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Abstract

For image local forgery detection, the existing methods re-
quire a large amount of labeled data for training, and most
of them cannot detect multiple types of forgery simultane-
ously. In this paper, we firstly analyzed the JPEG compres-
sion traces which are mainly caused by different JPEG com-
pression chains, and designed a trace extractor to learn such
traces. Then, we utilized the trace extractor as the backbone
and trained self-supervised to strengthen the discrimination
ability of learned traces. With its benefits, regions with dif-
ferent JPEG compression chains can easily be distinguished
within a forged image. Furthermore, our method does not rely
on a large amount of training data, and even does not require
any forged images for training. Experiments show that the
proposed method can detect image local forgery on differ-
ent datasets without re-training, and keep stable performance
over various types of image local forgery.

Introduction
In recent years, researchers have proposed many methods to
verify the integrity and authenticity of digital images. Im-
age forgery detection is to judge whether an image has been
forged or not without any prior knowledge, which can be
divided into two categories according to the forgery scope:
global forgery detection and local forgery detection. The
former mainly detects whether an image is manipulated by
some image operations such as contrast enhancement, im-
age filtering, and image compression or not. The latter is to
detect whether the content of an image is changed. The local
forgery mainly includes copy-move, splicing, and object re-
moval. In this paper, we focused on local forgery detection.

Splicing is the most common local forgery, which usually
cuts out objects from one or more other images and then
pastes them onto the target image. For the splicing detection
and location, because the tampered and un-tampered regions
are from different sources, that can be detected by finding
the distinction between them (Bappy et al. 2017; Bondi et al.
2017; Bunk et al. 2017; Liu and Pun 2018; Bi et al. 2019;
Mayer and Stamm 2019). A copy-move forgery denotes an
image where part of its content has been copied and pasted
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Figure 1: An example of local forgery and corresponding
localization results of four types of detection methods.

within the same image. Hence, the characteristics of the tam-
pered regions are similar to the non-tampered regions. Var-
ious existing methods are explored to extract the similarity
from image blocks, key points or the network-learned fea-
tures (Li and Zhou 2018; Wu, Abd-Almageed, and Natara-
jan 2018; Zhong and Pun 2019; Zhu et al. 2020; Bilal et al.
2021). For object removal, after removing the target, the left
blank region will be filled by an inpainting algorithm. Based
on the research on the inpainting algorithm, many effective
detection methods have been proposed (Liang et al. 2015;
Li, Luo, and Huang 2017; Zhang et al. 2018; Li and Huang
2019; Wang, Niu, and Wang 2021). Excluding the detec-
tion methods for a specific local forgery, there are also well-
designed algorithms that can detect multiple local forgeries,
such as Mantra (Wu, AbdAlmageed, and Natarajan 2019),
Noiseprint (Cozzolino and Verdoliva 2019), and so on (Zhou
et al. 2018; Bappy et al. 2019; Rao and Ni 2021).

According to the summarization of requested images
through the forensic website over two years (Park et al.
2018), the JPEG format was found to be the most requested
(77.95%), followed by PNG (20.67%). Therefore, more and
more researchers focus on the forensics of JPEG images.
For local forgery detection in JPEG images, most methods
mentioned above perform poorly or even fail, as shown in
Figure 1. (d-e). The reason is that JPEG compression is a
lossy compression, and the tampering traces will disappear
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along with the image content during compressions. There-
fore, researchers need to propose the local forgery detec-
tion method based on analyzing the compression process of
JPEG images. These proposed detection methods for JPEG
images can be divided into the traditional detection meth-
ods (Fu, Shi, and Su 2007; Lin et al. 2009; Bianchi and Piva
2012; Wang, Dong, and Tan 2014; Yang et al. 2020; Niu
et al. 2021) and the CNN-based detection methods.

Among these CNN-based detection methods, (Wang and
Zhang 2016) distinguishes the singly compressed regions
and doubly compressed regions by classifying DCT his-
tograms; (Amerini et al. 2017) improves the performance
of frequency domain-based CNN; Park (Park et al. 2018)
collected real-world JPEG images from the image forensic
service and obtained 1120 quantization tables to generate a
JPEG dataset to train the network; (Deng et al. 2019) im-
proves the detection performance in difficult situations by
designing modules to automatically extract multiple features
from DCT histograms of JPEG images. CAT-Net (Kwon
et al. 2021) combines the spatial and DCT frequency stream
to learn forensic features of compression traces.

Although these CNN-based detection methods have made
great contributions to the forensics of JPEG images, their
methods need large training sets. Meanwhile, since they rely
on the 8× 8 DCT coefficient matrices, they cannot perform
the pixel-level detection or work under a cropping attack,
as shown in Figure 1. Furthermore, their method works for
specific situations, such as the combined single and double
compressions. Based on these issues, this paper proposed
a self-supervised image local forgery detection method by
JPEG compression trace. The main contributions of our pro-
posed method are listed as follows:

• The proposed JPEG compression trace extractor can di-
rectly extract JPEG compression traces from the whole
image, rather than dividing images into 8×8 blocks to
analyze DCT coefficients.

• We proved the detection of different types of local
forgery can convert to distinguish compression chains of
tampered and un-tampered regions, so they can be de-
tected in the same way.

• The proposed self-supervised detection method does not
rely on a large amount of training data, and even does not
require any forged images for training.

Extensive experiments show that the proposed method has a
good ability to detect various local forgeries in JPEG images
and can resist cropping attacks well.

JPEG Compression Trace Extractor
JPEG Compression Trace
In the JPEG compression pipeline, each 8 × 8 image block
f(i, j) of an image I will be transformed by

F (u, v) = DCT (f(i, j)). (1)

Where, DCT () is two-dimensional Discrete Cosine Trans-
form (DCT), and F (u, v) is the DCT coefficient matrix.
Then, a 8 × 8 quantization table Q will quantize the DCT

(a1) Image I (a4) E50(a3) E70(a2) E90

(b4) J50(b3) J70(b2) J90(b1) Image IQF

Figure 2: The true and learned JPEG compression traces.
(a2-a4) are the truncation errors EQF=90,70,50 generated by
subtracting the red box in the image I from the green box
in IQF . (b2-b4) are the learned JPEG compression trace
JQF=90,70,50 from the corresponding JPEG images.

coefficient matrix F (u, v) by

FQ(u, v) = ⌊F (u, v)

Q(u, v)
⌋. (2)

Where, ⌊·⌋ means rounding down. The quantization table Q
corresponds to a quality factor QF . The calculation of the
quantization table Q(u, v) defined by JPEG standard is

Q(u, v) =
[(
Q(u, v)T × α (QF ) + 50

)
/100

]
. (3)

Where Q(u, v)T is the standard JPEG quantization matrix
given by Joint Photographic Experts Group (JPEG). Once
QF is chosen, α (QF ) will be calculated by

α (QF ) =

{
5000 / QF, 1 ⩽ QF < 50

200− 2QF, 50 ⩽ QF < 100
(4)

If the rounded-off part is regarded as the truncation error
e(u, v) ∈ (0, Q(u, v)) caused by quantization procedure,
Eq. (2) can be rewritten as

FQ(u, v) = F (u, v)− e(u, v). (5)
When FQ(u, v) is decompressed, the inverse iDCT () trans-
formation will be applied on FQ(u, v) to obtain f ′(i, j) by
f ′(i, j) = iDCT (FQ(u, v)) = iDCT (F (u, v)− e(u, v)).

(6)
Since iDCT () transformation satisfies the linear invari-
ant property, the compressed block f ′(i, j) = f(i, j) +
iDCT (−e), and we can denote the compressed image as

IQF = I + EQF , (7)
where, EQF represents iDCT (−e) of all the 8× 8 blocks.

It can be seen in Eq. (5) and Eq. (6), the error e(u, v)
exists in the whole process of compression and decompres-
sion. As shown in Figure 2, we compressed an image I by
using different QF and subtracted the compressed images
IQF in the green boxes from the uncompressed image in the
red box. The subtracted results are the error EQF and are
shown in Figure 2. (a2-a4). We can see that the error EQF

exhibits block artifacts and is affected by the image content.
When the QF value is smaller, the error EQF is greater, and
the block artifacts are more obvious.
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Figure 3: The JPEG compression trace extractor.

JPEG Compression Trace Extractor
Although the block artifacts caused by EQF have been ex-
plored in the forensic methods (Farid 2009; Bianchi and Piva
2011, 2012; Zhang et al. 2020; Amerini et al. 2017; Kwon
et al. 2021; Rao and Ni 2021), they use statistics or learn
from the histogram distribution of 8×8 blocks’ DCT coeffi-
cients, which makes them not robust to cropping attacks and
can not achieve pixel-level localization. Since EQF is the
fundamental cause of the JPEG compression trace, we hope
to remove the influence of image content through deep learn-
ing and to learn the distribution of the truncation error EQF

from the images directly. Compared to the previous meth-
ods, our method is a new perspective on JPEG image forgery
detection, which fundamentally solves the problem of crop-
ping attacks and improves the localization performance.

For extracting EQF in Eq. (7), we were inspired by the
residual learning proposed in (Zhang et al. 2017) and de-
signed a JPEG compression trace extractor, as shown in
Figure 3. For making the JPEG compression trace extrac-
tor learn the error EQF directly from the input compressed
image IQF , we designed its loss function L as

L = (1− λ)Ls + λ · Lf . (8)

Where, Ls is spatial domain loss, Lf is frequency domain
loss. Since the RGB image is converted to YCbCr color
space and then compressed in separate channels in JPEG
compression, and Y luminance channel contains the most in-
formation of the image, we selected the Y channel for learn-
ing the compression error EQF through the network.

In the spatial domain, Ls is defined as

Ls =
1

N

N∑
i=1

∥JQF [i]− EQF [i]∥2, (9)

where, N indicates the batch size of the input, JQF [i] rep-
resents the output by JPEG compression trace extractor. For
the frequency domain, we can directly conclude EQF by Eq.
(5) and Eq. (6). We perform 8×8 block DCT transformation
(BDCT) on the error EQF to obtain the true truncation er-
ror BDCT (EQF ). Then, the loss Lf between the network
output and BDCT (EQF ) in the frequency domain can be
calculated by

Lf =
1

N
∥BDCT (JQF [i])−BDCT (EQF [i])∥2. (10)

The extractor continuously narrows the gap between its
output and the error EQF by inputting the original image I
and the compressed image IQF in pairs, finally, it can extract
JPEG compression trace directly from images. In Figure 2.
(b2-b4), we can see that the extracted JPEG compression
trace JQF owns the same block artifact of EQF .

Self-Supervised Local Forgery Detection by
JPEG Compression Traces

Local Forgery under JPEG Image
For analyzing image local forgery detection in JPEG images,
we firstly propose the concept of a compression chain that
describes the compression history of a JPEG image.

IQF1 QF2 ... QFn
= QFn • (...QF2 • (QF1 • (I))),

(11)
When we consider local forgery in JPEG images, it is
a JPEG image that is tampered with and saved in JPEG
again. We assume the source image’s compression chain is
QF1 QF2 ... QFn. As shown in Figure 4, the dotted lines
indicate the original trace of the tampered regions, and the
solid red lines indicate the QFn+1 grid. Whether the tam-
pered regions come from the other images, the same source
image, or generated by an inpainting algorithm, the tam-
pered regions are very likely divided into new 8 × 8 blocks
and compressed again, which will cause a non-aligned over-
lapping compression. Therefore, we consider that the tam-
pered regions in local forgery own a new compression chain
that restarts from QFn+1. However, the un-tampered re-
gions underwent an overlapping compression as shown by
the overlapping solid blue and red lines, which makes the
compression chain continuous: QF1 QF2 ... QFn QFn+1.
We analyzed the results extracted by the JPEG compression
trace extractor. The traces of the tampered and un-tampered
regions are inconsistent, as shown in Figure 4. Based on this
insight, since all local forgery will make the tampered and
the un-tampered regions own different compression chains,
and different compression chains will cause inconsistency of
compression traces, this phenomenon makes it possible for
us to detect different types of local forgery in the same way.

Self-Supervised Local Forgery Detection
Although we know the compression traces of the tampered
and the un-tampered regions are inconsistent, it is difficult
to locate them directly by the output of the JPEG compres-
sion trace extractor, as shown in Figure 4. Inspired by the
contrastive learning SimCLR (Chen et al. 2020), we pro-
pose a self-supervised image local forgery detection network
shown in Figure 5. We regard distinguishing the extracted
JPEG compression traces of different compression chains as
a classification task, transferring the extracted compression
traces to other spaces to strengthen their difference. In this
way, the proposed method can detect various local forgeries
with different JPEG compression cases.

We have known that the local forgery detection in JPEG
images is to distinguish between different compression
chains. However, we cannot accurately distinguish each
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25

5

Trace J extracted by the JPEG compression extractor.

Figure 4: The analysis of three types of image local forgery
under JPEG format. The red box on the forgery image is
the ground truth of the tampered regions. We normalized the
value of J to [0, 1] and selected the appropriate color from
LUT (Look-Up-Table), then manually adjusted the bright-
ness and contrast to show the tampered regions obviously.

chain because there are tens of thousands of combinations.
Therefore, we first theoretically analyze the error caused
by multiple compressions. Based on the definition of EQF

caused by a single compression with QF in subsection 2.1,
we define the error of double compressions as

E2 = iDCT

(
F (u, v)− ⌊FQ1

(u, v) · Q1(u, v)

Q2(u, v)
⌋
)
. (12)

E2 is the error caused by F (u, v) after Q1(u, v) quantiza-
tion and then Q2(u, v) quantization. The process of JPEG
compression is the same as the modulo operation; the trun-
cation error E2 is equivalent to the remainders in integer di-
vision, so we introduce the concept of the Residual System.
For a sequence of X = 1, 2, .., n×m, we took the modulus
of n, m (n < m) to get two residual systems Rn and Rm,
compared the corresponding elements of the two residual
systems, we can conclude the probability that the element in
the residual system Rn is greater than the element in Rm by

P (Rn > Rm) =
n− g

2m
. (13)

Where, g = gcd(m,n) is the greatest common divisor
of m and n. As shown in Table 1, when n = 3 and
m = 5, the bold numbers indicate R3 > R5. Among them,
15 × [1 − P (R3 > R5)] = 12 points R3 ≤ R5, these 12
points are first modulo 3 and then modulo 5 (R3 5), which is
equivalent to discarding R5, and they have the same effect as

Xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
R5 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
R3 5 1 2 3 4 5 1 2 3 4 5 6 2 3 4 0
R5 3 1 2 3 4 2 3 4 5 6 1 2 3 4 5 0

Table 1: The residual system of R3, R5, R3 5, R5 3 in [1,15].

R5. There are only 15×P (R3 > R5) = 3 points where R3

is bigger than R5, and only these three points R3 5 are differ-
ent from R5. On the contrary, these points are first modulo 5
and then modulo 3 (R5 3), so it will lose more numbers than
R5, but overall, R5 3 is closer to R5 rather than R3. By an-
alyzing the truncation error caused by the quantization pro-
cess of double compressions and combining the examples of
the residual system, we can conclude that the impact of the
compression chains on the image is related to the compres-
sion order but mainly depends on the minimum QF , which
has the maximum quantization step. Therefore, the key to
distinguishing compression chains is that the single quality
factors can be well distinguished.

Suppose we want the network to distinguish N different
QF ∈ {Q1, Q2, ...Qk, ...QN}. As shown in Figure 5, we
randomly selected N uncompressed images I and cropped
them into 4N image patches. Then 4 patches are randomly
chosen as a group Pk and then compressed by the same Qk.
There are N compression patch groups that correspond to
N different QF . This procedure prevents the network from
classifying image patches into one class based on the same
source image rather than the same QF . The Y channels of
compression patch groups Pk were fed to the JPEG com-
pression trace extractor to extract the trace groups Jk. For
each trace Jk[a] (a ∈ {1, 2, 3, 4}) in the group k, we in-
tent to make it close to the same class Jk+ and alienate
other classes Jk−, which means sim(Jk[a], Jk+) → 1 and
sim(Jk[a], Jk−) → 0. Therefore, the loss function is:

l (k, k[a]) = − log
sim(Jk[a], Jk+)

sim(Jk[a], Jk+) + sim(Jk[a], Jk−)
.

(14)
The similarity of different traces Ji[a], Jj[b] is computed by

sim(Ji[a], Jj[b]) = softmax(d(Ji[a], Jj[b]))

=
e−d(Ji[a],Jj[b])∑

i[a]̸=j[b]e
−d(Ji[a],Jj[b])

, i, j ∈ [1, N ]; a, b ∈ [1, 4].

(15)
Where, the distance between Ji[a], Jj[b] is the squared Eu-

clidean distance, and is calculated by

d(Ji[a], Jj[b]) =
∥∥Ji[a] − Jj[b]

∥∥2. (16)
Finally, the total loss is

L =
N∑

k=1

4∑
a=1

l (k, k[a]). (17)

Through contrastive learning, l (k, k[a]) and L will decrease
towards 0. The JPEG compression trace extractor will in-
crease the discrimination between the compression traces
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Figure 5: The framework of the proposed Self-Supervised Image Local Forgery Detection.

and can detect various local forgeries and different JPEG
compression cases in which the tampered images are saved.

Experiments
Dataset and Metric
Experimental Dataset. Compared to the other local forgery
detection methods as listed in Table 2, our method does not
need annotated labels or large numbers of images for train-
ing. We only used 200 TIFF-formated images randomly se-
lected from the ALASKA (Ruiz et al. 2021) dataset.

To verify whether our method can detect three classical
types of local forgery well or not, we chose a variety of
datasets that include splicing (SP), copy-move (CM), and
object-removal (OR). The Spliced CoCo dataset is proposed
in CAT-Net (Kwon et al. 2021), which only has splicing
forgery images. Coverage (Wen et al. 2016) is a classic
dataset for copy-move forgery detection. The Korus dataset
(Korus and Huang 2016) is realistic images taken by four
different cameras with high resolution and contains all of
the three types of image local forgery.

Similar to most methods (Park et al. 2018), we produced
the S-M situation, which means the tampered regions are
with single compression, and the un-tampered regions are
with multiple compressions. Firstly, we generated single
JPEG images using different QFs. Second, we tampered
with parts of these images. Third, we saved the images in
JPEG format. Moreover, we also made the other two situa-
tions to simulate the actual conditions. If we save the tam-
pered images as an uncompressed format in the third step,
the tampered and the un-tampered regions are both with sin-
gle compression (S-S); if we save it in JPEG format multiple
times with different QFs, the tampered the un-tampered re-
gions are with both multiple compressions (M-M).
Experimental Metric. The performance was evaluated by

F1 =
2× Precison×Recall

Precison+Recall
×100%, (18)

Train Set Applicable Situation
Method Number QF Type Situation
Noise. 2000 ∼ SP, CM ∼
Mantra 102028 ∼ SP, CM, OR ∼

Park 18946 1120 SP S-M
CAT-Net 968683 153 SP S-M
Proposed 200 50 SP, CM, OR S-S, S-M, M-M

Table 2: The training sets and applicable situation of differ-
ent methods. (∼ means unaffected by this option.)

where Precision is the ratio of the correctly detected re-
gions to all detected regions. Recall is the ratio of the cor-
rectly detected regions to the tampered regions in ground
truth.

Implementation Details
Our proposed method was implemented by Tensorflow and
trained on NVIDIA GeForce RTX 3090 GPU. For the
pre-training of the JPEG compression trace extractor, we
cropped 200 TIFF images into 12800 48×48 patches as the
training set. The batch size was set to 128, and the patches
within a batch are randomly compressed with a quality fac-
tor QF ∈[50, 100]. The Adam optimizer was used with the
learning rate of 0.001, and the λ in Eq. 8 was set to 0.1.

In self-supervised training, each batch, sized 200, is di-
vided into 50 groups (N=50), and each group is compressed
with a different quality factor in [50, 100]. The Adam op-
timizer was used with a learning rate of 0.0001. Because
the JPEG trace extractor already provides good features
for contrastive classification, the training of our detection
method can converge quickly. Since the output of the pro-
posed method is gray images, for quantitative evaluation,
we first inverted the gray value, then used gamma correc-
tion to highlight the tampered regions, and finally used the
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Dataset Pretrain ✓ ✓
SST ✓ ✓

Spliced
CoCo (SP)

S-S 14.23 17.35 14.19 33.09
S-M 14.43 18.63 14.15 33.49
M-M 13.59 18.94 13.89 35.39

Coverage
(CM)

S-S 23.89 31.35 23.21 55.75
S-M 23.62 32.11 23.17 57.61
M-M 23.54 29.17 23.19 56.46

Korus
(SP, CM, OR)

S-S 14.67 20.38 14.31 65.47
S-M 13.75 19.96 13.32 64.78
M-M 14.33 20.07 14.31 60.72

Table 3: The ablation study of the proposed method.

Otsu (Otsu 1979) method to binarize the entire image. Noted
that the binarization will decrease the method’s quantitative
performance, especially the detection of small objects.

Ablation Study
To verify the feasibility and effectiveness of the proposed
method, we made several variations based on the proposed
method. In the first case, the parameters of the JPEG com-
pression trace extractor were randomly initialized without
pre-training and self-supervised training (Initialization). The
second case is that the JPEG compression trace extractor
was pre-trained without self-supervised training (Pre-train).
Since the result of the pre-trained JPEG compression trace
extractor is hard to locate the regions, we used the same
enhancement method in Figure 4 to process the results. In
the third case, the JPEG compression trace extractor was
directly performed self-supervised training (SST). The last
case is that the JPEG compression trace extractor was with
pre-training and self-supervised training (Proposed).

In Table 3, We can see that the JPEG compression trace
extractor in initialization and Self-supervised cases do not
work at all. The reason is that the extractor is more likely
to pay attention to the semantic information rather than the
JPEG compression traces. Another side, the extractor with
pre-training only can not complete the detection task well
because the difference between the extracted compression
traces is not strong enough to distinguish them under var-
ious local forgeries. Therefore, pre-training can make the
network pay attention to the JPEG compression traces, and
self-supervised training transfers the extracted compression
traces to other spaces for strengthening their difference,
which makes the proposed method can detect various local
forgeries, even the tampered images are saved by JPEG com-
pression many times (M-M).

Comparison with the State-of-the-Art
In comparison experiments, we selected two state-of-the-
art local forgery detection methods in JPEG format: Park
(Park et al. 2018) and CAT-Net (Kwon et al. 2021), which
represent the vast majority of existing JPEG local forgery
detection methods. Meanwhile, we choose two general
forgery detection methods: Noiseprint (Cozzolino and Ver-
doliva 2019) and ManTra (Wu, AbdAlmageed, and Natara-

Dataset Method
Noise. Mantra Park CAT. Proposed

Spliced
CoCo
(SP)

S-S 22.62 34.26 — 33.09
S-M 16.39 32.08 30.54 — 33.49
M-M 22.62 31.27 14.72 — 35.39
Mean 20.42 32.54 22.63 — 33.99
S-S 29.25 21.83 14.34 55.75

Coverage S-M 30.87 20.19 20.98 74.91 57.61
(CM) M-M 32.74 20.29 16.45 13.36 56.46

Mean 30.95 20.77 18.72 34.19 56.61

Korus
(SP, CM,

OR)

S-S 39.59 21.93 15.42 65.47
S-M 35.79 20.31 36.47 60.99 64.78
M-M 35.84 20.91 13.19 12.55 60.72
Mean 37.07 21.05 24.83 29.65 63.66

Table 4: The comparative experiments across different
datasets. ( indicates illegal format and unable to work; —
indicates that the method is trained on this dataset.)

jan 2019). The comparison detection methods will be set ac-
cording to their paper’s best experimental configuration and
training parameters. All detection methods will be evaluated
across datasets.

Detection under Various Local Forgery. We carried out
comparative experiments and showed the result in Table 4
and the left part of Figure 7. We can see that general lo-
cal forgery detection methods cannot achieve good detection
results in JPEG images. Mantra only showed better detec-
tion results on the Spliced CoCo dataset. The JPEG image
forgery detection methods Park and CAT-Net can only play
a role in the S-M situation. Compared with these methods,
the proposed method can achieve stable detection results for
three types of local forgery in different situations.

Detection under Various JPEG Compression Cases. In
Table 4 and Figure 6, we can see Park and CAT-Net per-
form well in the S-M JPEG compression case because they
are proposed only for the S-M case. However, in real world,
the forgery case are far more complicated than those in the
experiments. Since our method can achieve stable detection
results for three types of local forgery in various JPEG com-

(b) Ground truth

(h) Proposed

(d) Proposed

(l) Proposed(j) Park

(f) Park

(c) CAT-Net

(k) CAT-Net

(g) CAT-Net

S
-S

S
-M

M
-M

(a) Forgery image

(e) Forgery image

(i) Forgery image

Figure 6: The experimental results of an object-removal
forgery image under different situations.
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(a) Forgery image

(b) Noiseprint

(c) Mantra

(d) Park

(e) CAT-Net

(f) Proposed

(g) The cropped images 

(h) Noiseprint

(i) Mantra

(j) Park

(k) CAT-Net

(l) Proposed

Figure 7: The examples of local forgery localization results. The first two columns are Splicing; the 3rd and 4th columns are
Copy-move and Object removal, respectively; the 5th and 6th columns show the detection result after we cropped an area from
the image and flipped it horizontally; the 7th and 8th columns are the detection result after we cropped just one row and one
column from the top left corner.

Dataset Method
Park CAT-Net Proposed

Spliced CoCo
(SP)

S-S — 32.31
S-M 14.18 — 31.12
M-M 14.19 — 34.61
Mean 14.19 — 32.68

Coverage
(CM)

S-S 17.66 55.43
S-M 22.14 17.93 57.45
M-M 21.19 15.76 56.24
Mean 21.67 17.12 56.37

Korus
(SP, CM, OR)

S-S 11.5 64.97
S-M 13.86 7.08 60.99
M-M 13.69 7.69 59.87
Mean 13.76 8.76 61.94

Table 5: The detection results under cropping attacks.

pression cases, we have confidence that it is more robust and
practical in real application.

Robust Experiments
When we transmit an image over social networks, it is usu-
ally compressed and cropped, and we need to observe the
JPEG compression traces after these operations for foren-
sics. Therefore, we randomly cropped the test images and

re-tested the detection methods. The quantitative results are
recorded in Table 5, and the qualitative experimental exam-
ples are shown in the right part of Figure 7.

The results show the cropping attack is fatal to those
methods based on block DCT coefficients. Although CAT-
Net combines the RGB and the DCT stream, it cannot re-
sist to cropping attacks. However, our method pays atten-
tion to different JPEG compression chains within the forged
images, which is robust to cropping attacks. Therefore, the
three types of local forgery can still be well detected in dif-
ferent situations.

Conclusions

Current double JPEG detection methods based on image
block DCT coefficients only work in very limited situa-
tions and cannot be applied in the real world. To over-
come their limits, we propose the concept of compression
chains and distinguish compression chains of tampered and
non-tampered regions to solve the local forgery detection in
JPEG images. In the implementation, we design a compres-
sion trace extractor and enhance the discrimination ability
of learned traces by using a self-supervised training method.
The experiments demonstrate the effectiveness of the pro-
posed method in many situations and prove its ability to re-
sist cropping attacks.
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