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Abstract

Automatic medical report generation is an essential task
in applying artificial intelligence to the medical domain,
which can lighten the workloads of doctors and promote
clinical automation. The state-of-the-art approaches employ
Transformer-based encoder-decoder architectures to gener-
ate reports for medical images. However, they do not fully
explore the relationships between multi-modal medical data,
and generate inaccurate and inconsistent reports. To address
these issues, this paper proposes a Multi-modal Memory
Transformer Network (MMTN) to cope with multi-modal
medical data for generating image-report consistent medical
reports. On the one hand, MMTN reduces the occurrence of
image-report inconsistencies by designing a unique encoder
to associate and memorize the relationship between medi-
cal images and medical terminologies. On the other hand,
MMTN utilizes the cross-modal complementarity of the med-
ical vision and language for the word prediction, which fur-
ther enhances the accuracy of generating medical reports. Ex-
tensive experiments on three real datasets show that MMTN
achieves significant effectiveness over state-of-the-art ap-
proaches on both automatic metrics and human evaluation.

Introduction
Medical image reports utilize free text to describe and ex-
plain the medical observations in images, which are mainly
written by doctors based on their medical knowledge and
experience. To alleviate the heavy workload of doctors, au-
tomatic report generation has become a critical task.

The state-of-the-art works in medical report generation
task adopt the encoder-decoder architecture (Zhang et al.
2020; Liu et al. 2021a) to automatically generate reports for
medical images. Although these works can generate textual
narratives for medical images, they are still limited in fully
exploiting the information from medical multi-modal data,
such as the consistent mapping bewteen medical images and
reports and the utilization of important medical terminology
knowledge, which is demonstrated in Figure 1. Therefore,
there are some issues that need to be further explored:
1) The relationships between multi-modal medical data are
not fully explored. Some works (Chen et al. 2020, 2021)
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Findings：
A Is polyp was seen in the transverse colon, 
about 2*2 mm in size, with smooth surface 
mucosa, the same color as the surrounding 
mucosa, and no echinoderm-like changes at 
the base. The remaining transverse colon 
mucosa was smooth, with a clear submucosal 
vascular texture, with regular peristalsis.

Figure 1: An example of gastroenterology report, where
aligned image and report are marked in different colors and
medical terminology knowledge are underlined in red.

only leverage two types of data (i.e., images and text) to gen-
erate reports, ignoring essential medical knowledge. Some
works introduce medical knowledge (e.g., disease tags (Li
et al. 2019) and regions (Liu et al. 2021a)) to guide the re-
port generation, without exploring the correlations between
knowledge and images or texts. These works do not fully
exploit medical data’s multi-modal nature and relationships.
2) The generated reports show a deficiency in both precision
and consistency. Most approaches (Yuan et al. 2019; You
et al. 2021) directly align image visual features and report
linguistic features to generate reports. The limitation of an-
notated correspondence between images and text results in
inaccuracies and inconsistencies in the sentences generated
by these methods. In addition, some essential medical termi-
nologies in medical reports cannot be effectively generated.

To tackle the above limitations, in this paper, we propose
a Multi-modal Memory Transformer Network (MMTN) to
generate semantically coherent and consistent medical im-
age reports. To take full advantage of the multi-modal na-
ture of medical data, MMTN is capable of incorporating
and processing multi-modal medical data, i.e., medical im-
age, terminology knowledge, and text report simultaneously,
and exploring the interactions between different modalities
to improve the quality of medical report generation. To make
the report cover important medical terminologies, we de-
signed the MMTN encoder to capture and memorize the re-
lationship between medical images and medical terminolo-
gies, which can assist in guiding the transformation from im-
age visual features to report text features with the medium of
medical terminologies. Specifically, the grid module and ter-
minology BERT module extract features from medical im-
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ages and terminologies, respectively. The memory augment
module is devised to learn the relationship between two fea-
tures using learnable memory matrices. Furthermore, to ex-
ploit the cross-modal complementarity of multi-modal med-
ical features, we apply the multi-modal fusion layer on top
of the MMTN decoder to adaptively learn the contribution of
multi-modal visual features and linguistic features for word
generation. Experimental results on three real-world medi-
cal image report datasets illustrate the effectiveness of our
MMTN. The contributions are summarized as follows:

• We propose a Multi-modal Memory Transformer Net-
work to process multi-modal medical data including
medical image, terminology knowledge, and report text,
and design a unique encoder to associate and memorize
visual features of medical images and representations of
terminologies, which assists in bridging the distance be-
tween vision and language.

• We build a multi-modal fusion layer, attached to the top
of the MMTN decoder, to weigh the contribution of vi-
sual and linguistic features by exploiting the cross-modal
complementarity of multi-modal medical features, and to
generate an image-report consistent report.

• We experimentally evaluate MMTN using three real-
world datasets. The results demonstrate that MMTN out-
performs state-of-the-art methods on both automatic met-
rics and human evaluation, indicating that our MMTN
can generate accurate medical reports.

Related Work
The existing works mainly explore the image captioning and
report generation for medical domain.

Image Captioning

The task of image captioning has been studied by two main
approaches: traditional methods and deep learning based
methods. For traditional methods, the retrieval- (Gupta,
Verma, and Jawahar 2012) and template-based (Mitchell
et al. 2012) models are the most commonly adopted for
caption generation. With the development of deep learn-
ing (He et al. 2016; Huang et al. 2017), the encoder-decoder
structures (Shin et al. 2016) are widely used. The visual
captioning models employ attention mechanisms (Rennie
et al. 2017; You et al. 2016) to improve performance. In
addition, extra information is adopted to assist text gener-
ation for Natural Language Processing (NLP) and image
caption tasks, such as pre-trained embeddings (Zhang et al.
2019), pre-built knowledge graphs (Li et al. 2019), and pre-
trained models (Devlin et al. 2019). The Transformer-based
model (Cornia et al. 2020; Zhang et al. 2021) also greatly
improves the performance of the task.

However, these methods cannot be directly transferred to
medical report generation tasks. Medical reports do not con-
sist of only a sentence of short text but a long paragraph
consisting of normal and abnormal descriptions. The image
caption methods do not cope effectively with the properties.

Medical Report Generation
Similar to image captioning, most existing works of report
generation adopt the encoder-decoder paradigm to gener-
ate reports. Works (Yuan et al. 2019; You et al. 2021) fuse
the image features with the medical tags or concepts pre-
dicted by Convolutional Neural Network (CNN) to generate
reports. Some approaches adopted extra information (such
as context (Jing, Xie, and Xing 2018) and topic representa-
tions (Li et al. 2018)) to assist report generation. Other meth-
ods append auxiliary modules to CNN-RNN architecture,
such as the recurrent generation model (Xue et al. 2018),
and clinical features (Zhou et al. 2021). The graph neural
networks (Liang et al. 2018) are derived to the predefined
abnormal graphs (Li et al. 2019) and pre-constructed graph
embedding modules (Zhang et al. 2020) for report gener-
ation. Subsequently, Transformer-based approaches (Chen
et al. 2020; Liu et al. 2021a; Cao et al. 2022) are pro-
posed to solve the problem that RNN-based models cannot
effectively handle dependencies between distant-location.
Works (Chen et al. 2020, 2021) use memory vectors to mem-
orize the interaction between images and reports. Besides,
the contrastive model, CA (Liu et al. 2021b), captures and
describes abnormal regions, and unsupervised KGAE (Liu
et al. 2021c) relaxes the dependency on paired data.

However, these works did not fully explore relationships
between multi-modal medical data. Our work differs from
these in that we not only associate and memorize the rela-
tionship between images and terminologies, but also use the
properties of multi-modal data to generate reports.

Multi-Modal Memory Transformer Network
The multi-modal memory Transformer network consists of
three core components, namely the MMTN encoder, the
MMTN decoder, and the multi-modal fusion layer.

The overall architecture of our MMTN is depicted in Fig-
ure 2. The MMTN encoder is in charge of processing input
images and medical terminologies into the enriched features,
aiming to associate and memorize the relationship between
grid features and terminological features. The MMTN de-
coder receives the output of the encoder and the word em-
beddings of reports to generate semantic states. The multi-
modal fusion layer conducts joint representations of multi-
modal features by self-directed learning the contribution of
enriched features and semantic states to generate semanti-
cally consistent medical reports.

MMTN Encoder
For the generated report to encompass important medical
terminologies, the MMTN encoder is devised to associate
and memorize the relationship between visual features of
medical images and medical terminology representations,
which assists in bridging the gap between images and re-
ports. The MMTN encoder consists of a grid module, a ter-
minology BERT, and a memory augment module.

Grid Module Given any medical image I , the grid module
is designed to extract grid features fg of I . The grid features
fg are extracted by a pre-trained CNN model (Huang et al.
2017). Specifically, the image I is first divided into several
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Figure 2: Overview of our proposed MMTN architecture. The input images and medical terminology knowledge are first fed
into the MMTN encoder, consisting of the grid module, terminology BERT, and a stack of memory augment modules, to obtain
the enriched features. A stack of MMTN decoders is in charge of generating the semantic states. The multi-modal fusion layer
measures the contribution of two features to generate a medical report.

equal-sized regions, and then each grid feature gi of the re-
gion is extracted separately from the last convolutional layer
of CNN. Subsequently, the final grid features fg are obtained
by concatenating each extracted grid feature. The grid mod-
ule can be expressed as:

fg = FGM (I) = Concat[g1,g2 . . . ,gR] (1)
where FGM (.) denotes the grid module, Concat indicates
the concatenation operation, R is the number of regions.

Terminology BERT The terminology BERT is adopted to
represent the contextual information of medical terminolo-
gies related to medical reports, which helps to improve the
contextual relevance of reports.

We first build two corpora of commonly used medical
terminologies for gastrointestinal and thoracic diseases. For
gastrointestinal diseases, we invite gastroenterologists to
provide medical terminologies that often appear in reports,
such as “smooth mucosa”, “polypoid protrusion”, and “sur-
face erosion”. In addition, the medical terminologies for tho-
racic diseases are automatically extracted from the “Find-
ings” part of medical reports with the frequencies no less
than three times in the corpus, such as “no pneumothorax”,
“biapical plural thickening”, and “hyperexpanded lung”.

Furthermore, we employ a BERT-based module to ex-
tract terminological features. The terminology BERT mod-
ule consists of a pre-trained BERT model (Devlin et al.
2019; Zhang et al. 2021) and a feed-forward network to ex-
tract terminological features from the defined terminology
corpus. The process can be formalized as:

fB = BERT (C) (2)

f t = Attmask

(
FFN

(
fB

))
(3)

where fB is the output of the pre-trained BERT model, C de-
notes the word sequence of the terminology corpus, Attmask

is the masked multi-head attention, FFN represents the
fully connected feed-forward network, and f t indicates the
terminological features.

Memory Augment Module The memory augment mod-
ule is proposed to associate and memorize the hidden cor-
relation between medical images and terminologies. For a
medical image, there are corresponding medical terminolo-
gies in the report to describe it. To exploit the characteris-
tics, we adopt the memory augment module to represent the
correlation between visual context and medical terminology
features, which is beneficial to guide the report generation.

The input of the memory augment module is the joint fea-
tures Qm generated by grid features fg and terminological
features f t under an attention mechanism. A set of keys and
values for self-attention are employed to memorize semantic
context information between medical images and terminolo-
gies. The keys and values are implemented as two learnable
matrices, namely MemK and MemV , which can be up-
dated by SGD. The feature interactions in the memory aug-
ment module are computed by scaled dot-product attention.
Subsequently, the output of multi-head attention is applied
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to the feed-forward layer. Finally, the enriched features fe

are obtained by the residual connection and normalization
operation layer. Formally, the process can be defined as:

Qm = Attention(Qj ,Kj ,Vj) (4)

Qj = WQjAttmask(f
t) (5)

Kj = WKjf
g,Vj = WV jf

g (6)

Attention(Q,K,V) = Softmax(
QKT

√
d

)V (7)

fa = Attention(WQmQm,Km,Vm) (8)

Km = Concat[WKmQm,MemK ] (9)

Vm = Concat[WVmQm,MemV ] (10)

fe = AddNorm(FFN(AddNorm(fa))) (11)
where Qm denotes the input of memory augment module,
Qx, Kx and Vx (x ∈ {j,m}) represent the query, key and
value matrix, WQx , WKx and WVx (x ∈ {j,m}) are learn-
able weight matrices, d indicates a scaling factor, fa is the
output of the multi-head attention layer in this module, and
AddNorm is composition of a residual connection and of a
normalization layer.

MMTN Decoder
The MMTN decoder is adopted to generate the semantic
states based on previously generated words and the enriched
features. The text sequence features fw of medical reports
are extracted by word embedding layer, and then regarded
as the input of the first layer of the MMTN decoder. The
second layer is a multi-head attention operation with K and
V matrices from the enriched features fe of MMTN encoder.
The MMTN decoder can be formalized as:

fs = AddNorm(Attmask(f
w)) (12)

fm = AddNorm(Attention(WQhf
s,WKhf

e,WV hf
e))

(13)

fh = AddNorm(FFN(fm)) (14)
where fs and fm denote the intermediate outputs of the de-
coder, and fh is the semantic states.

Multi-Modal Fusion Layer
Two modal features are obtained by modules mentioned
above, namely the enriched features fe and the semantic
states fh. To obtain a semantically coherent medical report,
we designed a multi-modal fusion layer, attached to the up-
per layer of the MMTN decoder. The module combines the
feature information of two modalities to calculate the con-
tribution of visual features and linguistic features to each
generated sequence. The multi-modal fusion layer can be
defined as follows:

Qo = WQoAttmask(WQaf
e,WKaf

h,WV af
h) (15)

Ko = WKof
e,Vo = WV of

e (16)

Output = Attention(Qo,Ko,Vo)WA (17)
where Qo, Ko and Vo are the query, key and value matrix of
the multi-head attention, Output denotes the result of multi-
head attention for the generated reports, WQx, WKx, WV x

(x ∈ {o, a}), and WA are learnable weight matrices.

Training
For each training sample (I, r), where I is a group of im-
ages and r is the corresponding medical report composed of
ground truth sequences, the loss L of report generation is
minimized by the cross-entropy loss:

L(θ) = −
M∑
i=1

log(pθ(si|s1:i−1)) (18)

where θ is the parameters of our MMTN model, s1:M repre-
sents ground truth sequences of the report r.

Experiment
In this section, we first describe the experimental settings.
Then, we demonstrate the experimental results, including
performance comparisons, case studies, and ablation studies
to evaluate the performance of MMTN against state-of-the-
art baseline methods.

Experimental Settings
Dataset We conduct experiments on three datasets.
1) Gastrointestinal Endoscope image dataset (GE) is a
private dataset contains white light images and their Chi-
nese reports from the Department of Gastroenterology. The
dataset consists of 3,168 patients. Each patient has multiple
gastrointestinal endoscope images from different perspec-
tives with their corresponding medical reports. We obtain
15,345 images and 3,069 reports collected from the dataset
by selecting patients with 5 images. We collect 126 medical
terminologies from gastroenterologists, including 89 abnor-
mal findings and 37 normal findings.
2) IU-CX (Demner-Fushman et al. 2016) is a public chest
X-ray dataset. We select 2,896 radiology reports with frontal
and lateral view images from the original dataset. We ex-
tract 97 medical terminologies from the <Abstract> field,
including 80 abnormal and 17 normal findings.
3) MIMIC-CXR (Johnson 2019) is the largest public chest
X-ray dataset including 473,057 images and 206,563 re-
ports. We adopt the same criterion with IU-CX to select sam-
ples, which results in 142,772 images and 71,386 reports.
The medical terminologies are the same as IU-CX.

Parameter Settings The method is implemented in Py-
torch 1.7.1 based on Python 3.8.5 and trained on a server
with an Intel Core i9-10900K CPU, and an Nvidia RTX
3090 GPU. We randomly split both datasets into 7:1:2 train-
ing:validation:testing data to train and evaluate our method.
A pre-trained DenseNet-121 is adopted to extract grid fea-
tures, with 7 × 7 grid size. The Chinese word segmentation
module of Jieba (Jieba 2019) is employed for processing the
reports of GE. The number of heads is set to 8, the layer
number N of Transformer is 3, and the number of memory
vectors is 40 rows. If not specifically specified, the hidden
dimension of MMTN is 512. The dropout probability is 0.1.
The ADAM optimizer with a batch size of 32 and a learning
rate of 1e-5 is employed to minimize the loss function.
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Dataset Architecture Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L

GE

CNN-RNN
-based

SaT 0.643 0.552 0.506 0.414 0.557 0.613
AAtt 0.649 0.549 0.491 0.419 0.579 0.617
CoAtt 0.774 0.654 0.618 0.575 0.674 0.748
RGKG 0.752 0.676 0.609 0.554 0.684 0.726

Transformer
-based

Transformer 0.689 0.572 0.584 0.521 0.604 0.691
R2GEN 0.779 0.677 0.619 0.574 0.679 0.736
PPKED 0.791 0.684 0.624 0.579 0.691 0.749
CMN 0.782 0.679 0.621 0.572 0.686 0.742

MMTN(ours) 0.799 0.692 0.634 0.589 0.703 0.748

IU-CX

CNN-RNN
-based

SaT 0.216 0.124 0.087 0.066 0.294 0.307
AAtt 0.220 0.127 0.089 0.068 0.295 0.308
CoAtt 0.455 0.288 0.205 0.154 0.277 0.369

HRGRA 0.438 0.298 0.208 0.151 0.343 0.322
KER 0.455 0.288 0.205 0.154 0.277 0.369

RGKG 0.441 0.291 0.203 0.147 0.304 0.367

Transformer
-based

Transformer 0.396 0.254 0.179 0.135 - 0.342
R2GEN 0.470 0.304 0.219 0.165 - 0.371
PPKED 0.483 0.315 0.224 0.168 0.351 0.376
CMN 0.475 0.309 0.222 0.170 - 0.375

AlignTransformer 0.484 0.313 0.225 0.173 - 0.379
MMTN(ours) 0.486 0.321 0.232 0.175 0.361 0.375

Dataset Architecture Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

MIMIC-CXR

CNN-RNN
-based

SaT 0.299 0.184 0.121 0.084 0.124 0.263
AAtt 0.299 0.185 0.124 0.088 0.118 0.266

Transformer
-based

Transformer 0.314 0.192 0.127 0.090 0.125 0.265
R2GEN 0.353 0.218 0.145 0.103 0.142 0.277
PPKED 0.360 0.224 0.149 0.106 0.149 0.284
CMN 0.353 0.218 0.148 0.106 0.142 0.278

AlignTransformer 0.378 0.235 0.156 0.112 0.158 0.283
MMTN(ours) 0.379 0.238 0.159 0.116 0.161 0.283

Table 1: Comparison of baselines and MMTN on automatic metrics on the three datasets.

Baselines We compare our MMTN to the following state-
of-the-art approaches. The CNN-RNN-based methods in-
clude SaT (Vinyals et al. 2015), AAtt (Lu et al. 2017),
CoAtt (Jing, Xie, and Xing 2018), and RGKG (Zhang
et al. 2020). The Transformer-based methods are Trans-
former (Chen et al. 2020), R2GEN (Chen et al. 2020), PP-
KED (Liu et al. 2021a), CMN (Chen et al. 2021), and Align-
Transformer (You et al. 2021). For the IU-CX dataset, we
also compare with HRGRA (Li et al. 2018) and KER (Li
et al. 2019) that utilize template retrieval method for tho-
racic diseases, and the templates are not defined in GE and
MIMIC-CXR dataset.

Evaluation Metrics We employ both automatic metrics
and human evaluation to evaluate the performance for the
medical report generation. 1) Automatic Metrics: BLEU
(unigram to 4-gram) (Papineni et al. 2002), ROUGE-
L (Lin 2004), METEOR (Banerjee and Lavie 2005), and
CIDEr (Vedantam, Zitnick, and Parikh 2015). 2) Human
Evaluation: For the samples in GE, we randomly select 50
samples and invite gastroenterologists and graduate students
who collaborate with us as experts to evaluate the reports
generated by baseline methods and our MMTN. Each sam-
ple is given the ground-truth report, and experts are asked
to select the most consistent report among those generated
by the different methods. Evaluation metrics include the re-

port completeness, the correctness of generated abnormality
findings, and contextual coherence. We collect results from
10 experts and calculate the ratio of the number of times that
each model is selected to the number of total evaluations as
the human evaluation score of each model.

Results on Report Generation
Automatic Evaluation We compare MMTN with base-
line methods on three datasets for the report generation task,
with all performances on automatic metrics shown in Ta-
ble 1. It is highlighted that the best and second best re-
sults. Our MMTN is superior to all baseline models on
BLEU-n and CIDEr (or METEOR) scores on three datasets,
demonstrating the effectiveness and accuracy of MMTN in
generating medical reports. MMTN is second only to PP-
KED and AlignTransformer on ROUGE-L. PPKED incor-
porates additional semantic information and abnormality
graph (i.e., abnormal regions and observation graph) into
the generation model, which guides it to learn the most
common subsequence of ground truth reports. AlignTrans-
former introduces additional disease label predictions to
guide the generation of abnormality descriptions and there-
fore achieves the best performance on IU-CX. Our MMTN
also achieves a competitive performance on ROUGE-L com-
pared to the above two methods. The results on automatic
metrics demonstrate that our MMTN is capable of generat-
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Method SaT AAtt CoAtt RGKG Transformer R2GEN PPKED CMN MMTN
Human Evaluation Score 0.018 0.020 0.062 0.122 0.054 0.132 0.192 0.152 0.248

Table 2: The results of our MMTN and baselines on human evaluation scores.

Metrics AlignTrans MMTN t p

BLEU-1 0.378 0.379 -4.950 0.008**
BLEU-2 0.235 0.238 -6.124 0.004**
BLEU-3 0.156 0.159 -3.674 0.021*
BLEU-4 0.112 0.116 -4.899 0.008**

METEOR 0.158 0.161 -3.598 0.024*
ROUGE-L 0.283 0.283 0.000 1.000

Table 3: Results of t-test analysis (*: p < 0.05, **: p < 0.01)

ing accurate and coherent reports.
In addition, we obtain some observations by comparing

methods with different architectures. First, models guided
by medical knowledge (i.e., HRGRA, KER, RGKG, PP-
KED, and our MMTN) obtain higher or equivalent auto-
matic metrics scores. This observation validates that knowl-
edge is essential to guide the transformation from visual fea-
tures to linguistic features in the medical domain. Second,
compared with the vanilla CNN-RNN structure (i.e., SaT),
the vanilla Transformer (i.e., Transformer) works slightly
better. Consistent with the performance, most Transformer-
based models outperform CNN-RNN-based models on auto-
matic evaluation metrics, indicating that self-attention plays
a positive role in the transformation of multi-modal features.
Third, compared to models using the co-attention mech-
anism, approaches equipped with memory modules (i.e.,
R2GEN, CMN, and our MMTN) exhibit better performance.
One possible explanation is that using memory modules en-
ables visual and linguistic features to be transformed in a
single identical space. Our MMTN outperforms R2GEN and
CMN in most metrics, illustrating that associating visual fea-
tures with medical terminologies representations facilitates
report generation. Last, the CoAtt, HRGRA, and PPKED
adopt extra semantic information (e.g., medical tags, report
templates, and abnormal graphs). The three methods also
achieve good outcomes on specific metrics, which shows
that additional information is helpful for performance im-
provement. However, our MMTN still achieves state-of-the-
art performance without using such information.

Human Evaluation To evaluate the clinical readability of
the generated report, we invite three digestive gastroenterol-
ogists and seven graduate students to evaluate the reports
generated by MMTN and baseline methods. Given random
50 samples of GE1, we ask each expert to select one report
that is most consistent with the ground truth descriptions for
each sample. The human evaluation score for each method
is the proportion of times the method is selected by experts
out of the total number of evaluations. For example, MMTN

1The human evaluation did not evaluate the IU-CX and
MIMIC-CXR datasets because we did not have access to results
provided by professional radiologists.

is selected 124 times by experts as the report closest to the
ground truth, so its human evaluation score is 124 / 500 =
0.248. The human evaluation results are presented in Ta-
ble 2. The results show that the MMTN is better than base-
line methods in clinical practice, demonstrating MMTN’s
capability of generating accurate and reliable reports.

Significant Tests To verify whether there are significant
differences between our MMTN and state-of-the-art mod-
els, we conduct a t-test on automatic metrics. Due to the
page limitation, only results on MIMIC-CXR with mini-
mal improvement compared to the strongest baseline (i.e.,
AlignTransformer) are presented. As shown in Table 3, the
samples show significant differences on BLEU-1-4 and ME-
TEOR, indicating that the improvement of MMTN is sig-
nificant compared to baseline methods, and the comparison
results rule out the possibility that the advantage of our al-
gorithm is the result of sampling difference.

Qualitative Analysis To further investigate the effective-
ness of our MMTN, we conduct qualitative analysis on three
datasets with their ground-truth and generated reports. We
randomly select a sample from each dataset to perform a
case study, and visualization results are shown in Figure 3.
The first row is the sample from GE (note that gastroenterol-
ogists translate the ground-truth and generated reports of GE
from Chinese to English), and the middle and last row rep-
resent the sample from IU-CX and MIMIC-CXR, respec-
tively. It can be observed that MMTN is capable of generat-
ing reports consistent with the ground truth. In GE sample,
the generated report accurately reports the locations (i.e., as-
cending colon) and types (i.e., polyp) of lesions. Similarly, in
IU-CX and MIMIC-CXR samples, MMTN also accurately
describes most types of lesions, such as opacities, cavitary
lesion, and hyperinflation. In addition, MMTN also gener-
ates the descriptions for normal regions, such as “smooth
mucosa”, “No pleural effusion”, and “No focal consolida-
tion”. Normal descriptions generation facilitates the coher-
ence and completeness of the report. It is worth noting that
the reports generated by MMTN cover almost all of common
medical terminologies.

To further investigate how the MMTN associates visual
information of images and representations of medical termi-
nologies, we visualize image-text attention mappings from
the multi-head attention of the decoder. Figure 3 shows inter-
mediate image-text correspondences for several medical ter-
minologies between visual features and word embeddings. It
is observed that MMTN correctly aligns regions in images
with indicated terminologies. Taking the first case in Fig-
ure 3 as an example, our MMTN can correctly identify dis-
eases, i.e., “hemispheric polyp”, and can also indicate med-
ical terminologies about the position and trait, such as “as-
cending colon”, “smooth mucosa” and “vascular texture”.
This observation suggests that our model not only generates
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MMTN Generated Report: 
There is the hyperinflation of the lungs. The heart is cardiomegaly. The mediastinal contour and 
hemidiaphragm are within normal limits. There is no pneumothorax or pleural effusion. There are no 
focal areas of consolidation or suspicious pulmonary opacity.

“cardiomegaly ” “hemidiaphragm”“hyperinflation ” “mediastinal contours”

Ground-Truth Report: 
The lungs appear hyperinflated. 
No focal consolidation, effusion or 
pneumothorax .   N o  s igns  o f 
congestion or edema. Heart size is 
mildly prominent.  Mediastinal 
contour  is  normal.   No acute 
osseous abnormality. No free air 
below the right hemidiaphragm.

MMTN Generated Report: 
There is bilateral interstitial opacity. There was a cavernous lesion in the lung apex. The 
cardiomediastinal  si lhouet te  were normal. There is no focal consolidation. There is no pleural 
effusion. There is no evidence of pneumothorax.

“opacity ” “lung apex” “cavitary lesion”“cardiomediastinal silhouette”

Ground-Truth Report: 
T h e r e  a r e  d i f f u s e  b i l a t e r a l 
interstitial and alveolar opacities. 
There are irregular opacities in the 
left lung apex, that represent a 
cavitary lesion in the left lung 
apex. There are streaky opacities 
in the right upper lobe, XXXX 
scarring. The cardiomediastinal 
silhouette is normal in size and 
c o n t o u r .  T h e r e  i s  n o 
pneumothorax or large pleural 
effusion.

MMTN Generated Report: 
A hemispherical polyp with smooth mucosa was seen in the ascending colon. The submucosal vessels 
were clearly textured with regular peristalsis.

“ascending colon” “hemispheric polyp” “smooth mucosa” “vascular texture”

Ground-Truth Report: 
A hemispherical polyp of about 
0.5 cm in diameter with smooth 
surface and clear border was seen 
i n  t h e  p r o x i m a l  p a r t  o f  t h e 
ascending colon . The mucosa 
w a s  s m o o t h ,  w i t h  c l e a r 
submucosal vascular texture and 
regular peristalsis.

Figure 3: Visualizations of image-text attention mappings on GE (the first row), IU-CX (the middle row), and MIMIC-CXR
(the last row). The left part is the image and its ground-truth report, and the right part is the MMTN generated reports and the
mappings of image region and medical terminologies. Colors from blue to red represent the weights from low to high.
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Figure 4: Ablation study for different designs.

coherent medical reports but also enhances the alignment
between the images and the generated texts.

Ablation Studies
Effect of components. We conduct ablation studies on the
three datasets to investigate the effectiveness of each module
of MMTN. Specifically, \MAM excludes the memory aug-
ment module from MMTN, \MT does not consider medical
terminologies and only utilizes the grid feature as the output
of the MMTN encoder, and \MFL drops the multi-modal fu-
sion layer. As shown in Figure 4, MMTN\MT has the worst
performance, revealing that introducing medical terminolo-
gies can effectively improve report generation accuracy. On

the other hand, the performance of MMTN\MAM is poor,
which demonstrates that aligning and memorizing the rela-
tionship between images and terminologies is indeed helpful
to bridging the distance between visual and linguistic fea-
tures. The performance of MMTN\MFL is similar to that
of MMTN\MAM, indicating the multi-modal fusion layer
plays a certain role in improving performance. These results
suggest that the modules mentioned above are efficient for
the report generation task.

Conclusion
In this paper, we propose a multi-modal memory Trans-
former network to address multi-modal medical data, in-
cluding image, text report, and terminology knowledge to
improve the quality of medical report generation. To cover
important medical terminologies in the generated reports,
the MMTN encoder is designed to align and memorize
the relationship between visual and terminological features.
Further, we employ the multi-modal fusion layer to calculate
the contribution of vision and language features to the report.
Extensive experiments on three real world datasets demon-
strate that our proposed MMTN achieves superior perfor-
mance than mainstream approaches.
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