radiance fields for view synthesis. In Euro-
pean conference on computer vision, 405–421. Springer.
Miller, A. H.; Fisch, A.; Dodge, J.; Karimi, A.-H.; Bordes,
A.; and Weston, J. 2016. Key-Value Memory Networks for
Directly Reading Documents. In EMNLP.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control

through deep reinforcement learning. nature, 518(7540):
529–533.
Oh, J.; Chockalingam, V.; Lee, H.; et al. 2016. Control of
memory, active perception, and action in minecraft. In In-
ternational Conference on Machine Learning, 2790–2799.
PMLR.
Parisotto, E.; and Salakhutdinov, R. 2018. Neural Map:
Structured Memory for Deep Reinforcement Learning. In
International Conference on Learning Representations.
Planche, B.; Rong, X.; Wu, Z.; Karanam, S.; Kosch, H.;
Tian, Y.; Ernst, J.; and HUTTER, A. 2019. Incremental
Scene Synthesis. Advances in Neural Information Process-
ing Systems, 32: 1668–1678.
Pritzel, A.; Uria, B.; Srinivasan, S.; Badia, A. P.; Vinyals, O.;
Hassabis, D.; Wierstra, D.; and Blundell, C. 2017. Neural
episodic control. In International Conference on Machine
Learning, 2827–2836. PMLR.
Sitzmann, V.; Thies, J.; Heide, F.; Nießner, M.; Wetzstein,
G.; and Zollhofer, M. 2019. Deepvoxels: Learning persistent
3d feature embeddings. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2437–2446.
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