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Abstract

Unpaired 3D object completion aims to predict a complete
3D shape from an incomplete input without knowing the cor-
respondence between the complete and incomplete shapes.
In this paper, we propose the novel KT-Net to solve this task
from the new perspective of knowledge transfer. KT-Net elab-
orates a teacher-assistant-student network to establish mul-
tiple knowledge transfer processes. Specifically, the teacher
network takes complete shape as input and learns the knowl-
edge of complete shape. The student network takes the in-
complete one as input and restores the corresponding com-
plete shape. And the assistant modules not only help to trans-
fer the knowledge of complete shape from the teacher to the
student, but also judge the learning effect of the student net-
work. As a result, KT-Net makes use of a more comprehen-
sive understanding to establish the geometric correspondence
between complete and incomplete shapes in a perspective of
knowledge transfer, which enables more detailed geometric
inference for generating high-quality complete shapes. We
conduct comprehensive experiments on several datasets, and
the results show that our method outperforms previous meth-
ods of unpaired point cloud completion by a large margin.
Code is available at https://github.com/a4152684/KT-Net.

Introduction

Point clouds, as a popular representation form of 3D geome-
tries, have drawn a growing research concern in many fields,
such as computer vision (Qi et al. 2017a), robotics (Liu
2015) and auto-navigation (Yue et al. 2018). However, the
raw point clouds obtained by 3D scanning devices are often
sparse, noisy and incomplete, which requires pre-processing
(e.g. completion, denoising) before the downstream tasks. In
this paper, we focus on the specific task to predict the com-
plete shape for an incomplete point cloud, where the miss-
ing shape is usually caused by the limited scanning view and
occlusion. Previous deep learning based studies in this field
(Yuan et al. 2018; Liu et al. 2020; Huang et al. 2020; Xie
et al. 2020) usually rely on the paired supervision of incom-
plete shape and its corresponding complete ground truth.
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However, in spite of the great progress achieved by these su-
pervised methods, the completion performance is still lim-
ited by the insufficiency of paired training data, which is
caused by the difficulty of obtaining the complete ground
truth for incomplete shape in real-world scenarios.

A promising solution to this problem is to train the com-
pletion network in an unpaired manner. That is, the net-
work is only fed by collections of complete and incom-
plete shapes without paired correspondence. Such intuition
is driven by the easy access to the incomplete scanning in
the real-world, and the large amount of complete shapes
from many large-scaled 3D shape datasets (Chang et al.
2015; Pan et al. 2021). However, a typical challenge of un-
paired shape completion task is the absence of the one-to-
one strong supervision for each incomplete shape. Previ-
ous methods (e.g. Cycle4Completion (Wen et al. 2021a) and
Pcl2Pcl (Chen, Chen, and Mitra 2019)) usually consider the
adversarial global feature matching framework as the basic
solution to this challenge, which can implicitly bridge the
distribution gap between the incomplete and the complete
shapes. However, the global feature based adversarial learn-
ing framework may lose the detailed geometric information
encoded in different levels of the network, which may lead to
low completion quality. On the other hand, implicitly align-
ing the feature can not fully explore the corresponding rela-
tionship between incomplete and complete shapes. Another
representative work Shapelnversion (Zhang et al. 2021) in-
troduces GAN inversion for shape completion with the help
of a well-pretrained generator and a proper latent code. But
it takes much time to search for the appropriate latent code
during the inference stage, and an inappropriate latent code
might cause disaster completion results.

Inspired by the great success of knowledge distillation
(Hinton et al. 2015), we propose a new perspective to the
unpaired shape completion task, which is how to transfer
the knowledge from the complete shape domain into the
incomplete shape domain. In this paper, the term “knowl-
edge” specifically refers to the common representation in
the latent space of the complete shape, which should be dis-
tilled to guide the completion process for incomplete input.
This idea raises several questions: (1) How to implement a
knowledge transfer process? (2) Where should the knowl-
edge transfer take place? (3) How to evaluate the effect of
knowledge transfer? (4) How to restore high-fidelity shape
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Figure 1: An illustration of our starting point. The teacher
network is responsible for learning the knowledge of com-
plete shape and transferring it to the student network through
the assistant. The student network combines the specific in-
complete shape and learns the knowledge of complete shape
with the help of the assistants.

after knowledge transfer?

To solve the above problems, we design a novel Teacher-
Assistant-Student framework as shown in Fig. 1, which con-
sists of a series of elaborating knowledge transfer processes.
A Knowledge Transfer Implementation: The teacher net-
work takes a complete shape as the input and learns the com-
mon knowledge of complete shape by reconstructing it. The
student network takes an incomplete shape as input and re-
stores its complete shape with the guidance of the complete
shape knowledge. To implement a knowledge transfer, the
proposed Knowledge Recovery Assistant (KRA) inputs the
incomplete shape features learned by the student network
and adopts a residual module to explicitly infer and supple-
ment the missing complete shape knowledge, thus enhanc-
ing the incomplete shape features by encoding the complete
shape knowledge. Multi-Stage Knowledge Transfer: The
knowledge in the different layers encodes irreplaceable ge-
ometric information of complete shape. Therefore, we pro-
pose a coarse-to-fine knowledge transfer strategy to suffi-
ciently learn the multi-level knowledge of complete shape
by iteratively employing the KRA module in different lay-
ers. Effectiveness Evaluation of Knowledge Transfer: We
propose a mini-GAN based Knowledge Discrimination As-
sistant (KDA) to evaluate the effectiveness of knowledge
transfer. Specifically, the KDA accepts complete shape fea-
ture from the teacher network as exemplary knowledge and
discriminates against the enhanced features after knowledge
transfer from the student network. High-fidelity Complete
Shape Restoration: We introduce a training strategy to re-
store high-fidelity complete shapes. For the teacher network,
the gradient shielding technology is adapted to ensure the
gradient of incomplete shape does not flow into the teacher
network during backpropagation. For the student network,
we share the restoration module structure and parameters of
the teacher network, which makes it possible to restore high-
fidelity complete shapes based on enhanced features.

We conduct experiments on the common benchmarks of
unpaired shape completion task, including synthetic datasets
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(3D-EPN dataset (Dai, Ruizhongtai Qi, and Niener 2017)
and CRN dataset (Wang, Ang Jr, and Lee 2020)) and real-
world scans (MatterPort3D (Chang et al. 2017), ScanNet
(Dai et al. 2017) and KITTI (Geiger, Lenz, and Urtasun
2012)). The results demonstrate that our method outper-
forms the state-of-the-art (SOTA) unpaired shape comple-
tion methods. The contribution of our work mainly includes:

* We formulate the unpaired shape completion task as the
knowledge transfer task, and design a novel end-to-end
completion network composed of the paralleled teacher
and student networks called KT-Net . Under the guidance
of complete shape knowledge, the student network can
restore a reasonable high-quality point cloud.

* We introduce the Knowledge Recovery Assistant and
the Knowledge Discrimination Assistant to aid the stu-
dent network in explicitly inferring and supplementing
the missing complete shape knowledge, thus enhancing
the incomplete shape feature by encoding the complete
shape knowledge.

* We conduct comprehensive experiments on several
datasets and show that our method can achieve SOTA
performance over the previous unpaired shape comple-
tion methods.

Related Work

Traditional Shape Completion Methods. Traditional point
cloud completion methods usually utilize the geometric at-
tributes of objects (Hu, Fu, and Guo 2019; Mitra, Guibas,
and Pauly 2006) or retrieval of the complete structure in the
database (Han and Zhu 2008; Li et al. 2015). These meth-
ods usually leverage the artificially constructed features for
completion, which cannot robustly generalize to the cases of
complex 3D surfaces with large missing parts.

3D Shape Completion with Pair Supervision. With the
development of the deep neural network, researchers tend
to leverage learning-based methods for 3D shape comple-
tion. Early methods are based on the 3D voxel grid (Yang
et al. 2017; Wang et al. 2017), but they are limited by the
computational cost, which increases cubically to the shape
resolution. On the other hand, point cloud based methods
have emerged a lot in recent years, which is benefited from
the pioneering work PointNet (Qi et al. 2017a) of point
cloud feature extraction and its subsequent studies (Qi et al.
2017b; Wang et al. 2019). PCN (Yuan et al. 2018) is the first
learning-based completion network that can directly oper-
ate on point clouds, which uses an encoder-decoder struc-
ture to predict complete point clouds. More recent works
(Zhang, Yan, and Xiao 2020; Wen et al. 2020; Yu et al.
2021; Huang et al. 2021; Gong et al. 2021; Xie et al. 2021;
Wen et al. 2021b; Xiang et al. 2021; Zhang, Huang, and
Wang 2021; Xia et al. 2021; Wang et al. 2022a; Long et al.
2022; Wang et al. 2022b; Yan et al. 2022) have made ef-
forts to preserve the observed geometric details from the
local features.VRC-Net (Pan et al. 2021) proposes a vari-
ational framework by leveraging the relationship between
structures during the completion process. LAKe-Net (Tang
et al. 2022) proposes a novel topology-aware point cloud
completion model by localizing aligned keypoints, with a
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Figure 2: The overall architecture of KT-Net, which consists of the paralleled teacher and student networks. (a) The above
is the student network, which converts an incomplete shape into a complete one. (b) And the below is the teacher network,
which reconstructs the complete shape and transfers the knowledge to the student network. (¢) The Knowledge Recovery
Assistant (KRA) in the student network is adopted to supplement the missing complete shape knowledge to adapt to the task
of point cloud completion. (d) The Knowledge Discrimination Assistant (KDA) is responsible for identifying which features

come from the teacher network.

novel Keypoints-Skeleton-Shape prediction manner. Seed-
Former (Zhou et al. 2022) introduces a new shape repre-
sentation, which not only captures general structures from
partial inputs but also preserves regional information of lo-
cal patterns. There are also some networks using a voxel-
based completion process. GRNet (Xie et al. 2020) proposes
a gridding network for dense point reconstruction. VE-PCN
(Wang, Ang, and Lee 2021) develops a voxel-based network
for point cloud completion by leveraging edge generation.

3D Shape Completion without Pair Supervision. On the
other hand, a few studies on unpaired shape completion
has been proposed. AML (Stutz and Geiger 2018) uses the
maximum likelihood method to measure the distance be-
tween complete and incomplete point clouds in the latent
space. Pcl2Pcl (Chen, Chen, and Mitra 2019) pretrains two
auto-encoders, and directly learns the mapping from partial
shapes to the complete ones in the latent space. Wu et al.
(Wu et al. 2020) refer to the method of VAE to achieve mul-
timodal outputs. MM-Flow (Zhao et al. 2021) proposes a
flow-based network together with a multi-modal mapping
strategy for 3D point cloud completion. Cycle4Completion
(Wen et al. 2021a) designs two cycle transformations to
establish the geometric correspondence between incom-
plete and complete shapes in both directions. Shapelnver-
sion (Zhang et al. 2021) incorporates a well-trained GAN
as an effective prior for shape completion. Cai et al. (Cai
et al. 2022) establish a unified and structured latent space to
achieve partial-complete geometry consistency.
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Method
Overview

Our KT-Net intends to transfer the knowledge from com-
plete shape to incomplete shape based on two paralleled
teacher and student networks. Fig. 2 shows the overall
framework of our method. X;,, and Y;,, denote the incom-
plete and the complete point clouds, respectively. Note that
for unpaired completion, there is no correspondence be-
tween Y;,, and X;,. The teacher network takes Y;,, as input
and learns the knowledge of complete shape by reconstruct-
ing the same complete shape Y, as Y;,,. The student network
takes X;, as input and expects to restore the complete pre-
diction X.. Feature extraction module is responsible for ex-
tracting the global features f, and f,, from the input point
cloud Xj;,, and Yj;,,. The knowledge transfer module accepts
the features extracted from both networks, and then guides
the student network to explicitly infer and supplement the
missing complete shape knowledge with the help of our pro-
posed assistants, thus enhancing the incomplete shape fea-
tures by encoding the complete shape knowledge. Finally, a
unified MLP is used to convert the enhanced features into
complete shapes.

Feature Extraction Module

With a given point set P € R*3 our encoder extracts a
k-dimensional global feature f € R*. Similar to PCN, the
encoder consists of MLP layers for point-wise feature ex-
traction and finally performs maxpooling operation to obtain



the global feature. For both incomplete and complete shapes,
we leverage the same encoder architecture and parameters
to get their global representations, which guarantees that the
extracted features from each network lie in the same latent
space for subsequent knowledge transfer.

Knowledge Transfer Module

This module takes the k-dimensional latent features f, and
fy from the feature extraction module as input, which can
promote the student network to learn the complete shape
knowledge from the teacher network.

KRA for the Knowledge Transfer. For the teacher net-
work, the feature f;‘/ of the ¢-th layer contains the knowledge
of complete shape, which are gradually pushed from high
dimensional latent space to Euclidean space. For the student
network, the KRA is introduced to enhance the incomplete
shape features by explicitly learning and encoding the com-
plete shape knowledge. In our design, the knowledge of the
missing region is inferred and supplemented through resid-
ual connection. As shown in Fig. 2, we select a simple but
effective model to accomplish this work.

KRA(x) = FC o ReLU o FC(x), (1

where F'C means a fully connected layer and ReLU is an
activation function.

The knowledge in each stage is irreplaceable, and the

shallow knowledge is assumed to be more specific than the
deep one. To enhance 3D shape understanding ability, we
propose a multi-stage transfer strategy by iteratively em-
ploying the KRA module in different layers, which con-
tributes to the mastery of more comprehensive complete
shape knowledge for the student network via a continuous
learning procedure.
KDA for the Effect Evaluation of Knowledge Transfer.
An additional assistant KDA that is applied in each layer
is adopted to receive the complete shape knowledge from
the teacher network, and evaluate the learning effectiveness
of the student on this basis. However, in the unpaired task,
it is unreasonable to directly transfer the unprocessed com-
plete shape knowledge to the incomplete shape of the same
batch due to the missing one-to-one correspondence. Con-
sidering this, and in order to avoid over complex knowledge
transfer design, the KDA employs the generative adversarial
architecture to make the student network automatically ob-
tain the knowledge from the teacher network. Specifically,
the KDA regards the feature from the teacher network as
the representative of the complete shape knowledge and as-
signs it to True, while the enhanced feature from the stu-
dent network is assigned to F'alse. Under the guidance of
the KDA, the student network strives to make its enhanced
feature mimic the one from the teacher network. The com-
plete shape knowledge has been transferred from the teacher
network to the student network when the KDA can hardly
distinguish the two types of features. The discrimination loss
can be defined as follows:

1 , .
Lp = 5> Z {E.[Di(f,))> + E,[Di(f,) = 1°}. (2
where D, represents the i-th KDA, E denotes the mathe-
matical expectation, f., represents the feature of the student

289

network at the i-th layer of the knowledge transfer module,
f; is the feature of the teacher network at the i-th layer and
n is the number of layers of the knowledge transfer module.
On the other hand, the generated loss used to evaluate the

student network’s learning achievements is defined as:
1 .
Lo==Y EJ[Di(f) -1
¢ = S EADi(f) ~ 1

Point Cloud Restoration

To restore the complete shapes from the features, an MLP
is applied to map the feature f from R* to R3", where N is
the number of generated points. Then the feature is reshaped
from RN to RV to get the point cloud P.

The teacher network follows an auto-encoder architecture
for self-reconstruction. After obtaining the reconstructed
complete shape Y., we leverage a common permutation-
invariant metrics Earth Mover’s Distance (EMD) to super-
vise the training, which is shown below.

Eteacher = L:EMD (}/ma }/c) (4)

For the student network, the enhanced feature is mapped
to the complete shape X . by the shared MLP in the teacher
network. Nevertheless, there is no corresponding ground
truth for the predicted complete shape X., which indicates
a direct implementation of the bi-direction EMD may not
yield desirable results. Therefore, in order to prevent the
mode collapse and preserve the input information, we ap-
ply Unidirectional Chamfer Distance(U C' D) and the loss of
the student network is expressed as:

»Cstudent = »CUC'D(Xin; Xc)

3)

(&)

Training Strategy

Since the teacher and student networks share the restora-
tion module, the quality of the student network’s completion
results depends on the teacher network’s ability to recon-
struct complete shapes. To enable the teacher network to re-
construct a high-quality complete shape, we adopt a special
training strategy, which ensures the gradient of incomplete
shape does not flow into the teacher network at the knowl-
edge transfer module during backpropagation.

We use F'E and K RA to represent the feature extrac-
tion module and the knowledge recovery assistants in the
knowledge transfer module, respectively. In particular, K'T'
denotes the remaining structure of the knowledge transfer
module. 6p is used to represent the trainable parameters in
{D;|li =1,...,k} (i.e. all the knowledge discrimination as-
sistants). Oieqcher 1S adopted to stand for the trainable pa-
rameters in { F'E, KT}, while 01y, 4ent denotes the trainable
parameters in { FE, K RA}.

For a given learning rate -y, we first update 6p of all the
discriminators and freeze all other parts, which is shown as:

OLp



Methods Average | Plane Cabinet Car Chair Lamp Sofa Table Boat

paired PCN 7.6 2.0 8.0 5.0 9.0 130 80 100 6.0
unpaired Pcl2Pcl 17.4 4.0 19.0 100 200 230 260 260 110
Cycle4Completion 14.3 3.7 12.6 8.1 146 182 262 225 87

Ours 10.0 2.6 10.9 63 124 151 105 158 6.5

Table 1: Shape completion results on 3D-EPN dataset. The numbers shown are C'D (lower is better), which is scaled by 10%.
KT-Net outperforms other unpaired methods by a large margin, and is comparable to the paired method.

Methods Average | Plane Cabinet Car Chair Lamp Sofa Table Boat

paired PCN 9.1 3.5 11.3 64 11.0 116 115 104 74
unpaired Pcl2Pcl 224 9.8 27.1 15.8 269 257 341 236 157
Shapelnversion 14.9 5.6 16.1 130 154 180 246 162 10.1

Ours 11.5 3.8 124 90 139 141 181 11.7 8.7

Table 2: Shape completion results on CRN dataset. The numbers shown are C'D (lower is better), which is scaled by 10%.
KT-Net outperforms other unpaired methods by a large margin, and is comparable to the paired method.

Then we use Licqcher to regularize the teacher network.
The gradient descent step is shown below.

a‘cteacher
aoteacher

Hteacher — eteacher - (7)
To prevent the teacher network from generating bad recon-
structed complete shapes, Lty qent and L are only adopted
to update Ossydent- Such a strategy enables the teacher net-
work only to learn the complete shape knowledge, thus re-
constructing a high-quality point cloud.

A a‘CG aﬁstudent
g aestudent b agstudent

where )4 and )\, are hyper-parameters and we set A, = 0.1
and \, = 1.

+A ], ®

estudent <~ estudent_’y[

Experiments
Datasets and Evaluation Metrics

We evaluate our network on two systhetic datasets 3D-EPN
(Dai, Ruizhongtai Qi, and NieBner 2017) and CRN (Wang,
Ang Jr, and Lee 2020), and three real-word datasets Matter-
Port3D (Chang et al. 2017), ScanNet (Dai et al. 2017) and
KITTI (Geiger, Lenz, and Urtasun 2012).

For evaluation on synthetic datasets, we use Chamfer
Distance(C D) to compare the difference between the pre-
dicted point cloud and the ground truth. For the real-
world datasets without ground truth, we follow Shapeln-
version(Zhang et al. 2021) to use Unidirectional Hausdorff
Distance(U H D) to evaluate the similarity between the input
point cloud and the predicted point cloud. More details are
shown in Appendix.

Evaluation on Synthetic Dataset

In this section, we follow the train/test split of the previous
unpaired shape completion methods (i.e., Pcl2Pcl and Cy-
cle4Completion) for a fair comparision. Note that there is no
correspondence between incomplete and complete shapes
during training. The quantitative results are shown in Tab. 1.
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The experimental results show that our KT-Net achieves the
best results over the counterpart unpaired completion meth-
ods. Especially, compared with the second-best method Cy-
cle4Completion, KT-Net reduces the CD loss with a non-
trivial margin by 30%, and achieves the best results in terms
of CD loss over all categories. KT-Net’s achieves better per-
formance over Cycle4Completion mainly comes from the
more detailed geometric recovery ability of the proposed
two assistant modules. In Fig. 3, we visually compare the
performance of KT-Net with the other unpaired completion
methods. We can find that KT-Net can predict more accu-
rate and detailed shapes in the missing regions, and gen-
erate a better completion quality. For example, in the fifth
column of Fig. 3, KT-Net successfully predicts the correct
shape of table legs, while the other two methods (i.e. PcI2Pcl
and Cycle4Completion) failed to reconstruct the same legs
as ground truth.

To verify the effectiveness of our network on different
datasets and make a fair comparison with Shapelnversion,
we also conducted an evaluation on CRN dataset. The quan-
titative results are shown in Tab. 2. KT-Net outperforms the
second-best unpaired method Shapelnversion with a large
margin by more than 20%, and achieves the best results in
all the classes, which proves the superiority of our method.
The visual comparison with other unpaired shape comple-
tion methods on CRN dataset is shown in Appendix.

Generalization Performances to Real-World Scans

In this section, we evaluate our network trained on CRN
datasets on three real-world dataset, i.e., MatterPort3D,
ScanNet and KITTI without fine-tuning. Quantitative and
qualitative results shown in Tab. 3 and Fig. 4, respectively.
Our network can predict a reasonable complete point cloud
even on cases of severe sparseness and incompleteness (such
as cars in KITTI). Quantitative results show that our method
can well preserve the input information rather than predict
an average shape of this category only. For example, in the
first line of Fig. 4, KT-Net predicts reasonable armrest and
legs of chair, while the results of other methods may be
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Figure 3: Visual comparison with the state-of-the-art unpaired shape completion methods on 3D-EPN dataset.

inconsistent. In particular, Pcl2Pcl tends to output a dense
complete shape, which doesn’t often represent the same ob-
ject as partial inputs because of the stronger shape prior.
Pcl2Pcl

Ours Shapelnversion

MatterPort3D ScanNet

KITTI

KITTI

Figure 4: Shape completion on real-world partial scans.

Analysis of Different Training Strategies

In our model, the student loss Lg;vqen: and the adversarial
loss L are used to update 04y, gene oOnly. However, Ly gent
and L involve not only the KRA but also the remaining part
of the knowledge transfer module. To evaluate the effective-
ness of other potential training strategies, similar to Train-
ing Strategy subsection, we use ,;; to denote the trainable
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Methods S_canNet Mat.terPort3D KITTI
Chair | Table | Chair | Table Car
Pcl2Pcl 10.1 11.8 10.5 11.8 14.1
Shapelnversion | 10.1 11.9 | 10.0 | 11.8 13.8
Ours 6.4 6.3 8.4 10.0 6.0

Table 3: Shape completion results on the real scans. The
numbers shown are [U H D](lower is better), where U H D
is scaled by 10

parameters in { FE, KT, K RA}. Then we develop the vari-
ations of (a) L student/ a1 and (b) 0L /06,4y to replace
8£studem/895tudem or aﬁg/aﬁstudem in Eq 8.

The results are reported in Tab. 4. We observed drop-
ping performances in the variations of (a) and (b), where the
teacher network is affected by the incomplete shape knowl-
edge, which leads to a failure to reconstruct the complete
shape input Y;,,.

Methods Average | Chair Lamp Sofa Table
OLcom [00aur 26.2 223 273 30.1 250
OLmateh/00an 24.5 22.0 26.1 323 175
Original Model 14.5 13.9 141 181 117

Table 4: Results of different training strategies (C'D x 10%).
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Figure 5: Visualization of latent space. (a) shows the results of our model, (b) shows the results of Pcl2Pcl. We further visualize

the shape that these points represent.

Visual Analysis of Latent Feature Distribution

In Fig. 5, we use t-SNE (Van der Maaten and Hinton 2008)
to visualize the features before and after the knowledge
transfer module in the high-dimensional latent space as 2D
points. The distance of points can reflect the similarity of
the corresponding latent features to a certain extent. The red
and blue dots represent the features from complete and in-
complete shapes before knowledge transfer module, respec-
tively. The green dots represent the transferred features of
the incomplete shape after the knowledge transfer module.

As shown in Fig. 5(a), the features from the teacher and
student networks before the knowledge transfer module are
not exactly the same, indicating that the correspondences
in the incomplete shape and the complete shape have not
been fully explored. After our knowledge transfer module,
the features could be similar enough to adapt to the task
of point cloud completion. We also visualize the features
of Pcl2Pcl on the same objects, as shown in Fig. 5(b). Due
to the stronger shape prior, Pcl2Pcl tends to output a dense
complete shape without consistency, resulting in the fact that
its transformed features are still far away from those of the
corresponding ground truth, which is sometimes misleading.
Furthermore, we visualize the shape represented by these
points, including the incomplete inputs, ground truths and
predicted complete shapes.

More Ablation Studies

We further analyze each part of our network with results
shown in Tab. 5, which is performed on CRN dataset.

Recovery Assistant Evaluation. To evaluate the effective-
ness of the components in our framework, we give a study
about removing the KRA. In this case, we retrained the net-
work for evaluation. The results are shown as w/o KRA in
Tab. 5 and the network performance decreases without KRA.
Discrimination Assistant Evaluation. The KDA is used to
transfer the complete shape knowledge from the teacher net-
work to the student network and judge the learning effective-
ness of the student network. In order to evaluate the neces-
sity of introducing the KDA, we retrained the network with-
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out using it and the results are shown as w/o KDA in Tab. 5.
The student network without the guidance of the KDA can-
not learn the knowledge of complete shape, which leads to
poor completion results.

Residual Connection Evaluation. In KT-Net, we use the
residual connection to reduce the learning pressure of the
student network. We try to test the performance of the net-
work without residual connection. The result is shown as w/o
Residual, which shows that residual connection can signifi-
cantly improve the ability of the network.

Evaluation of L,:ygente Lstudent (shown in Eq. 5) uses
incomplete shape input X, to constrain the the complete
shape output X., which makes X;,, and X, represent the
same object. We try to train the network without Ly gent
and the result is shown as w/o Lgiudent.

Methods Average | Chair Lamp Sofa Table
w/o KRA 21.9 20.4 19.1 305 17.6
w/o KDA 249 17.3 18.0 51.0 133
w/o Residual 17.9 17.6 174 202 165
W/0 Lstudent 26.2 223 273 301 250
Original Model 14.5 139 141 181 117

Table 5: More Analysis (CD x 10%).

Conclusion

We propose the KT-Net for unpaired point cloud completion
task. Compared with the previous methods, our method pays
more attention to the process of knowledge transfer, and uses
a teacher-student network combined with ingenious design
to enhance the student network’s understanding of shape.
Furthermore, our model is evaluated on several widely used
datasets, achieving state-of-the-art performance by a large
margin compared with other unpaired completion methods.
To further improve the performance, we will develop a refine
module that is suitable for unpaired shape completion.
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