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Abstract

Designing a point cloud upsampler, which aims to generate a
clean and dense point cloud given a sparse point represen-
tation, is a fundamental and challenging problem in com-
puter vision. A line of attempts achieves this goal by es-
tablishing a point-to-point mapping function via deep neural
networks. However, these approaches are prone to produce
outlier points due to the lack of explicit surface-level con-
straints. To solve this problem, we introduce a novel surface
regularizer into the upsampler network by forcing the neu-
ral network to learn the underlying parametric surface rep-
resented by bicubic functions and rotation functions, where
the new generated points are then constrained on the under-
lying surface. These designs are integrated into two differ-
ent networks for two tasks that take advantages of upsam-
pling layers — point cloud upsampling and point cloud com-
pletion for evaluation. The state-of-the-art experimental re-
sults on both tasks demonstrate the effectiveness of the pro-
posed method. The implementation code will be available at
https://github.com/corecail63/PSCU.

Introduction

Point cloud is an efficient data structure to represent 3D
objects. But, due to the limitation of sensors, the collected
point clouds are usually sparse and incomplete. Therefore,
point cloud upsampling (Li et al. 2019; Qian et al. 2021;
Yu et al. 2018; Qian et al. 2020; Wang et al. 2019) is in-
troduced to generate denser point clouds for better scene
representation, which benefits many computer vision appli-
cations such as autonomous driving (Zeng et al. 2018; Li
et al. 2021), 3D object classification (Li et al. 2020; Qi et al.
2017b), semantic segmentation (Zhang et al. 2020; Landrieu
and Simonovsky 2018; Engelmann et al. 2017) and robotics
(Rusu et al. 2008). For point cloud upsampling, it is expected
that the generated dense points can well represent the shape
and surface underlying the point cloud. However, obtaining
such property is challenging, and even previous state-of-the-
art (SOTA) methods may generate many noisy and outlier
points (see Figure 1).

Many sophisticated methods have been proposed to solve
this challenging problem. Traditional optimization based
methods (Alexa et al. 2003; Lipman et al. 2007; Huang et al.
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Figure 1: The double-layer lid can be clearly upsampled by
our method, while the traditional EAR (Huang et al. 2013)
fails to distinguish the two nearby layers and the previous
SOTA method PU-GCN (Qian et al. 2021) generates many
noisy and outlier points. Please zoom in for more details.

2013; Wu et al. 2015; Preiner et al. 2014) rely on geomet-
ric priors to upsample the point cloud but often fail when
the input is complex and have been outperformed by recent
deep learning methods. These well-designed deep learning
methods can be further divided into two categories based on
their adopted upsampler: 1) feature-based upsampling meth-
ods and 2) folding-based upsampling methods. The feature-
based methods (Zhang, Yan, and Xiao 2020; Huang et al.
2020; Wu, Zhang, and Huang 2019; Ye et al. 2022; Qian
et al. 2021; Yu et al. 2018; Xiang et al. 2021) first extract
shape features from input points and expand the number of
points by upscaling the shape features in the feature space.
These upsampled features are then fed into a coordinate re-
gression block (MLPs) to predict their coordinates. A point-
wise loss function, i.e., Chamfer Distance (Fan, Su, and
Guibas 2017), is usually used to train the network. However,
this loss function only measures the point-wise distance and
can not measure the difference of underlying surfaces be-
tween point clouds. As a result, these methods often fail to
generate points that are located accurately on the underly-
ing surfaces. Folding-based methods (Yang et al. 2018; Yuan
et al. 2018; Liu et al. 2020, 2022; Long et al. 2021; Luo and
Hu 2020) expand the number of points by introducing a pre-
defined 2D grid for each point and then concatenating them
with shape features to regress for their coordinates via MLPs
—they can be viewed as a mimic of a morphing/surface func-
tion that transforms the 2D grid to target surfaces. While
they attempt to preserve a better surface structure, they can
only learn an overfitted point-point mapping with point-wise
loss functions (Williams et al. 2019), but not the accurate



representation of the surface.

To achieve a better surface representation, PUGeo-Net
(Qian et al. 2020) introduced a parameterized method that
incorporates discrete differential geometry into network de-
sign, where it models the small surface around each input
point via the first and second fundamental forms (do Carmo
1976) to generate the upsampled points. However, this
method relies heavily on the correctness of point normals
and needs additional ground truth point normals to train the
network. Such normals are not directly available in many
point cloud datasets. Besides, it still uses MLPs to pre-
dict the point displacement and lacks explicit surface-level
constraints. Also, it follows the patch-based upsampling
pipeline, which does not consider the smoothness between
two adjacent patches.

We extend PUGeo-Net by using explicit parametric func-
tions to model the local surface for each input point without
the required supervision of point normal information. Be-
sides, instead of dividing the input point cloud into multiple
patches, we directly upsample the entire input to avoid the
discrepancy between adjacent patches. Specifically, we de-
sign a novel parametric surface constrained upsampler net-
work that can extract the spatial surface features from dis-
crete and unordered input points, predict explicit bicubic
functions and rotation functions to express the underlying
surfaces, and constrain the new generated points on these
surfaces. To further improve its performance, we also in-
troduce a displacement loss for generating better paramet-
ric functions. The proposed upsampler can be also used for
other related tasks such as point cloud completion.

We evaluate our proposed method in both point cloud up-
sampling and completion tasks on three standard datasets,
PUIK, KITTI, and ShapeNet-PCN. The experiment results
demonstrate that by using the proposed surface constrained
upsampler, we can achieve new SOTA results by outper-
forming previous methods. The main contributions of this
paper are as follows.

1. We propose a novel surface-level constraint that uses
parametric surfaces as regularizers to ensure the smooth-
ness of the upsampled point clouds.

2. We design a new parametric surface constrained upsam-
pler, that estimates the surface parametric functions from
input points and generates new points on each surface.

3. We evaluate the proposed upsampler on both point cloud
upsampling and point cloud completion tasks, and our
proposed method achieves new SOTA performance.

Related Work
Point Cloud Upsampling

Yu et al. (2018) proposed the first deep learning based point
cloud upsampling algorithm PU-Net at patch level. For each
patch, multilevel features are extracted at each input point
and expanded via a multibranch convolution unit in the fea-
ture space. Then, these expanded features are reconstructed
for upsampled point cloud via an MLP based coordinate re-
gression block. However, when the upsampling rate is high,
e.g. x16, it needs to define multiple branches of convolution
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layers, which is quite inefficient. To address this issue, Wang
et al. (2019) proposed 3PU, a multistep patch-based method
to progressively upsample the points by breaking the upsam-
pling task into multiple x2 small tasks, each solved by a
sub-network that focuses only on a particular level of detail.
Each sub-network has the same structure with the feature ex-
tractor unit, feature expansion unit, and an MLP to regress
for the point coordinates. To consider more spatial informa-
tion among neighboring points, Qian et al. (2021) proposed
PU-GCN by introducing a multi-scale Inception DenseGCN
feature extractor to extract the spatial features among nearby
points and another graph convolution network to better en-
code local point information from its neighbors. Although
PU-GCN achieves the SOTA result by utilizing spatial in-
formation, it relies on an MLP-based coordinate regression
module which often fails to learn the accurate representation
of the surface.

Point Cloud Completion

Point cloud completion can be considered as a more chal-
lenging version of upsampling where the input point cloud
is sparse and incomplete. It aims to not only upsample the in-
put point cloud but also infer the missing underlying shapes
and surfaces (Pan et al. 2021; Yuan et al. 2018; Xie et al.
2020; Xiang et al. 2021; Wen et al. 2021; Cai and Sur 2022).

Yuan et al. (2018) proposed PCN, a novel coarse to fine
point cloud completion network under an encoder-decoder
framework. It first extracts the global shape code that de-
scribes the coarse shape of the input points using a PointNet
(Qi et al. 2017a) feature extractor. Then, a coarse but com-
plete point cloud is generated from the global shape code
and fed into a folding-based upsampling block to gener-
ate the dense point cloud. However, PCN’s feature extrac-
tor can not extract sufficient structural information from in-
put point clouds and may not well capture the geometric
detail. To this end, Xie et al. (2020) proposed GRNet, us-
ing 3D grids as intermediate representations to regularize
unordered point clouds and 3D convolution networks to ex-
plore the structural context and infer the underlying shape of
the input point clouds. However, the resolution of interme-
diate point clouds is limited by the size of 3D feature maps,
making it hard to reveal fine local geometric details. As a
result, it still needs additional MLPs to refine and upsample
the point clouds. To preserve more local geometric details,
Xiang et al. (2021) designed SnowFlakeNet. It first extracts
the global shape code from input point clouds using Point-
Net++ (Qi et al. 2017b) and Point Transformer (Zhao et al.
2021) blocks, which are fed into a seed generator to generate
a course but complete point cloud. The coarse point cloud is
then upsampled to a denser one via SnowFlake Point De-
convolution blocks. These blocks consist of 1D deconvolu-
tion layers to upsample the points in the feature space and
skip-transformers to preserve better structure and shape. Al-
though SnowFlakeNet achieves the state-of-the-art result on
point cloud completion tasks, it still relies on an MLP to
regress for the coordinates of each upsampled point without
constraining the upsampled points to be on the underlying
surfaces accurately.
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Figure 2: An example to describe the surface of a small re-
gion by the parametric functions. There exist multiple pro-
jections and surface functions to express this small region.

Parametric Surface Constrained Upsampler

Designing an upsampler for point clouds is nontrivial due
to the difficulty of inferring accurate underlying surfaces
from discrete points and elegantly constraining the upsam-
pled points on these surfaces. We solve these challenges by
forcing the network to predict an explicit representation of
the underlying surface via parametric surface functions and
then generate points directly on the surface via the predicted
parametric functions.

Parametric Surfaces

Ideally, given points on the 2D plane X-Y, we can map them
into 3D space via an explicit function ®(z,y) — (z,v, 2).
However, if the target surface is perpendicular to the X-
Y plane, i.e., X = 0, we cannot calculate the coordi-
nates z for x # 0, limiting its representation ability. To
solve this problem, we use local coordinate systems with
rotations to improve the representation ability with bet-
ter projection planes. Figure 2 shows an example of lo-
cal parametric surfaces around the coordinate (¢, yo, 20)-
In particular, we define the parametric surface function as
Rot((u,v)) + (20, yo. 20) » where (u,v) — (u,v,w) is
the surface function that maps points in 2D projection planes
to 3D surfaces on a local coordinate system U-V-W, and
Rot(u,v,w) — (z,y, z) is the rotation function with the
rotation center (u = 0,0 = 0,w = 0) to rotate local co-
ordinates into the global X-Y-Z coordinate system. Math-
ematically, given these two functions, we can generate an
arbitrary number of points on the local surface. Thus, we in-
troduce this idea into the design of the surface constrained
upsampler network, i.e., we propose to learn and utilize the
surface function ¢ and the rotation function Rot to constrain
the upsampled points.

Explicit Surface Function Previous methods used the
concatenation-based folding technique to model the surface
function via MLPs (Yang et al. 2018; Yuan et al. 2018; Qian
et al. 2020; Luo and Hu 2020). However, as mentioned in the
introduction, such methods only learn an overfitted point-
point mapping and induce a bottleneck that limits its capac-
ity to represent different 3D surfaces. Different from these
methods, we propose to use the explicit polynomial function
to model the underlying surface, which can be expressed as:

w = ¢(u,v) = Z Za,;juivj, (1)
J

%
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where a;; is the coefficient predicted via neural networks.
With different combinations of coefficients, we can easily
express different shapes. For simplicity, we use the bicubic
function, which is widely used and strong enough to express
common shapes, to design our network:

2)

Rotation Function After generating upsampled points on
the local surface, we need to rotate them from their local
coordinate systems into the global coordinate system. To
achieve this, we model the rotation function as follows:

x 1 T3 u
(y) = Rot(u,v,w) = (7‘4 7”6) <U> , (3
z r7 T9 w

where [r1, ..., 9] are the elements of a rotation matrix R pre-
dicted by neural networks. To ensure that the rotation matrix
follows the correct principle of RY * R == Rx RT ==1,
we use the 6d representation proposed in (Zhou et al. 2019),
which shows a good continuous property and can be de-
coded into a 3 x 3 matrix.

w = ¢(u,v) = ay + asu + azu® + ... + apu v,

2
Ts5
T8

Network Design

However, designing a special network that can predict accu-
rate surface parameters and seamlessly integrate them into
the upsampling procedure is challenging. For convenience,
we refer to the input points as parent points and the upsam-
pled points as child points. Our idea is that each parent point
will split and generate multiple child points that lie on the
local surface and cover the entire surface as much as possi-
ble. To achieve this, we design the parametric surface con-
strained upsampler network that contains 3 major parts: (i)
Spatial Feature Extractor, (ii) Surface Parameter Estimation,
and (iii) Child Points Generator, aiming at extracting the
local geometric shape from unordered parent points, pre-
dicting the explicit surface parameters around each parent
point, and generating child points on parametric surfaces,
respectively. Each of them will be described in detail in
the following subsections. Figure 3 shows the general struc-
ture of the proposed upsampling network, and note that the
detailed network structure is provided in the Supplemen-
tary. The proposed upsampler module requires three neces-
sary inputs: parent coordinates P; € RN >3, parent features
F; € RV*C1 and the global shape code G € R'*“> that
encodes the global shape of the input point cloud. It aims to
upsample them m times and generates child points with co-
ordinates P;; € R™N*3 and features Fj,; € R™N*C1,

i. Spatial Feature Extractor Making the network aware
of the local geometric information around each parent point
is a key step in predicting accurate shapes. To achieve this,
we design a Spatial Feature Extractor (SFE) that can ag-
gregate the positions and features of the parent’s K nearby
points to extract the local spatial information. Especially,
the SFE extracts the local spatial features SF; € RN*¢1
from input parent features F;, parent positions P;, and global
shape code GG, which is defined as

SFZ = AggregateK(Pi,NNs(Fi;G))v (4)
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Figure 3: The general structure of the parametric surface
constrained upsampler. Note that due to the page limitation,
the detailed network structure is in the Supplementary.
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Figure 4: The network architecture for generating child
points on surface via predicted surface parameters.

where Aggregate - is the point transformer introduced in
(Zhao et al. 2021) to aggregate the context of K nearest
points, and NN is the neural network used to combine the
parent features F; with global shape code G.

ii. Surface Parameter Estimation Then, to accurately
represent the underlying surface around each parent point,
we propose to estimate the explicit parameters of the sur-
face function ¢ and the rotation function Rot as mentioned
before. One simple way is to directly predict their parame-
ters from local spatial features S'F;. However, S F; only con-
tains the local shape information, and the global smoothness
of these local shapes is not guaranteed. Thus, we incorporate
the global shape code G to smooth them. Especially, these
parameters can be predicted via:

a=0NN,(G,SF;)), (5
T‘ZNNT(G,SFi)), (6)
where NN, and NN,. are neural networks and a and r are pre-

dicted coefficients of the bicubic function and the rotation
matrix.

iii. Generating Child Points on Surface Finally, our ob-
jective is to generate the child features Fjy; and the child
positions P;4; on the predicted parametric surface. Unlike
previous methods (Xiang et al. 2021; Qian et al. 2021; Yu
et al. 2018), where they reconstruct the 3D child coordinates
directly from the child features through MLPs, we design
a network that smoothly integrates the predicted surface pa-
rameters into child point generation. Especially, we first pre-
dict the displacement of the child (Aw, Av) in the projection
plane and then lift them into 3D spaces using predicted para-
metric functions.

To implement this, we first generate the relative displace-
ment of the child features D; € R™N >t w.rt to their par-
ents’ through the 1D deconvolution layer, which can eas-
ily generate different numbers of child features by setting
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different kernel sizes and strides. The displacement feature
D; is used to predict the coordinate displacement of the
child (Au, Av) using an MLP. Specifically, (Au, Av)
MLP(D;). Next, based on Equation (2), we can calculate
their embedded values [1,Au,Au2,...,AudAv3] via a Bicu-
bic Embedding (BE) block and multiply them with predicted
bicubic coefficients to generate the coordinate displacement
Aw. We then transit them into X-Y-Z coordinate system via
the predicted rotation matrix and get the child displacements
AP 11 = (Az, Ay, Az), which will be added with their
parent positions P; to obtain the final position of the child
points P; ;. Figure 4 shows the corresponding network ar-
chitecture to generate the child position in the parametric
surface. After obtaining the position of the child points, we
feed D; into another MLP layer and add the output with their
parent feature to get the child features F; .

Loss Function

To train our network, we first use Chamfer Distance as a
loss function for each upsampling block, which measures
the point-wise distance between the predicted point cloud
and ground truth. However, we notice that given a small area
of parametric surface there exist multiple projection planes
with different surface functions and rotation functions. Not
all of them can describe this small surface correctly and ef-
ficiently. For example, in Figure 2, if the projection plane is
perpendicular to the surface (parallel to the surface normal),
it is difficult to find a good surface parametric function.
Ideally, we aim to select a projection plane that is per-
pendicular to the normal of each surface/parent point. As
our network does not have ground truth normal information,
we borrow the idea from the unsupervised principal compo-
nent analysis algorithm (Jolliffe, Ian 2014) to select a bet-
ter projection plane, where it aims to find a projection plane
that can maximize the covariance matrix of (Au, Av), a.k.a,
minimize the covariance matrix of Aw given 3D points in a
small region. Thus, inspired by this we add a constraint to
our network by introducing the displacement loss as follows:

Ly = ||Aw|]3. (7)

In summary, our final loss function is defined as £ = L¢p +
ALy, where A is a hyperparameter that balances the weight
of the chamfer loss and the displacement loss.

Experiments

To validate the effectiveness of the proposed upsampler, we
first evaluate it on the PU1K dataset and conduct ablation
studies to verify the effectiveness of our network. We also
apply our method to the real collected LiDAR point cloud
KITTI dataset (Geiger et al. 2013). Then, we further present
the capability of the proposed method on a more challenging
point cloud completion task on the ShapeNet-PCN dataset.

Point Cloud Upsampling

PUI1K: The PUIK dataset is first introduced in PU-GCN
(Qian et al. 2021) for point cloud upsampling. It consists of
1,147 3D models, which are collected from PU-GAN (Li
et al. 2019) and ShapeNet dataset (Chang et al. 2015) to
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Figure 5: Point cloud upsampling with surface constrained
upsampler. We can stack multiple upsampling blocks to
achieve a higher upsampling ratio.

cover various shape complexities and diversity. The input
point cloud is sparse but complete with 2,048 points, and
the ground truth point cloud is 4 times denser with 8,192
points. We follow the same train/test splitting strategy in PU-
GCN with 1,020 training samples and 127 testing samples.
Note that unlike previous patch-based methods (Qian et al.
2021; Ye et al. 2022; Yu et al. 2018; Qiu, Anwar, and Barnes
2021), our training data are entire point clouds generated
from ground truth meshes by poisson disk sampling (Brid-
son 2007). For testing, we directly use the test data given by
PU-GCN for a fair comparison.

Network Structure: Figure 5 shows the network architec-
ture for the point cloud upsampling task. To generate the
required inputs for the proposed upsampler, we use a feature
extractor to capture both point-wise features and global fea-
tures from sparse points. Especially, it consists of two parts:
a point-wise feature extractor, which is an MLP that maps
input points into the feature space, and a global feature ex-
tractor, which consists of a PointNet++ backbone (Qi et al.
2017b) with point transformers (Zhao et al. 2021) to incor-
porate both the local and global shape contexts. The outputs
of the feature extractor block are the point-wise features Fj
and the global shape code G. Note that the design of fea-
ture extractor is not the major contribution of this paper and
we can exploit any other suitable networks. We then feed
these outputs along with the original position of the points
Py into stacks of upsampling blocks to generate denser point
clouds. To upsample the point cloud 4 times, we arbitrarily
set two upsampler blocks with upscale ratios of 1 and 4, re-
spectively. Note that other combinations of upscale ratios
and the number of upsampler blocks are also feasible.
Evaluation Metrics: We use three widely adopted metrics
in previous work to evaluate our performance: Chamfer Dis-
tance (CD), Point-to-Surface Distance (P2F) w.r:¢ ground
truth meshes, and Uniformity Score (Li et al. 2019). For
these metrics, a smaller value means better performance.
Training Detail: To train this network, we use 2 Tesla V100
GPUs. We set the batch size to 16 and the total epoch num-
ber to 150. Besides, we use Adam as the optimization func-
tion with a learning rate of 0.0005 at the beginning, and we
decrease the learning rate by a factor of 0.5 every 50 epochs.

Experiment Results: Table 1 shows the quantitative up-
sampling results on the PU1K dataset. We find that our algo-
rithm achieves the best performance over all its counterparts
with large improvements. In particular, compared to the pre-
vious SOTA algorithm, PU-GCN, the proposed algorithm
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Method | CD P2F Uniformity x (10~%)
(x107%) (x1072)0.4% 0.6% 0.8% 1.0%
EAR 1.449 3314 1.82 3.68 6.51 992
PU-Net 1.751 4847 207 424 7.54 11.78
3pPU 1461 3559 199 412 723 11.04
PU-GCN | 1.151 2504 195 397 6.83 10.63
Ours 0.886 1.091 140 285 5.06 7.95

Table 1: Quantitative upsampling results compared to previ-
ous SOTA algorithms. The uniformity score is estimated in
the local area of different percentages of radii.

Components CD (x107%)
w/o Spatial Feature 1.293
w/o Parametric Function 0.967
w/o Displacement Loss 0.893
Full 0.886

Table 2: Ablation studies of the Parametric Surface Con-
strained Upsampler on the PU1K dataset.

reduces the average CD from 1.151 x 10~* to 0.886 x 10~*.
Besides, the average P2F also reduces more than half from
2.504 x 1073 to 1.091 x 103, which statically proves that
our generated child points preserve better surface shapes and
locate closer to the ground truth surfaces. What’s more, the
proposed method also obtains better uniformity scores than
previous SOTA algorithms. Next, to intuitively show the per-
formance, we visually check the upsampling outputs of our
method and compare them with the outputs of other algo-
rithms. Figure 6 shows the visual results of different algo-
rithms. We see that our proposed method can produce point
clouds with much better shape quality and fewer off-the-
surface points. Apparently, both the quantitative and visual
results prove the superiority of the proposed network.

Ablation Study

We then perform ablation studies to figure out which part of
the proposed upsampling network contributes the most to its
performance. Table 2 summarizes all experiment results.

Spatial Feature: Intuitively, the local spatial information
is crucial to predict accurate local surfaces. Thus, we first
examine its importance by removing the point transformer
in the Spatial Feature Extractor, which is designed to aggre-
gate features of K nearest neighbors for each point. In Table
2, we see that after removing the point transformer the per-
formance drops to 1.239 x 10~* with a huge gap, which
justifies our intuition.

Parametric Function: As we explicitly model the para-
metric surface via the bicubic function and the rotation func-
tion, one might ask about the effectiveness of this explicit
representation compared to folding-based MLPs (Yuan et al.
2018; Liu et al. 2020; Yang et al. 2018; Wen et al. 2020). To
this end, we substitute the explicit surface function with an
MLP-based folding layer that takes the displacement of the
child points (Au, Av) as inputs and outputs its global dis-
placement (Az, Ay, Az). In Table 2, we see that after using
MLPs to model surface functions, performance decreases
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Figure 6: Visualization of upsampling results with different algorithms (EAR, PU-Net, 3PU, PUGCN, and Ours). We see that
our method produces the best results, generating smooth borders and preserving fine-grained local details.

1.5%
1.599

0%
0.886

0.5%
1.053

1%
1.280

Noise
CD (x107%)

Table 3: Performance under different noise perturbations.

and CD increases from 0.886 x 10~% to 0.967 x 10~* with
a gap of 0.081 x 104, This gap illustrates the superiority of
parametric surface functions in representing better underly-
ing surfaces compared to MLPs.

Displacement Loss: Since we introduce an additional
displacement loss to select a better projection plane, we then
illustrate its effect on training the proposed upsampler by
removing this loss. We see that without displacement loss,
the performance decreases slightly from 0.886 x 10~ to
0.893 x 10~*. This slight performance drop fits our intu-
ition because there exist multiple choices for the projection
planes, and it contributes the least to the performance of the
proposed upsampler.

Robustness to Noise Another concern might be the per-
formance of the proposed method with noisy inputs. There-
fore, we add a small perturbation to each input point with
a Gaussian distribution to synthesize noise, retrain and test
the robustness of our method at different noise levels. Table
3 and Figure 7 show the quantitative and visual results at dif-
ferent levels of perturbations. Intuitively with noise points,
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Figure 7: Visualization of upsampling results with different
levels of noise. Our method still can preserve good underly-
ing shapes with noisy inputs.

it becomes more difficult to infer the accurate surfaces. We
see that under a small perturbation such as 0.5%, our method
still achieves a promising result. Even with a 1.5% perturba-
tion, the upsampled points still tend to preserve a smooth
shape with little distortion.

Result on Real World Data Finally, we further show the
performance of the proposed method on the real collected
point cloud in the KITTT dataset (Geiger et al. 2013). Fig-
ure 8 shows an example of the upsampling results. Due
to the hardware limitation of the LiDAR sensor, the col-
lected point cloud is naturally sparse and non-uniformly
distributed, making the upsampling more challenging. Our
method can generate dense point clouds with better distribu-
tions.
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Point Cloud Completion Task

Then, we test the proposed upsampler on the point cloud
completion task using the ShapeNet-PCN dataset.
ShapeNet-PCN: The ShapeNet-PCN dataset is introduced
by (Yuan et al. 2018), which is derived from ShapeNet
(Chang et al. 2015). It contains pairs of partial and complete
point clouds from 30,974 models of 8 categories in total: air-
plane, cabinet, car, chair, lamp, sofa, table, and watercraft.
The complete point clouds are created by sampling 16,384
points uniformly from the original meshes, and the partial
point clouds are generated by back-projecting 2.5D depth
images into 3D. For each ground truth, 8 partial point clouds
are generated from 8 randomly distributed viewpoints. For
fairness, we follow the same train/test splitting strategy in
(Yuan et al. 2018; Xie et al. 2020; Xiang et al. 2021) with
29,774 training samples and 1,200 testing samples, and re-
sample each incomplete cloud to 2,048 points.

Network Structure: As the point cloud completion task is
more challenging, where the input is a sparse and incom-
plete point cloud and the output is a dense and complete
point cloud, we use a new network to generate complete and
denser point clouds. Figure 9 shows the detailed network ar-
chitecture for the point cloud completion task. Because the
input is incomplete, generating a coarse but complete point
cloud is crucial for subsequent upsampling steps. Inspired
by the previous SOTA algorithm SnowFlakeNet (Xiang et al.
2021), we adopted the seed generator used in their network
to generate a sparse but complete point cloud, then feed them
into three consecutive surface constrained upsamplers with
upscale ratios of 1, 4, and 8, respectively, to generate high
resolution point clouds.

Evaluation Metrics: For a fair comparison with previous
methods, we use two commonly used metrics: L1 Chamfer
Distance (L1-CD) and Earth Mover’s Distance (EMD). Sim-
ilarly, the smaller the metric, the better the performance.
Training Detail: We use 4 Tesla V100 GPUs with a batch
size of 32 and a total epoch number of 500. Similar to
SnowFlakeNet, we use Adam as the optimization function
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Methods  L1-CD (x10~3) EMD (x1079)
PCN 9.64 87.14
GR-Net 8.83 55.26
PMP 8.73 109.67
SnowFlake 7.19 69.13
Ours 7.04 66.57

Table 4: Quantitative completion results compared to previ-
ous SOTA algorithms on the ShapeNet-PCN dataset.

n In

o
(d) SnowFlake

|
(b) GR-Net

(a) Partial (©) PMP (e) Ours (f) Ground Truth

Figure 10: Visualization of completion results with different
algorithms (GR-Net, PMP, SnowFlake-Net, and Ours).

with warm-up settings, where it first takes 200 steps to warm
up the learning rate from 0 to 0.0005, and then the learning
rate decays by a factor of 0.5 for every 50 epochs.

Experiment Results Table 4 shows the quantitative com-
pletion results on the ShapeNet-PCN dataset. We notice that
our method still achieves the best performance in terms of
L1-CD. As we use the same backbone and upscale settings
as SnowflakeNet, which is the previous SOTA algorithm, the
improvement over SnowflakeNet can directly prove the ef-
fectiveness of our proposed upsampling blocks. Compared
to SnowflakeNet, we see that our network reduces the aver-
age L1-CD from 7.19 x 1073 to 7.04 x 10~2 and the av-
erage EMD from 69.13 x 1073 to 66.57 x 10~3. Figure 10
shows one completion result. Note that more completion re-
sults can be found in the Supplementary. Still, we see that
our method produces a much better shape quality and fewer
outlier points.

Note that our upsampler is designed based on the assump-
tion that the input points are well-distributed. But for the
completion task, this assumption is not met. Even under this
challenging condition, the proposed upsampler still works
and the generated points are still well-constrained to the un-
derlying surface.

Conclusions

In this paper, we propose a novel parametric surface con-
strained upsampler for point clouds. By introducing explicit
parametric surface functions into the network design, we
can obtain better shape representation ability compared to
MLPs with point-wise loss and generate point clouds with
smoother shapes and fewer outliers. In addition, the pro-
posed upsampler can also be used in point completion tasks.
The experiment results on both point cloud upsampling and
completion tasks prove the effectiveness of our method.
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