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Abstract

Amodal instance segmentation aims to infer the amodal
mask, including both the visible part and occluded part of
each object instance. Predicting the occluded parts is chal-
lenging. Existing methods often produce incomplete amodal
boxes and amodal masks, probably due to lacking visual ev-
idences to expand the boxes and masks. To this end, we pro-
pose a prior-guided expansion framework, which builds on a
two-stage segmentation model (i.e., Mask R-CNN) and per-
forms box-level (resp., pixel-level) expansion for amodal box
(resp., mask) prediction, by retrieving regression (resp., flow)
transformations from a memory bank of expansion prior. We
conduct extensive experiments on KINS, D2SA, and COCOA
cls datasets, which show the effectiveness of our method.

1 Introduction
Instance segmentation (e.g., Mask R-CNN (He et al. 2017))
focuses on segmenting visible pixels for each object in-
stance. In real-world images, the object instances usually
partially occlude each other. To better parse the complex
scene, amodal instance segmentation (Xiao et al. 2021; Li
and Malik 2016) requires to infer the complete amodal
mask, including both the visible region and the occluded re-
gion for each object instance. Such capacity could greatly
benefit intelligent systems in extensive real-world applica-
tions, e.g., facilitating the moving decision in complex traf-
fic or living environment in autonomous driving (Qi et al.
2019) or robotics (Fang et al. 2020; Follmann et al. 2019).

Recent years have witnessed promising progress in the
amodal instance segmentation area. Former methods (Qi
et al. 2019; Zhu et al. 2017; Follmann et al. 2019) directly
infer both the visible and the amodal regions from images,
while recent methods infer depth order information (Zhang
et al. 2019; Zhan et al. 2020) or introduce prior informa-
tion (Xiao et al. 2021) to help amodal instance segmenta-
tion. Despite the great progress of previous works, predict-
ing amodal masks is still challenging because of lacking vis-
ible evidences for the occluded regions.

In practice, we found that the inferred amodal box and
amodal mask are often incomplete, probably due to lack-
ing evidences for expanding to complete amodal region. Re-
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Figure 1: Overview of our method, which performs box-
level expansion (resp., pixel-level expansion) guided by the
prior-based regression transformations (resp., flow transfor-
mations). Visually, the amodal mask in (b) consists of both
the visible part (in blue) and occluded part (in light blue).

cently, Xiao et al. (2021) employs several ground-truth (GT)
amodal masks of training instances (i.e., instances with GT
annotations in the training set) similar to the initially esti-
mated amodal mask as shape prior to benefit the mask re-
finement. We also consider exploiting prior information to
support amodal inference. In contrast, we propose to exploit
the prior information of expanding visible region to amodal
region, based on which prior-guided expansion is performed
for amodal instance segmentation. Specifically, the amodal
mask is represented by a box and a mask within it (He et al.
2017; Xiao et al. 2021). Undersize box inherently limits the
subsequent amodal mask prediction, which remains ignored
in recent works (Xiao et al. 2021; Follmann et al. 2019).
Thus, we perform box-level (resp., pixel-level) expansion
for amodal box (resp., mask) prediction.

Following (Xiao et al. 2021; Follmann et al. 2019), our
framework is built upon Mask R-CNN and further includes
an expansion prior memory bank, a prior-guided amodal box
head, and a prior-guided amodal mask head. The general
pipeline firstly employs Mask R-CNN to infer the object
class, original amodal box, and visible mask. After that, we
search expansion prior for box in the bank to help the prior-
guided amodal box head obtain the expanded amodal box,
as shown in Fig. 1 (a). Finally, we search expansion prior
for mask in the bank to assist the prior-guided amodal mask
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head in obtaining the amodal mask, as shown in Fig. 1 (b).
Specifically, we construct one sub-bank for each class,

where each slot in bank stores the information of a training
instance. For each slot, the key is GT visible mask and the
value is a tuple of GT visible box, GT amodal box, and GT
amodal mask. We use the estimated visible mask to query
the class-specific sub-bank, considering that objects having
similar visible parts are likely to have similar amodal parts.
Then, we can derive regression/flow transformations accord-
ing to the retrieved values. Based on the expansion prior that
how GT visible boxes are expanded to GT amodal boxes,
we derive regression transformations to guide the box-level
expansion. Based on the expansion prior that how the esti-
mated visible mask is expanded to GT amodal masks, we
derive flow transformations to guide the pixel-level expan-
sion. Thanks to the expansion prior, our model can produce
more complete amodal boxes and amodal masks.

We conduct extensive experiments on three datasets:
KINS (Qi et al. 2019), D2SA (Follmann et al. 2019), and
COCOA cls (Zhu et al. 2017). The in-depth analysis could
demonstrate the effectiveness of our framework by perform-
ing box-level expansion and pixel-level expansion guided by
expansion prior. Our contributions can be summarized as: 1)
we propose a prior-guided expansion framework for amodal
instance segmentation to address the incomplete box/mask
issue; 2) technically, we propose to exploit prior-based re-
gression (resp., flow) transformations to facilitate box-level
(resp., pixel-level) expansion; 3) extensive experiments on
three benchmark datasets indicate the effectiveness of our
method against state-of-the-art baselines.

2 Related Work
2.1 Visual Occlusion Learning
In practice, occlusion is an inevitable problem and dramat-
ically increases the learning difficulty, which has been re-
searched in extensive applications including image classi-
fication (Kortylewski et al. 2021; Xiao et al. 2020), ob-
ject detection (Wang et al. 2020; Chu et al. 2020), track-
ing (Yang et al. 2014), and segmentation (Gao, Packer, and
Koller 2011; Winn and Shotton 2006). For example, BANet
(Chen et al. 2020b) introduced an occlusion handling algo-
rithm to model the occlusion between object instances for
panoptic segmentation. Huang et al. (Huang et al. 2020) pro-
posed to leverage the less occluded visible parts for effec-
tively removing the redundant boxes in crowded pedestrian
detection. Zhan et al. (Zhan et al. 2020) conducted ordering
recovery, amodal completion, and content completion sub-
tasks in self-supervised manner for scene de-occlusion task.
Recently, Yuan et al. (Yuan et al. 2021) proposed a genera-
tive model of multiple objects to reason about multi-object
occlusion under box-level supervision for the robust instance
segmentation task. In this paper, we focus on the occlusion
problem in amodal instance segmentation.

2.2 Amodal Instance Segmentation
The standard instance segmentation has achieved prominent
progress in recent years (Ghiasi et al. 2021; Tian et al. 2019;

Chen et al. 2020a; Xie et al. 2020) and has derived vari-
ous richer tasks, including efficient instance segmentation
(Zhang et al. 2020a; Lee and Park 2020), high-resolution in-
stance segmentation (Wei et al. 2020; Su et al. 2020), and so
on (Gupta, Dollar, and Girshick 2019; Roscher et al. 2020).
In this paper, we focus on amodal instance segmentation (Li
and Malik 2016), which considers the problem of segment-
ing instances with the occluded region.

Recently, amodal instance segmentation has drawn in-
creasing research interest, probably due to its practical ap-
plication in extensive complex scenes. The earliest work
on amodal instance segmentation was proposed by (Li and
Malik 2016), which iteratively predicts the amodal bound-
ing box based on amodal segmentation heatmap and trains
the model using occlusion data synthesized by overlap-
ping cropped image patches. Afterwards, Zhu et al. (Zhu
et al. 2017) employed SharpMask (Pinheiro, Collobert, and
Dollár 2015) to predict the object amodal mask from coarse
to fine. Qi et al. (Qi et al. 2019) proposed to ensemble the
features from box and class head by multi-level coding for
the occluded instances, which are determined by an occlu-
sion classifier. SLN (Zhang et al. 2019) introduced a depth
order representation to facilitate the inference of amodal
mask. Considering the relationship between the visible re-
gion and amodal region, ORCNN (Follmann et al. 2019)
proposed to further predict the occlusion mask by subtract-
ing the visible mask from the amodal mask. BCNet (Ke, Tai,
and Tang 2021) added an occlusion perception branch paral-
lel to the traditional instance segmentation pipeline to con-
sider the interactions between objects. Xiao et al. (Xiao et al.
2021) proposed to use cross-task attention together with GT
training masks similar to coarse prediction for refinement.
Considering that using memory bank of prior knowledge
(Xiao et al. 2021; Tu et al. 2020; Zhang et al. 2020b) is also
an effective method, we exploit expansion transformations
from prior knowledge to perform both box-level and pixel-
level expansion for better amodal inference.

3 Method
For the input image I, amodal instance segmentation aims
to infer the object class y and amodal mask Ma for each
object instance. As illustrated in Fig 1 (b), the amodal mask
consists of visible mask and occluded mask.

Our overall framework is shown in Fig 2, which mainly
consists of four modules: Mask R-CNN, expansion prior
memory bank, prior-guided amodal box head, and prior-
guided amodal mask head. Firstly, Mask R-CNN produces
N target instances from the input image, and the i-th in-
stance has three estimations: object class yi, original amodal
box Bo

i , and visible mask Mv
i . Based on the estimated class

and visible mask, the memory bank searches and provides
regression transformations Tr

i for subsequent box-level ex-
pansion. After that, the visible box Bv

i is derived by clipping
the visible mask, and the prior-guided amodal box head esti-
mates the expanded amodal box Ba

i according to Bv
i and Tr

i .
Based on Ba

i , the original region feature map and estimated
visible mask are also expanded accordingly via resampling
(e.g., ROIAlign (He et al. 2017)). Then, the expanded visi-
ble mask is employed to query the bank to retrieve the flow
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Figure 2: The framework of our method, mainly including Mask R-CNN (over blue background), prior-guided amodal box
head (AB head, over green background), and prior-guided amodal mask head (AM head, over red background).

Figure 3: The procedure of searching and deriving regres-
sion transformations (a) and flow transformations (b), where
the visible mask is employed to query and a solver is em-
ployed to derive transformations between targets.

transformations Tf
i . Finally, the prior-guided amodal mask

head predicts the amodal mask Ma
i on the expanded region

feature map supported by Tf
i .

For Mask R-CNN, we follow the setup in previous works
(Xiao et al. 2021; Follmann et al. 2019), e.g., predicting
amodal box in its box head, using ResNet-50 (He et al. 2016)
as backbone, and using channel size C = 256 and spatial
size 14× 14 for the region feature maps of mask heads. The
training objective of Mask R-CNN is summarized as

Lmrcnn = Lcls + Lo
box + Lv

mask, (1)

where Lcls, Lo
box, and Lv

mask are the training objectives for
object class, original amodal box, and visible mask, consis-
tent with these loss terms in (Xiao et al. 2021; Follmann et al.
2019; He et al. 2017). The architectures and procedures of
other modules are introduced as follows.

3.1 Expansion Prior Memory Bank
The memory bank stores the expansion prior for box-level
expansion and pixel-level expansion.

Construction The memory bank is constructed before the
formal training according to training samples. For each
class, we construct a sub-bank having Ks slots (Ks = 1000
in our experiments), with each slot corresponding to a train-
ing instance. The key of each slot is the visible mask of this
instance, denoted as Mv

. The value of each slot is a tuple of
visible box Bv

, amodal box Ba
, and amodal mask Ma

of this
instance. For the classes with fewer than Ks instances, we
perform augmentation (i.e., spatial transformation) to obtain
Ks instances. For the classes with more than Ks instances,
we perform K-Means and use Ks cluster centers.

Search For the i-th target instance, we employ its estimated
visible mask Mv

i as query to search the sub-bank belonging
to its predicted class, and find K (K = 8 in our experiments)
nearest slots using the distance function d(Mquery,Mkey) =

∥E(Mquery)− E(Mkey)∥2, where E(·) is a pre-trained en-
coder used in the distance computation (we reuse the mask
encoder in (Xiao et al. 2021) and freeze it during training).
After that, we can extract two types of expansion prior from
the K retrieved values. Considering that the expansion prior
is derived per value individually, we will take the k-th value
as an example in the following description.

Deriving Regression Transformation To exploit expansion
prior to guide the box-level expansion, we derive regression
transformation according to the GT visible box Bv

k and GT
amodal box Ba

k, as shown in Fig. 3 (a). That is,

Tr
k = Sr(Bv

k,Ba
k), (2)

where the regression transformation Tr
k accounts for trans-

lating and scaling the box Bv
k to match Ba

k. Function Sr(·, ·)
is implemented based on the coordinates of two boxes as in
(He et al. 2017; Ren et al. 2015). The details of Sr(·, ·) are
trivial and omitted here.

Deriving Flow Transformation To exploit expansion prior
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to guide the pixel-level expansion, we derive flow transfor-
mation according to the estimated visible mask Mv and GT
amodal mask Ma

k, as shown in Fig. 3 (b). That is,

Tf
k = Sf (Mv,Ma

k), (3)

where Tf
k is the derived flow transformation and Sf (·, ·) is

a function solving the transformation from Mv to Ma
k, i.e.,

2-D spatial offsets for moving pixels in the visible mask to
reconstruct the amodal mask. Unlike the close-form solver
Sr(·, ·) for box, we have to employ a lightweight network
(similar to FlowNet (Dosovitskiy et al. 2015)) as Sf (·, ·)
to derive the flow transformations. Sf (·, ·) is pre-trained on
paired GT visible masks and GT amodal masks of training
instances and frozen during the formal training.

In the following, we introduce the details that how the
prior regression (resp., flow) transformations in memory
bank guide the box-level (resp., pixel-level) expansion.

3.2 Prior-guided Amodal Box Head
The original amodal box Bo predicted by Mask R-CNN is
usually incomplete. Therefore, the prior-guided box head
is proposed to perform box-level expansion guided by the
searched regression transformations Tr, as shown in the
right-upper subfigure of Fig. 2.

Firstly, guided by regression transformations, we expand
visible box Bv (derived via clipping visible mask Mv) by

Bp
k = Tr

k(B
v), (4)

where Tr
k(·) is the k-th regression transformation and Bp

k is
the k-th prior-expanded box. Secondly, K prior-expanded
boxes perform ROIAlign on the pyramid feature maps of
Mask R-CNN to obtain K expanded region feature maps,
in spatial size 4 considering computation complexity. Af-
ter that, the channel size of concatenated expanded region
feature map is squeezed from K × C to C. Meanwhile,
the region feature map within visible box is obtained by
ROIAlign. Then, the two feature maps are concatenated and
fed into a 3 × 3 convolution layer outputting C channels.
Finally, the flattened feature vector is fed into three fully-
connected layers to predict the expanded amodal box Ba.
The loss term of this module w.r.t N target instances is

La
box =

1

N

N∑
i

∥Ba
i − Ba

i
∗∥1, (5)

where Ba
i is specifically a vector representing the 4 normal-

ized coordinate (He et al. 2017; Ren et al. 2015) of the pre-
dicted amodal box for the i-th instance, and Ba

i
∗ represents

the corresponding ground-truth amodal box.
Overall, the expansion prior in the training instances is

exploited as regression transformations and employed to ex-
pand visible box to facilitate the prediction of amodal box.
In addition, we employ the expansion prior to expand the
visible box derived by clipping visible mask, but it may be
more intuitive to directly predict visible box by the box head
in Mask R-CNN and then expand it. However, this intu-
itive manner degrades the performance of amodal box and

amodal mask (see experiments in Sec. 4.4), probably be-
cause of lacking occlusion context which could have been
exploited by backbone or region proposal network implic-
itly. Therefore, we predict amodal box in the box head of
Mask R-CNN following (Xiao et al. 2021; Follmann et al.
2019), and obtain visible box by clipping visible mask.

3.3 Prior-guided Amodal Mask Head
Within the expanded amodal box Ba, directly predicting
the amodal mask Ma is still difficult. Therefore, the prior-
guided amodal mask head is proposed to perform pixel-level
expansion guided by the searched flow transformations Tf ,
as shown in the bottom right subfigure of Fig. 2.

Firstly, guided by the flow transformations, we expand the
feature map of visible region by

Fp
k = Tf

k(F
e · Mv,e), (6)

where · means dot-product, and Fe and Mv,e are the region
feature map and estimated visible mask within the expanded
amodal box respectively. Fp

k is the k-th expanded region fea-
ture map which spatially transforms visible region feature
map via 2D offsets in Tf

k(·). After that, the channel size of
concatenated expanded region feature map is squeezed from
K×C to C. The squeezed feature map is concatenated with
Fe and then fed into a 1 × 1 convolution layer outputting
C channels. Finally, 4 convolution layers, 1 deconvolution
layer, and 1 convolution layer are employed to predict the
amodal mask Ma, following the mask head in (He et al.
2017; Xiao et al. 2021; Follmann et al. 2019). The loss term
of this module w.r.t N instances could be formulated as

La
mask =

1

N

N∑
i

Lbce(Ma
i ,Ma

i
∗), (7)

where Ma
i
∗ is the associated ground-truth amodal mask of

i-th target instance, and Lbce(·, ·) is the binary cross-entropy
loss used in (He et al. 2017; Xiao et al. 2021).

Overall, the expansion prior in the training instances is
exploited as flow transformations, which are used to expand
the feature map of visible region to facilitate the prediction
of amodal mask. Compared with the directly concatenated
GT amodal masks in (Xiao et al. 2021), the concatenated
expanded region feature maps could implicitly encode more
structural and contextual information, and thus better benefit
the amodal inference (see experiments in Sec. 4.4).

3.4 The Total Training Objective
Overall, our total training objective can be formulated as

L = Lmrcnn + La
box + La

mask, (8)

where Lmrcnn, La
box and La

mask are the training objectives
of Mask R-CNN in Sec. 3, prior-guided amodal box head in
Sec. 3.2, and prior-guided amodal mask head in Sec. 3.3.

4 Experiments
4.1 Datasets and Implementation Details
As in (Xiao et al. 2021), we investigate the performance of
our method on three public datasets: the KINS dataset (Qi
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Set AB Head AM Head Amodal Mask Amodal Box
w/o with w/o with AP AP-occ AP AP-occ

#1 ✓ 30.12 33.61 32.54 38.13
#2 ✓ ✓ 30.66 34.10 33.45 39.23
#3 ✓ ✓ 31.95 36.76 35.63 41.63
#4 ✓ 31.25 34.97 32.59 38.24
#5 ✓ ✓ 31.87 36.32 33.48 39.34
#6 ✓ ✓ 33.82 38.95 35.77 41.68

Table 1: Module contributions on KINS dataset. “AB head”
(resp., “AM head”) is the abbreviation for amodal box (resp.,
mask) head, while “with” and “w/o” indicate whether to en-
able the expansion prior or not.

Figure 4: The performances of amodal mask and amodal
box w.r.t various numbers of used expansion prior. The green
dotted lines indicate the default values.

et al. 2019), the D2SA (D2S amodal) dataset (Follmann et al.
2019), and the COCOA cls dataset (Zhu et al. 2017). We
implement the proposed method on the codebase of previ-
ous work (Xiao et al. 2021), which builds on Detectron2 us-
ing Python 3.7 and PyTorch 1.4.0 framework. We conducted
the experiments on Ubuntu 18.04 system with 32 GB Intel
9700K CPU and two NVIDIA 1080ti GPU cards.

4.2 Evaluation
We employ the mean average precision (AP) for the evalu-
ation following previous works (Xiao et al. 2021; Zhu et al.
2017), and we evaluate the performance for both amodal box
and amodal mask to investigate the effectiveness of box-
level expansion and pixel-level expansion. We also follow
(Xiao et al. 2021) to focus on the performance of occluded
instances via AP-occ, which only computes the performance
on the instances having visible rate (i.e., IoU between visi-
ble mask and amodal mask) not larger than 85%. We employ
the evaluation API in (Xiao et al. 2021) for fair comparisons,
which inherits the API of COCO dataset (Lin et al. 2014).

4.3 Ablation Study
We conduct ablation study on the KINS dataset, consider-
ing that it is the largest real-world dataset for amodal in-
stance segmentation. We investigate the performances of
various combination sets of modules, and summarize the re-
sults in Tab. 1. The most basic set is Set#1, which totally
obsoletes the prior-guided amodal box head and directly
predicts amodal mask within the original amodal box (i.e.,
Mask R-CNN with additional amodal mask head). Firstly,
simply adding a box head without prior (i.e., Set#1 v.s.
Set#2) just slightly improves the performances of mask and

Method Amodal Mask Amodal Box
AP AP-50 AP-75 AP-occ AP AP-occ

MRCNN 30.01* 54.53* 30.11* - 32.50 -
MRCNN8 30.71* 54.36* 31.47* - 32.57 -
ORCNN 30.64* 54.21* 31.29* 34.23* 32.65 38.58
Qi et al. 32.20* 55.45 33.21 37.47 33.40* 39.42
BCNet 31.61 55.02 32.86 36.72 32.66 38.71

Xiao et al. 32.08* 55.37* 33.34* 37.40* 32.70 39.00
PGExp 33.82 55.54 35.66 38.95 35.77 41.68

(a) Results on KINS dataset.

Method Amodal Mask Amodal Box
AP AP-50 AP-75 AP-occ AP AP-occ

MRCNN 63.57* 83.85* 68.02* - 64.01 -
MRCNN8 64.85* 84.05* 70.72* - 64.20 -
ORCNN 64.22* 83.55* 69.12* 45.27* 64.45 53.83
Qi et al. 66.67 84.04 72.56 47.66 65.03 53.95
BCNet 67.41 84.62 73.34 48.54 64.78 53.92

Xiao et al. 70.27* 85.11* 75.81* 51.17* 64.91 54.04
PGExp 71.79 85.23 76.77 53.75 71.23 55.38

(b) Results on D2SA dataset.

Method Amodal Mask Amodal Box
AP AP-50 AP-75 AP-occ AP AP-occ

MRCNN 33.67* 56.50* 35.78* - 39.41 -
MRCNN8 34.72* 57.50* 36.93* - 39.56 -
ORCNN 28.03* 53.68* 25.36* 17.40* 39.47 25.15
Qi et al. 34.82 56.12 37.31 19.22 39.74 25.32
BCNet 35.02 56.08 37.54 19.92 39.64 25.38

Xiao et al. 35.41* 56.03* 38.67* 22.17* 39.76 25.44
PGExp 37.55 57.74 41.41 23.31 43.01 26.31

(c) Results on COCOA dataset.

Table 2: The comparison of various methods on three bench-
mark datasets.

box. Solely utilizing the prior-guided amodal box head (i.e.,
Set#1 v.s. Set#3) dramatically promotes the performance of
box and thus benefits the downstream amodal mask predic-
tion. While solely utilizing the prior-guided amodal mask
head (i.e., Set#1 v.s. Set#4) dramatically promotes the per-
formance of amodal mask. Finally, the full-fledged combi-
nation of prior-guided amodal box head and mask head (i.e.,
Set#6) achieves the optimal performance indicating the ef-
fectiveness of prior-guided expansion.

4.4 Expansion Prior Analysis

For the number of used expansion prior, we summarize the
results in Fig. 4 (a) to show the effects. Guided by only 2 ex-
pansion prior, the performances of amodal box and amodal
box both are obviously improved. The performances of box
are gradually saturated around 4, while the performances of
mask are gradually saturated around 8. Considering the uni-
formity, we employ K = 8 for both amodal box and amodal
mask in Sec. 3.1. For the size of constructed memory bank,
we summarize the results in Fig. 4 (b) to show the impacts.
The overall performance is relatively saturated around the
default value (i.e., 1000). In addition, large bank size is still
efficient relative to the dominated backbone, and the default
value is a reasonable choice.
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Figure 5: Visualizations for the expansion prior on KINS (left) and D2SA (right) datasets. The first row shows the estimations
and ground-truth. The second row shows the top-3 (nearest in retrieving distance) regression transformations, in which the
blue box indicates the visible box and the red box indicates the prior-expanded box. The third row shows the top-3 flow
transformations, in which the blue points represent the estimated visible mask, the red points represent the searched GT amodal
mask, and the grey arrows show the process of expanding visible region.

4.5 Qualitative Analysis
We visualize the regression transformations and flow trans-
formations to better understand the process of box-level ex-
pansion and pixel-level expansion, as shown in Fig. 5. The
regression transformations serve as prior knowledge indi-
cating the expansion directions and scopes, and results in a
more complete expanded amodal box. Within the expanded
amodal box (zoomed to spatial size 14×14 via ROIAlign),
the flow transformations serve as prior knowledge to guide
the expanding of visible region feature map. Thanks to
the expansion prior of regression transformations and flow
transformations, our model is guided to produce more com-
plete results.

4.6 Comparison with Previous Works
Comparative Baselines We compare our method (dubbed
as PGExp) with the following state-of-the-art methods: 1)
MRCNN (He et al. 2017), which uses the network archi-
tecture of Mask R-CNN to predict amodal box and amodal
mask. 2) MRCNN8, which is a deeper Mask R-CNN used in
(Xiao et al. 2021). 3) ORCNN (Follmann et al. 2019), which
parallelly predicts visible mask and amodal mask, and fur-
ther predicts the occlusion mask by subtracting visible mask
from amodal mask to model the relationship between them.
4) Qi et al. (2019), which estimates occluded parts by multi-
task framework with multi-level coding. 5) BCNet (Ke, Tai,
and Tang 2021), which employs bilayer structure to consider
the interaction between occluding and occluded instances.

6) Xiao et al. (2021), which parallelly predicts coarse visi-
ble mask and amodal mask and employs cross-task attention
and concatenating searched GT masks for refinement.

Results and Analysis All the results are summarized in
Tab. 2, where the values marked by ∗ are directly copied
from (Xiao et al. 2021) or the corresponding paper and the
values without ∗ are obtained via reproductions with com-
parable and fair implementation. Firstly, simply employing
a deeper mask head only slightly improves the mask per-
formances, e.g., 30.71 v.s. 30.01 AP on KINS dataset. Our
method outperforms all baselines by a large margin in terms
of amodal box (e.g., 35.77 v.s. 33.40 AP on KINS dataset) by
prior-guided box-level expansion, which also enables pro-
ducing more complete amodal mask in the downstream pro-
cess. Our method also shows superior performance against
all baselines dramatically in term of amodal mask (e.g.,
33.82 v.s. 32.20 AP on KINS dataset), thanks to the prior-
guided pixel-level expansion. In addition, the improvement
in amodal box prediction of our method leads to generally
less improvement in downstream amodal mask prediction,
which may due to the neglecting of amodal box in previous
works. We also conjecture that mask prediction is notably
more difficult than box prediction, the improvement on box
would be inevitably compromised on the downstream seg-
mentation. Overall, our model achieves the optimal perfor-
mances for both amodal box and mask, demonstrating the
effectiveness of our prior-guided expansion framework.
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Figure 6: Qualitative comparison with competitive baselines. The column a) shows the source images, where the yellow dotted
boxes indicate the visualized regions zoomed for clearer comparison. The column b-e) show the class, score, amodal box, and
amodal mask for each target instance of ground-truth, BCNet (Ke, Tai, and Tang 2021), Xiao et al (Xiao et al. 2021), and ours.

4.7 Qualitative Comparison

We conduct the qualitative comparison with the two repre-
sentative baselines, i.e., BCNet (Ke, Tai, and Tang 2021)
and Xiao et al. (Xiao et al. 2021). As shown in Fig. 6,
our method could predict more complete amodal boxes and
amodal masks, by performing prior-guided box-level expan-
sion and prior-guided pixel-level expansion. For example, in
the complex scene of the first row (i.e., the two bicycles are
occluded by cars), BCNet and Xiao et al. both fail to produce
complete amodal boxes and amodal masks, and our method
could estimate more precise results by virtue of the expan-
sion priors. In the last row, for the cucumber occluded by the
cabbage and border padding, our model could produce more
favorable amodal mask, especially for the two ends.

5 Conclusion
In this paper, we have developed a prior-guided expansion
framework for amodal instance segmentation. Specifically,
we exploit expansion prior from training instances and de-
rive regression (resp., flow) transformations to facilitate box-
level (resp., pixel-level) expansion. Extensive experiments
and in-depth analyses on KINS, D2SA, and COCOA cls
datasets have demonstrated the effectiveness of our pro-
posed framework for amodal instance segmentation.
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