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Abstract

Recent research on Generalized Zero-Shot Learning (GZSL)
has focused primarily on generation-based methods. How-
ever, current literature has overlooked the fundamental prin-
ciples of these methods and has made limited progress in a
complex manner. In this paper, we aim to deconstruct the
generator-classifier framework and provide guidance for its
improvement and extension. We begin by breaking down the
generator-learned unseen class distribution into class-level
and instance-level distributions. Through our analysis of the
role of these two types of distributions in solving the GZSL
problem, we generalize the focus of the generation-based ap-
proach, emphasizing the importance of (i) attribute gener-
alization in generator learning and (ii) independent classi-
fier learning with partially biased data. We present a sim-
ple method based on this analysis that outperforms SotAs
on four public GZSL datasets, demonstrating the validity of
our deconstruction. Furthermore, our proposed method re-
mains effective even without a generative model, representing
a step towards simplifying the generator-classifier structure.
Our code is available at https://github.com/cdb342/DGZ.

1 Introduction
Big data fuels the progress of deep learning, but obtaining
specific data can sometimes prove difficult. In cases where
specific data is not available, Zero-Shot Learning (ZSL)
(Palatucci et al. 2009) can be used to recognize unseen
data by utilizing the relationship between seen and unseen
data. In general, ZSL seeks to recognize unseen data by ex-
ploiting the correlation between seen and unseen data. This
correlation is established using semantic knowledge, which
can be obtained through human annotations (Lampert, Nick-
isch, and Harmeling 2009) or word-to-vector approaches
(Mikolov et al. 2013a). By using semantic descriptors, ZSL
enables the transfer of information from seen to unseen do-
mains. Generalized Zero-Shot Learning (GZSL) (Chao et al.
2016) expands on ZSL by including additional seen classes
in the target decision domain, and it has received increasing
attention from researchers.

Recently, generative models have been used in main-
stream GZSL research to supplement information on unseen
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classes. A central hypothesis of generation-based GZSL
methods is that the generated class-level and instance-level
unseen distribution should match the real unseen distri-
bution (Fig. 1). By generating pseudo-unseen instances,
these methods enable classifier training to encompass un-
seen classes, resulting in a superior discrimination of unseen
classes compared to their counterparts. Despite their success
in enhancing GZSL performance, generation-based methods
encounter various challenges in future extensions or devel-
opments. Firstly, the underlying reasons for the effectiveness
of these approaches remain largely unexplored. Although
certain literature suggests that improved discrimination (Wu
et al. 2020) or diversity (Liu et al. 2021a) of generated sam-
ples contributes to enhanced GZSL performance, no the-
oretical or empirical evidence supports these performance
gains. Secondly, training a generative model entails addi-
tional computational and complexity. In most generation-
based methods, the primary time complexity arises from
training the generative model.

To address these challenges, we conduct both an em-
pirical and a theoretical investigation to uncover, under-
stand, and extend generation-based methods. We begin by
analyzing the role of instance-level distribution and class-
level distribution. In doing so, we replace the generator-
learned instance-level distribution with the Gaussian distri-
bution and conclude its substitutability in improving GZSL
performance. (Sec. 3.1). By decomposing the gradient of
the cross-entropy loss, we further relate class- and instance-
level distributions to unseen class discrimination and de-
cision boundary formation (Sec. 3.2). Based on our anal-
ysis, we point out the core improvement direction for the
generator-classifier framework. First, the key for the ZSL
generator is attribute generalization, where we should focus
on generalizing the attribute-conditioned image distribution
learned from the seen data to unseen classes. Second, clas-
sifier learning is an independent task to learn from partially
biased data. We summarize two principles for this task: mit-
igating the impact of pseudo samples on seen class bound-
aries during training and reducing the seen-unseen bias.

We finally propose a single baseline based on the idea
of deconstruction. Our approach surpasses existing methods
in performance, despite having lower complexity. Addition-
ally, we replace the generative model with a one-to-one map-
ping network from attributes to the visual class centers. Our
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Figure 1: Illustration of two types of distributions learned by
a generator: instance-level and class-level. c represents the
potential class center, while d denotes an off-center position.

without-generator method retains most of the performance,
which is a step towards simplifying the generator-classifier
framework. Our main contributions include:
• We deconstruct the generator-classifier framework, us-

ing empirical and theoretical analysis to expose the core
components of generator and classifier learning.

• We provide a guideline for optimizing the generator-
classifier GZSL framework based on our deconstruction
idea, which we use to derive a simple method.

• Without a complicated framework design, the proposed
method achieves SotAs on four popular ZSL benchmark
datasets. Additionally, our method can also be transferred
to other generative methods, even a single attribute-
vision center mapping net, bringing us closer to a stream-
lined generator-classifier framework.

2 Related Work
Zero-Shot Learning (ZSL) (Lampert, Nickisch, and
Harmeling 2009; Farhadi et al. 2009) has been extensively
studied in recent years, which requires knowledge transfer
with the class-level edge information, e.g., human-defined
attributes (Farhadi et al. 2009; Parikh and Grauman 2011;
Akata et al. 2015) and word vectors (Mikolov et al. 2013a,b).
Traditional ZSL models (Akata et al. 2013; Frome et al.
2013) typically project the attribute and the visual feature to
a common space. Lampert, Nickisch, and Harmeling (2013);
Frome et al. (2013); Elhoseiny, Saleh, and Elgammal (2013)
choose the attribute space as the common space. Some re-
search afterward (Zhang, Xiang, and Gong 2017; Li, Min,
and Fu 2019; Skorokhodov and Elhoseiny 2021) also em-
bed attributes to visual space, or embed attributes and vi-
sual features to another space (Akata et al. 2015; Zhang and
Saligrama 2015). These methods achieve good performance

in the classic ZSL setting but meet a seen-unseen bias prob-
lem (i.e., prediction results are biased towards seen classes)
in Generalized Zero-Shot Learning (GZSL) (Chao et al.
2016; Xian, Schiele, and Akata 2017) which emphasizes
seen-unseen discrimination.

Driven by the new technology in deep learning, some re-
search enables deeper attribute-visual association with at-
tribute attention (Zhu et al. 2019; Huynh and Elhamifar
2020; Xu et al. 2020; Liu et al. 2021c; Wang et al. 2021).
Other methods introduce the out-of-distribution discrimina-
tion (Atzmon and Chechik 2019; Min et al. 2020; Chou,
Lin, and Liu 2021), which decomposes the GZSL task into
seen-unseen discrimination and inter-seen (or -unseen) dis-
crimination. The most successful methods in GZSL build on
the recent advent of generative models (Goodfellow et al.
2014; Kingma and Welling 2013), which have dominated
recent ZSL research. The generation-based methods (Xian
et al. 2018, 2019; Chen et al. 2022a) construct pseudo un-
seen samples to constrain the decision boundary, which form
a better seen-unseen discrimination than their counterparts.

A large amount of literature aims at improving the
generation-based framework. (Xian et al. 2019; Shen et al.
2020) focus their attention on new generative frameworks.
(Verma, Brahma, and Rai 2020) explores the training
method. These methods do not make full use of the prior
information in the ZSL setting but seek breakthroughs from
other fields. (Narayan et al. 2020) design a recurrent struc-
ture that utilizes the intermediate layers of the visual-to-
attribute mapping network for a second generation. (Han,
Fu, and Yang 2020; Han et al. 2021; Chen et al. 2021a,b;
Kong et al. 2022) propose to transform the visual fea-
ture into an attribute-dependent space, the pseudo unseen
samples generated in which contain less seen class bias
information. The above-mentioned methods usually adopt
complex strategies, which trade large time consumption
for performance. In this paper, we explore the nature of
the generation-based framework, surpassing current SotAs
without complex design.

3 Generation-Based ZSL: A Deconstruction
Assume there are two disjoint class label sets Ys and Yu

(Y = Ys ∪Y u), ZSL aims at recognizing samples belong to
Yu while only having access to samples with the labels in Ys

during training. Denote X ⊆ Rdx and A ⊆ Rda as visual
space and attribute space, respectively, where x ∈ X and
a ∈ A represent feature instances and their corresponding
attributes (represented as column vectors) with dimensions
dx and da. Given the training set Ds = {x, y, ay|x ∈ X , y ∈
Ys,ay ∈ A}, the goal of ZSL is to learn a classifier towards
the unseen classes: fzsl : X → Yu. GZSL extends this to
classify samples belonging to either seen or unseen classes,
i.e., fgzsl : X → Y . We mainly discuss the challenges in the
GZSL setting in this work.

In this paper, we focus on deconstructing the generator-
classifier ZSL framework by understanding the behavior of
the generator and the classifier. The framework involves
training a conditional generator using visual-attribute pairs,
followed by generating pseudo unseen samples using at-
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Method DIST T1 Au As H CMMD

f-CLSWGAN

GEN 69.0 57.8 71.1 63.8 0.0337
SVG 68.2 55.3 71.7 62.5 0.0341
LVG 69.7 62.8 76.3 68.9 0.2523
SCG 69.5 62.8 68.5 65.5 0.0339

CE-GZSL

GEN 69.8 63.5 77.5 69.8 0.0071
SVG 69.4 60.1 78.2 68.0 0.0099
LVG 66.0 47.9 72.7 57.7 0.2541
SCG 70.6 63.2 78.9 70.2 0.0071

Table 1: Zero-Shot performance and CMMD w.r.t. dif-
ferent pseudo unseen distributions (DIST). GEN: Gen-
erated distribution; SVG: Small-variance Gaussian distri-
bution; LVG: Large-variance Gaussian distribution; SCG:
Statistical-covariance Gaussian distribution.

tributes from unseen classes. Finally, the ZSL or GZSL clas-
sifier is trained using the generated samples.

3.1 Empirical Analysis of the Generator-Learned
Instance-Level Distribution

In generation-based methods, the generator is often relied
upon to produce distributions for unseen classes. To bet-
ter analyze the ZSL generator, we divide this distribution
into two parts, as illustrated in Fig. 1: the class-level dis-
tribution, which determines how various unseen attributes
are mapped to fit the real inter-class distribution in visual
space, and the instance-level distribution, which deals with
how generated samples of the same unseen attribute fit the
real intra-class distribution. As the class-level distribution is
fundamental to inter-class discrimination, our analysis will
concentrate on exploring the generator-fitted instance-level
distribution. Specifically, we will compare it to other human-
defined distributions based on fitness (against real distribu-
tion) and Zero-Shot performance.

Setup. We conduct a comparison between the generator-
fitted instance-level unseen distribution and three Gaussian
distributions, which have independent small variance, inde-
pendent large variance, and data-statistical covariance. Since
typical zero-shot learning (ZSL) generators usually generate
centralized distributions, we replace the instance-level dis-
tribution by shifting the centers of other distributions to the
generated class centers. We then evaluate the Zero-Shot per-
formance of these distributions and their discrepancy against
real unseen distributions. The discrepancy is measured with
Maximum Mean Discrepancy (MMD), which is a typical
sample-based discrepancy measurement in research of do-
main adaptation (Long et al. 2015) and generative models
(Tolstikhin et al. 2017). We calculate the MMD between the
test unseen data and the experimental data for each class,
and then take the average value to obtain the Centered MMD
(CMMD) score:

CMMD =
1

|Yu|

|Yu|∑
c=1

{ 1

nc (nc − 1)
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)
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Figure 2: t-SNE comparison across various pseudo unseen
distributions. (a) Generated with f-CLSWGAN; (b) Large-
variance Gaussian distribution moved to the class cen-
ter generated with f-CLSWGAN; (c) Generated with CE-
GZSL; (d) Large-variance Gaussian distribution moved to
the class center generated with CE-GZSL.

where xc
i and x̃c

i represent samples from class c in the test
unseen and pseudo unseen sets, respectively. nc denotes the
sample number in class c, and κ (·, ·) is generally an arbitrary
positive-definite reproducing kernel function. Note that the
test data involved here is only for measuring the distribution
discrepancy and is not used in training.

Results. We experiment with two classic generation-
based methods, f-CLSWGAN (Xian et al. 2018) and CE-
GZSL (Han et al. 2021), on AWA2 dataset (Lampert, Nick-
isch, and Harmeling 2013). The results presented in Tab. 1
led us to two main observations: (i) Gaussian distribution
with statistical covariance produces similar results to the
generated distribution in both methods; and (ii) the unrealis-
tic unseen distribution negatively affects the performance of
CE-GZSL but improves the performance of f-CLSWGAN.
These observations prompted us to explore two questions:
(i) Can we generate only the class center instead of using a
complex generative model? (ii) How does the large-variance
Gaussian distribution affect Zero-Shot performance? We an-
swer the first question experimentally in Sec. 5, demonstrat-
ing that generating only class centers can still achieve rea-
sonable Zero-Shot performance. To address the second ques-
tion, we further investigate the role of pseudo unseen class
samples in classifier training from a gradient perspective.

3.2 Impact of Pseudo Unseen Samples on
Classifier Learning

We consider a linear classifier with weight parameters W ∈
R|Y|×dx . With a slight abuse of notation, we subsequently
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use (x, y) to denote both real and generated data. In the
generation-based framework, the classifier is commonly
trained using cross-entropy loss:

Lce =
1

n

|Y|∑
c=1

nc∑
i=1

− log py(xi)

py(xi) =
exp(⟨Wy,xi⟩/τ)∑|Y|
c=1 exp(⟨Wc,xi⟩/τ)

.

(2)

Here, ⟨·, ·⟩ denotes the dot product, c is the index of the c-th
row in W, n is the total number of samples, nc is the sample
size in class c, and τ is the temperature parameter (Hinton,
Vinyals, and Dean 2015).
Proposition 3.1. Gradients of Lce can be decomposed into
two components that indicate moving towards the class cen-
ter and constraining the decision boundary, respectively:

− ∂Lce

∂Wk

=

{ 1
nτ

∑nk

i=1 xi

− 1
nτ

∑|Y|
c=1

∑nc

j=1 pk(xj)xj
, (3)

where pk(·) has an analogous definition to Eq. (2), and Wk

represents the classifier weight of the kth class.
The proofs of Proposition 3.1 is given in the appendix.

According to Eq. (3), the primary discriminant for un-
seen classes is determined by the fitness of the class-level
distribution, while the instance-level pseudo unseen dis-
tribution controls the construction of decision boundaries.
Then we use Proposition 3.1 to analyze question (i) of Sec.
3.1. Specifically, we consider the seen-unseen bias prob-
lem where unseen class data is misidentified as seen class.
A wider pseudo-unseen distribution promotes wider deci-
sion boundaries for unseen classes, which helps to miti-
gate the seen-unseen bias. As illustrated in Fig. 2, the large
variance provides a wider pseudo unseen distribution for f-
CLSWGAN that is still close to the real unseen distribution.
In contrast, the feature distribution in CE-GZSL excessively
deviates from the human-defined distribution as it uses a lin-
ear mapping on the original visual feature. From the per-
spective of decision boundaries, we can also understand the
common strategy of sampling a large number of pseudo-
unseen samples in classifier training (Xian et al. 2018; Han
et al. 2021). An additional pseudo unseen datum xu pulls
class weight Wu towards the corresponding pseudo unseen
distribution while pushing other class weights away, thus
widening the unseen decision boundaries.

In conclusion, in Sec. 3, we deconstruct and summa-
rize the essential aspects of the generator and classifier in
generation-based methods. Next, we will provide explicit
optimization guidelines founded on the above analysis.

4 Generator-Classifier Learning under the
Idea of Deconstruction

4.1 Learning Generator in Generalization View
In Sec. 3.1, we demonstrate that the generator-fitted
instance-level unseen distribution is substitutable in Zero-
Shot recognition. Therefore, we suggest focusing on opti-
mizing the class-level distribution, which serves as the core

to guide the gradient (Eq. (3)). To improve the class-level
distribution, we provide insights from a generalization per-
spective. In typical supervised classification tasks, general-
ization refers to the learned conditional probability q(y|x)
from the empirical distribution p(x, y) fitting the test set. In-
spired by this, we propose attribute generalization as the key
to ZSL generator:

Proposition 4.1 (Key to ZSL generator). Attribute general-
ization in Zero-Shot generation is the conditional probabil-
ity pg(x|a) modeled on psr(x,a|a ∈ As) fitting pur (x,a|a ∈
Au), where psr and pur are the real seen and unseen distribu-
tions, respectively.

By converting a distributional learning problem into a
generalization problem, we can handle it directly with exist-
ing tools. Leveraging the well-established research on gen-
eralization problems in supervised classification tasks, we
investigate some existing overfitting suppression strategies
such as L2 regularization, the Fast Gradient Method (Good-
fellow, Shlens, and Szegedy 2014) (an adversarial training
method), and attribute augmentation. These techniques lead
to improvements in the original generator’s Zero-Shot per-
formance, as well as the CMMD value (Eq. (1)) against real
unseen data. Please refer to the appendix for detailed results
and additional experiments on attribute generalization.

4.2 Learning Classifier with Partly Biased Data
Due to the absence of unseen class data in ZSL setting, the
generated unseen class data are bound to deviate from the
real distribution, as shown in Fig. 2. Consequently, the main
challenge in classifier learning is to capture the true decision
boundary using partially biased data. However, data bias is
unpredictable, and thus, it is essential for the classifier to
adapt more toward the deterministic (i.e., real seen) distri-
bution and reduce the adverse effects of biased (i.e., pseudo
unseen class) distributions. Building upon the discussion in
Sec. 3.2, we propose two principles for classifier design: (i)
mitigating the impact of pseudo unseen samples on decision
boundaries between seen classes during training, and (ii) re-
ducing the seen-unseen bias.

4.3 A Simple Method over the Guidelines
We propose a simple method for verifying the validity of
the above guidelines for generator-classifier learning. Our
approach employs the widely-used (Gulrajani et al. 2017) as
the generative model, which consists of a generator G and a
discriminator D and is optimized by the following objective:

L = Ex∼pr
[D(x,a)]− Ex̃[D(x̃,a)]

−λ0Ex̂∼px̂
[(∇x̂∥D(x̂,a)∥2)2 − 1], x̃ = G(z0,a),

(4)

where pr denotes the real distribution of x, z0 ∈ N (0, I),
x̂ = αx+ (1− α)x̃ with α ∼ U (0, 1) is for calculating the
gradient penalty and λ0 is a hyper-parameter.

We augment the attribute with Gaussian noise to enhance
the attribute generalization (Proposition 4.1), i.e.,

G(z0,a) → G(z0,a+ z1), (5)
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Figure 3: Illustration of the revised cross-entropy loss
(Eq. (8)), where ⊙ denotes the dot product. Per seen class
sample, only the unseen class weight that gives it the largest
activation is involved in the calculation. The calculating of
the seen class weights remains unchanged.

where z1 ∈ N (0, σI), and σ decides the standard deviation
of the augmenting distribution. The reason for attribute aug-
mentation is detailed in the appendix.

During the classifier training phase, we follow principle
(i) (Sec. 4.2) and begin by representing the unseen class cor-
responding terms in loss function as an increment (on the
cross-entropy with seen class only), i.e.,

Lce =
1

n
[

|Ys|∑
cs=1

ncs∑
i

− log
py(xi)

p̂s(xi) + λ1p̂u(xi)

+λ2

|Yu|∑
cu=1

ncu∑
j

− log py(xj)], p̂
•
(xi) =

|Y •|∑
c=1

pc(xi),

(6)

where pc(·) is defined in Eq. (2), (3). We introduce two pa-
rameters, λ1 and λ2, to weight the generalized incremental
forms. When λ1 and λ2 are set to zero, it indicates that the
added pseudo unseen samples do not affect the seen class
decision boundaries, and principle (i) can be achieved by
selecting small values for λ1 and λ2.

Then we express the gradient of Lce with respect to the
weights of an unseen class, Wu, as

− ∂Lce

∂Wu

=
λ2

nτ
(

nu∑
i=1

xi −
|Yu|∑
cu=1

ncu∑
j=1

pu(xj)xj)

− 1

nτ

|Ys|∑
cs=1

ncs∑
k=1

λ1pu(xk)

p̂s(xk) + λ1p̂u(xk)
xk.

(7)

Here, a small λ1 makes the seen data have little effect on
the decision boundaries of unseen classes, while λ2 deter-
mines the extent to which the loss function focuses on inter-
unseen-class decision boundaries. This provides a direction
to mitigate the seen-unseen bias, i.e., the principle (ii).

In summary, selecting a small value for λ1 and an appro-
priate value for λ2 aligns with the two guiding principles for
classifier design. As λ2 has the same optimization direction
as the generation number of pseudo-unseen samples, we re-
move it by fixing it to 1. We assign different values of λ1 to

each unseen class based on their optimization difficulty. Em-
pirically, we only set non-zero values for the hardest class,
and only if it exceeds the true class score, as illustrated in
Fig. 3. The revised cross-entropy formula is presented as:

Lrce =
1

n

|Ys|∑
cs=1

ncs∑
i

− log
py(xi)

p̂s(xi) + λ′
1p

u
m(xi)

+

|Yu|∑
cu=1

ncu∑
j

− log py(xj), p
u
m(xi) = max {pc(xi)|c ∈ Yu} ,

(8)

where λ′
1 = λ11[pm(xi > py(xi)], and 1[·] is the in-

dicator function. The classifier trained with an appropriate
value of λ1 exhibits stronger inter-seen class discriminabil-
ity and smaller seen-unseen bias, as demonstrated in Fig. 4
(c), (d). Finally, we constrain the classifier weights with the
attributes using a mapping network M (·), i.e.,

Wc := M (ac), c ∈ Ys ∪ Yu, (9)

which replaces the weights in Eq. (2). We also normalize the
elements before feeding them into the dot product, which is
a common strategy in ZSL. After training, a datum x is clas-
sified as the class with the attribute exhibiting the greatest
similarity to it, i.e.,

ŷ = argmax
c

⟨ M (ac)

||M (ac)||2
,

x

||x||2
⟩, (10)

where || · ||2 denotes the l2 norm.

5 Experiments
Benchmark Datasets. We conduct GZSL experiments on
four public ZSL datasets. Animals with Attributes 2 (AWA2)
(Lampert, Nickisch, and Harmeling 2013) contains 50 ani-
mal species and 85 attribute annotations, accounting 37,322
samples. Attribute Pascal and Yahoo (APY) (Farhadi et al.
2009) includes 32 classes of 15,339 samples and 64 at-
tributes. Caltech-UCSD Birds-200-2011 (CUB) (Wah et al.
2011) consists of 11,788 samples with 200 bird species, an-
notated by 312 attributes. SUN Attribute (SUN) (Patterson
and Hays 2012) carries 14,340 images from 717 different
scenario-style with 102 attributes. We split the data into seen
and unseen classes according to the common benchmark
procedure in Xian, Schiele, and Akata (2017).
Representation. Most experiments are performed with the
2048-dimensional visual features extracted from the pre-
trained ResNet101 (He et al. 2016), following Xian, Schiele,
and Akata (2017). We also compare the GZSL performance
on the fine-tuned data that we take from Chen et al. (2021b).
For class representations (i.e., attributes), we adopt the ar-
tificial attribute annotations that come with the datasets for
AWA2, APY, and SUN, and employ the 1024-dimensional
character-based CNN-RNN features (Reed et al. 2016) gen-
erated from textual descriptions for CUB.
Evaluation Metric. We calculate the average per-class top-
1 accuracy among the unseen and seen classes respectively,
denoted as Au and As, then their harmonic mean H is em-
ployed as the measurement of GZSL. The classic ZSL is
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Method Source AWA2 CUB SUN APY
Au As H Au As H Au As H Au As H

†

Chou et al. ICLR 2021 65.1 78.9 71.3 41.4 49.7 45.2 29.9 40.2 34.3 35.1 65.5 45.7
SDGZSL ICCV 2021b 64.6 73.6 68.8 59.9 66.4 63.0 48.2 36.1 41.3 38.0 57.4 45.7
GCM-CF CVPR 2021 60.4 75.1 67.0 61.0 59.7 60.3 47.9 37.8 42.2 37.1 56.8 44.9
CE-GZSL CVPR 2021 63.1 78.6 70.0 63.9 66.8 65.3 48.8 38.6 43.1 - - -
SE-GZSL AAAI 2022 59.9 80.7 68.8 53.1 60.3 56.4 45.8 40.7 43.1 - - -
ICCE CVPR 2022 65.3 82.3 72.8 67.3 65.5 66.4 - - - 45.2 46.3 45.7
ZLA IJCAI 2022a 65.4 82.2 72.8 73.0 64.8 68.7 50.1 38.0 43.2 40.2 53.8 46.0
DGZ Proposed 67.4 81.0 73.6 70.1 68.3 69.2 48.6 39.4 43.5 37.7 64.9 47.7
DGZ w/o GM 65.9 78.2 71.5 71.4 64.8 68.0 49.9 37.6 42.8 38.0 63.5 47.6

‡

TF-VAEGAN* ECCV 2020 55.5 83.6 66.7 63.8 79.3 70.7 41.8 51.9 46.3 - - -
Chou et al.* ICLR 2021 69.0 86.5 76.8 69.2 76.4 72.6 50.5 43.1 46.5 36.2 58.6 44.8
GEM-ZSL CVPR 2021c 64.8 77.5 70.6 64.8 77.1 70.4 38.1 35.7 36.9 - - -
SDGZSL* ICCV 2021b 69.6 78.2 73.7 73.0 77.5 75.1 51.1 40.2 45.0 39.1 60.7 47.5
DPPN NeurIPS 2021 63.1 86.8 73.1 70.2 77.1 73.5 47.9 35.8 41.0 40.0 61.2 48.4
TransZero AAAI 2022b 61.3 82.3 70.2 69.3 68.3 68.8 52.6 33.4 40.8 - - -
MSDN CVPR 2022c 62.0 74.5 67.7 68.7 67.5 68.1 52.2 34.2 41.3 - - -
DGZ* Proposed 71.7 83.7 77.2 76.9 77.7 77.3 49.4 43.5 46.3 37.1 79.3 50.5
DGZ* w/o GM 67.2 85.7 75.4 77.4 78.0 77.7 50.4 39.8 44.5 38.5 67.4 49.0

Table 2: GZSL performance comparison with state of the arts. † denotes generative methods based on the common image feature
proposed in Xian, Schiele, and Akata (2017). ‡ denotes allowing fine-tuning the feature extraction backbone, and * represents
generative methods based on features extracted from the fine-tuned backbone. Au and As are per-class accuracy scores (%) on
seen and unseen test sets. H is their harmonic mean. The best results are shown in bold, with second place underlined.

evaluated with per-class averaged top-1 accuracy on unseen
classes (Xian, Schiele, and Akata 2017).
Implementation Details. The method proposed in Sec. 4
consists of three modules implemented with multi-layer per-
ceptrons. The Generator G carries two hidden layers with
4096 and 2048 dimensions. The Discriminator D contains
one 4096-D hidden layer, and the mapping net M includes
a 1024-D hidden layer. All the hidden layers are activated
by Leaky-ReLU. We follow Xian et al. (2018) to set other
hyper-parameters of WGAN-GP. In addition, we put 512 for
the (mini) batch size and adopt Adam (Kingma and Ba 2015)
as the optimizer with a learning rate of 1.0× 10−4.

5.1 Comparison with SotAs
We evaluate the proposed method by comparing its GZSL
results with the current SotAs, as shown in Tab. 2. Notably,
our results on common image features outperform SotAs
in all four datasets. Moreover, our fine-tuned feature results
ranked first on three datasets and second only to Chou, Lin,
and Liu (2021) on SUN dataset. It is important to high-
light that our approach is simple and does not require com-
plex designs. Yet, it outperforms other complex approaches
such as Chou, Lin, and Liu (2021), which uses the out-of-
distribution discrimination method, and Han et al. (2021);
Kong et al. (2022), which rely on instance discrimination,
both leading to significant time consumption.

We also report the results without a generative model. The
pseudo unseen distribution is constructed as mixed Gaussian
distribution with the covariance as the statistics of the train-
ing set. A one-to-one mapping net (from attributes to visual
class centers) estimates its mean (detailed in the appendix).
In this baseline, our method still achieves comparable per-
formance with current SotAs. It demonstrates the plug-in ca-

Ablation AWA2 CUB
Au As H Au As H

i) w/o ATA 66.4 77.2 71.4 72.2 66.1 69.0
ii) w/o CR 39.8 89.4 55.1 58.3 70.9 64.0
iii) w/o M 64.0 79.4 70.9 70.7 57.8 63.6
iv) w/o CR&M 34.7 90.0 50.0 44.7 70.2 54.7
v) DIS → SCG 67.5 78.0 72.4 68.3 67.7 68.0
vi) DIS → GC+SCG 65.9 78.2 71.5 71.4 64.8 68.0

Full Model 67.4 81.0 73.6 70.1 68.3 69.2

Table 3: Ablation study results on AWA2 and CUB. The
baselines are constructed by ablating some key modules.
ATA: Attribute augmentation; CR: Classifier revision; M:
Mapping net; SCG: Statistical-covariance Gaussian distri-
bution; GC: Direct generating the class center.

pability of the proposed classifier learning strategy, even in
the case of no generator. It is also an attempt to simplify the
generator-classifier framework.

5.2 Ablation Study
Baselines. To validate the effect of each component, we con-
duct an ablation study on AWA2 and CUB, with the fol-
lowing baselines: i) Setting σ to 0. ii) Training the classi-
fier with vanilla cross-entropy. iii) Removing the mapping
net (Eq. (9)). iv) Combination of ii) and iii). v) Replac-
ing the WGAN-generated distribution with the statistical-
covariance Gaussian distribution (same to Sec. 3.1). vi) On
the basis of v), directly estimating the mean of the distribu-
tion by mapping from the attributes (same to Sec. 5.1).
Results. Tab. 3 depicts the results of this experiment. Base-
line i) shows that the fewer effects of attribute augmenta-
tion on the fine-grained dataset CUB than on the coarse-
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Figure 4: (a), (b), (c) GZSL performance w.r.t. the gen-
eration number per unseen class, σ, and λ1. (d) Intra-
discriminability of seen and unseen classes w.r.t. λ1, where
Ais and Aiu represent the intra- seen or unseen classes accu-
racy. The experiments are conducted on the AWA2 dataset.

grained dataset AWA2. This is mainly due to the fine-
grained dataset’s inherently smaller domain shift problem,
causing less gain from a targeted approach. Meanwhile, for
the same reason, classifier revision plays a bigger role for
AWA2 than for CUB (baseline ii), iv)). Baseline iii), iv) re-
flect the importance of the mapping net, which establishes
implicit semantic connections between classifier weights.
Overall, due to its intractability, attribute generalization en-
hancement brings fewer performance gains than classifier
revision. Baseline v) and vi) compare the ways to obtain
the mean of Gaussian distribution. Baseline v) averages the
WGAN-generated samples for the mean of each class, which
yields better performance than directly mapping attributes to
the class mean (baseline vi)). This is probably because the
instance-level modeling extracts more distribution informa-
tion and better generalizes to unseen class attributes. More
details and analysis are Provided in the appendix.

5.3 Hyper-parameters
The final objective involves four main hyperparameters: σ,
τ , λ1, and the generated number per unseen class. We set τ
to 0.04, following Skorokhodov and Elhoseiny (2021); Chen
et al. (2022a). We then analyze the influence of the other
three parameters empirically. As shown in Fig. 4 (b), Au

and H have the same trend when σ varies, whose curves rise
first and then fall as σ becomes larger. A big σ leads to per-
formance degradation because a large variance of noise in-
tuitively makes the attribute input of the generator lose inter-
class discriminability. A small λ1 mitigates the seen-unseen
bias in Fig. 4 (c). Moreover, a suitable generated number
creates the best performance, as shown in Fig. 4 (a), and
the number is much smaller than the existing generation-
based methods (100 vs. 2400 in (Han et al. 2021) and 4600

Method AWA2 CUB SUN APY

TCN (2019) 71.2 59.5 61.5 38.9
TF-VAEGAN (2020) 72.2 64.9 66.0 -
Chou et al. (2021) 73.8 57.2 63.3 41.0
IPN (2021b) 74.4 59.6 - 42.3
CE-GZSL (2021) 70.4 77.5 63.3 -
SDGZSL (2021b) 72.1 75.5 - 45.4

DGZ 74.0 80.1 65.4 46.6

Table 4: Discriminability on unseen classes, evaluated by
ZSL performance (%) (compared with SotAs). Note that our
classifier is trained toward the GZSL setting.

in (Chen et al. 2021a)). This demonstrates the joint effect of
the number of generations and λ1 as we stated in Sec. 4. We
also report the effect of λ1 on the intra-seen class discrim-
inability in Fig. 4 (d), showing a downward trend when λ1

increases within a certain range. We empirically generate 50
samples per unseen class in CUB, SUN, and APY, and 100
for AWA2 in all experiments. We put λ1 to 4, 0.8, 0.04, and
0.005 for the above datasets. σ is set to 0.08 on all datasets.

5.4 Discriminability on Unseen Classes
As shown in Tab. 4, we analyze the discriminability of the
trained GZSL classifier among unseen classes, quantified by
ZSL accuracy. Despite not being specifically designed for
the ZSL setting, our model still achieves comparable re-
sults to SotA ZSL methods. This is primarily due to im-
provements in attribute generalization ability and the intrin-
sic semantic association of classifier weights carried from
attribute mapping.

6 Conclusion
In this paper, we deconstruct the generator-classifier Zero-
Shot Learning framework. We begin by decomposing the
unseen class distribution learned by the generator into class-
and instance-level distribution. Then we empirically analyze
the learning center of the generator and the role of these
two distributions in classifier learning. Specifically, we em-
phasize attribute generalization in generator training and re-
gard classifier training as an independent task to learn from
partially biased data. Based on these points, we propose a
simple method that outperforms current SotAs in perfor-
mance without a complex design, demonstrating the effec-
tiveness of the proposed guideline. Additionally, we evalu-
ate the transferability of the proposed method and find that it
can achieve SotA even when replacing the generative model
with a class center mapping net. We acknowledge that our
analysis is primarily empirical and lacks mathematical dis-
cussion. We will explore the generation-based framework
more thoroughly from a theoretical standpoint and continue
to simplify it in future work.
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