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Abstract

Contrastive loss has significantly improved performance in
supervised classification tasks by using a multi-viewed frame-
work that leverages augmentation and label information. The
augmentation enables contrast with another view of a sin-
gle image but enlarges training time and memory usage. To
exploit the strength of multi-views while avoiding the high
computation cost, we introduce a multi-exit architecture that
outputs multiple features of a single image in a single-viewed
framework. To this end, we propose Self-Contrastive (Self-
Con) learning, which self-contrasts within multiple outputs
from the different levels of a single network. The multi-exit
architecture efficiently replaces multi-augmented images and
leverages various information from different layers of a net-
work. We demonstrate that SelfCon learning improves the clas-
sification performance of the encoder network, and empirically
analyze its advantages in terms of the single-view and the sub-
network. Furthermore, we provide theoretical evidence of the
performance increase based on the mutual information bound.
For ImageNet classification on ResNet-50, SelfCon improves
accuracy by +0.6% with 59% memory and 48% time of Super-
vised Contrastive learning, and a simple ensemble of multi-exit
outputs boosts performance up to +1.5%. Our code is available
at https://github.com/raymin0223/self-contrastive-learning.

1 Introduction
While the cross-entropy (CE) loss is the most common and
powerful loss function for supervised classification tasks, lots
of alternatives have been proposed to overcome the short-
comings of cross-entropy, such as high generalization error
(Liu et al. 2016; Elsayed et al. 2018). Among the various
approaches, Supervised Contrastive (SupCon (Khosla et al.
2020)) loss recently showed remarkable improvement in per-
formance for large-scale benchmarks like ImageNet (Deng
et al. 2009). The main idea of this loss is to make representa-
tions from the same class closer together and representations
from different classes farther apart (see Figure 1a).

SupCon and its related works (Graf et al. 2021; Zheng et al.
2021; Chen et al. 2022; Li et al. 2022) have been developed
on the top of a multi-viewed framework that leverages two
core factors, augmentation and label information, when for-
mulating the contrastive task. Additional augmented images
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(a) SupCon (b) SelfCon

Figure 1: Overview of (a) SupCon learning and (b) SelfCon
learning. The anchor, positive (which is desired to be close
to the anchor), and negative (which is desired to be far from
the anchor) samples are represented on the feature space as
yellow, green, and red points, respectively. While SupCon
relies on the augmentation-based multi-views, SelfCon is
a single-viewed supervised contrastive learning framework.
SelfCon produces multiple features from a single instance,
using the sub-network.

improve the performance by enabling contrast within a single
image. The multi-viewed framework is crucial. We indeed em-
pirically observed that a simple extension to a single-viewed
framework (i.e., only exploiting the label information) sig-
nificantly degrades the performance on large-scale datasets
(Section 5.1). However, the augmentation-based multi-view
approach makes the training time and memory usage highly
expensive (Chen et al. 2020; He et al. 2020; Caron et al.
2020).

To implement the multi-view framework without data aug-
mentations, we propose Self-Contrastive (SelfCon) learn-
ing, which uses the multi-exit architecture (Teerapittayanon,
McDanel, and Kung 2016; Zhang et al. 2019a,b; Phuong and
Lampert 2019) having sub-networks that produce multiple
features of a single image. With the multi-exit architecture,
SelfCon self-contrasts within multiple outputs from the dif-
ferent levels of a single network (see Figure 1b), making the
single-viewed framework usable. Therefore, the multi-exit
architecture efficiently replaces data augmentation by lever-
aging various information from different layers of a network
(Zeiler and Fergus 2014).

We summarize the contributions of our paper as follows:
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[Section 3] We propose Self-Contrastive learning, which
is the first study on a single-viewed contrastive framework
exploiting multiple features from different levels of a single
network.
[Section 4] We guarantee that SelfCon loss is the lower bound
of label-conditional mutual information (MI) between the
intermediate and the last features. To our knowledge, this
is the first work to provide the MI bound for supervised
contrastive learning.
[Section 5.1] SelfCon learning efficiently achieves higher
classification accuracy for various benchmarks compared to
CE and SupCon loss. Furthermore, SelfCon with an ensemble
prediction boosts performance by a large margin.
[Section 5.2–5.4] We extensively investigate the benefits of
SelfCon learning in terms of the single-viewed batch and
the sub-network. Also, our empirical study of MI estimation
provides evidence for the superior performance.

2 Related Works
2.1 Contrastive Learning in Supervision
After Oord, Li, and Vinyals (2018) proposed InfoNCE loss
(also called a contrastive loss), contrastive learning-based al-
gorithms began to show a remarkable improvement in image
representation learning (Chen et al. 2020; He et al. 2020; Grill
et al. 2020; Caron et al. 2020; Chen and He 2020). Khosla
et al. (2020) extended the contrastive learning to a super-
vised classification task to resolve the generalization issue of
cross-entropy loss. The idea of SupCon (Khosla et al. 2020),
which leverages augmentation and label information on the
contrastive framework, has also been extended to semantic
segmentation (Wang et al. 2021) and language tasks (Gunel
et al. 2020). While SupCon loss utilizes the output features
from two random augmentations, our approach contrasts the
features from different network paths by introducing the
multi-exit framework (Teerapittayanon, McDanel, and Kung
2016; Zhang et al. 2019a). In this paper, we investigate the
advantages of model-based contrastive learning within the
single-viewed framework. Moreover, we offer the first proof
of the MI bound for the supervised contrastive framework to
theoretically explain how SelfCon improves the classification
performance.

2.2 Multi-Exit Architectures
As earlier layers of the deep neural network suffer from
the vanishing gradient issue (Szegedy et al. 2015; He et al.
2016), previous works have introduced a multi-exit architec-
ture (Lee et al. 2015; Teerapittayanon, McDanel, and Kung
2016; Bolukbasi et al. 2017) that attaches sub-networks on
the intermediate layers. The sub-networks have also been
used to predict at any point of the network during the evalua-
tion phase (i.e., anytime inference (Huang et al. 2017; Yang
et al. 2020; Ruiz and Verbeek 2021)), as well as to lever-
age the information from different levels of a network which
leads to the performance gain (Zeiler and Fergus 2014; Zhang
et al. 2019a; Yao and Sun 2020). Recently, the knowledge
distillation-based losses (Lan, Zhu, and Gong 2018; Zhang
et al. 2019a,b; Phuong and Lampert 2019; Zhang et al. 2021)

have been proposed to effectively train the sub-network. Mo-
tivated by these methods, we propose a novel supervised
contrastive learning that self-contrasts within the multi-exit
outputs. The sub-network mitigates the vanishing gradient is-
sue and reduces the generalization error, as well as replacing
the augmentation-based multi-views.

3 Self-Contrastive Learning
We propose a new supervised contrastive loss that maximizes
the similarity of the outputs from different network paths by
introducing the multi-exit framework. We define an encoder
structure, using F as a backbone network and G as a sub-
network, that shares the backbone’s parameters up to some
intermediate layer. T denotes the sharing layers that produce
the intermediate feature. Note that F and G include the pro-
jection head after the encoder. We highlight the positive and
negative pairs with respect to an anchor sample, following
Figure 2.

SupCon loss To mitigate the weaknesses of cross-entropy,
such as the reduced generalization performance and the pos-
sibility of poor margins, Khosla et al. (2020) propose a su-
pervised version of contrastive loss that defines the positive
pairs as every sample with the same ground-truth label. We
reformulate the SupCon loss function as follows:

Lsup =
∑
i∈I

[
− 1

|Pi|
∑

p∈Pi

F (xi)
⊤F (xp) (1)

+ log
( ∑

p∈Pi

eF (xi)
⊤F (xp) +

∑
n∈Ni

eF (xi)
⊤F (xn)

)]
Pi ≡ {p ∈ I \ {i}|yp = yi}, Ni ≡ {n ∈ I|yn ̸= yi}

where I ≡ {1, . . . , 2B}, and B is the batch size. For brevity,
we omit the temperature τ , which softens or hardens the
softmax value, and the dividing constant for the summation of
anchor samples (i.e., |I|−1). I denotes a set of indices for the
multi-viewed batch that concatenates the original B images
and the augmented ones, i.e., xB+i is an augmented pair of
xi. Pi and Ni are sets of positive and negative pair indices
with respect to an anchor i. Eq. 1 is a type of categorical cross-
entropy loss; the numerator contains the positive pair, and the
denominator contains both positive and negative pairs.

SelfCon loss We aim to maximize the similarity between
the outputs from the backbone and the sub-network. To this
end, we define SelfCon loss, which forms a self-contrastive
task for every output, including the features from the
sub-network.

Lself =
∑
i∈I,
ω∈Ω

[
− 1

|Pi1||Ω|
∑

p1∈Pi1,
ω1∈Ω

ω(xi)
⊤ω1(xp1

) (2)

+ log
∑

ω2∈Ω

( ∑
p2∈Pi2

eω(xi)
⊤ω2(xp2

)+
∑

n∈Ni

eω(xi)
⊤ω2(xn)

)]
Pij ≡ {pj ∈ I \ {i}|ypj

= yi}, Ni ≡ {n ∈ I|yn ̸= yi}

where I ≡ {1, . . . , B}, and Ω = {F ,G} is a function set of
the backbone network and the sub-network. We also omit τ
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(a) SupCon (b) SelfCon

(c) Visualization of SelfCon Loss

−log

exp

exp + exp + ⋯+exp

𝐿!"#$ =

Figure 2: (Top) Comparison of learning frameworks in terms of augmentation and architecture. In both SupCon (Khosla et al.
2020) and SelfCon, every sample of the same ground-truth label with an anchor is used as a positive pair. Specifically, in SelfCon,
an anchor from the backbone network contrasts other features from the backbone, as well as the features from the sub-network.
(Bottom) We visualized the SelfCon loss function to ease the understanding in Section 3. exp(·) denote the exponential function
of the cosine similarity between two features. Note that SupCon loss has the same form but uses the representations from the
multi-viewed batch. Best seen in color.

and the dividing constant (i.e., (|I||Ω|)−1). ω1 is a function
that generates positive pair, and ω2 is for generating every
contrastive pair from a multi-exit network. We include an
anchor sample to the positive set when the output feature is
from a different exit path, i.e., Pij ← Pij ∪ {i} when ω ̸=
ωj . For example, G(xi) is also a positive pair for F (xi).
Refer to Figure 2 for better understanding of contrastive task
formation in the SelfCon framework.

Whereas prevalent contrastive approaches (Khosla et al.
2020; Chen et al. 2020; Grill et al. 2020) force a multi-viewed
batch generated by data augmentation, the sub-network in
SelfCon learning plays a role as the augmentation and pro-
vides an alternative view on the feature space. Therefore,
without the additional augmented samples, we formulate our
SelfCon loss function with a single-viewed batch.

We can further use multiple sub-networks, i.e., Ω =
{F ,G1,G2, . . . }. Appendix B.4 presents the classification
performance of the expanded network, but there was no sig-
nificant improvement from that of a single sub-network. Thus,
we have efficiently used a single sub-network throughout our
paper.

4 Discussions
In this Section, we discuss theoretical evidence for the suc-
cess of SelfCon learning. We summarize the discussion as
follows: Selfcon learning improves the classification perfor-
mance by encouraging the intermediate feature to have more
label information in the last feature.

Discussion 4.1. How does SelfCon loss encourage the in-
termediate feature to learn the label information in the
last feature? Generally, prior works (Oord, Li, and Vinyals
2018; Hjelm et al. 2018) support the success of unsupervised
contrastive learning from the connection to the MI. In this
sense, in Proposition 4.1, we first prove the connection be-
tween a supervised contrastive loss and the MI of positive
pair features. In Proposition 4.2, we then provide the MI
bound within a single-viewed batch using the sub-network
feature.
Proposition 4.1. Let x and z be different samples that share
the same class label c. Then, with some discriminator func-
tion modeled by a neural network F and 2(K − 1) negative
sample size, SupCon loss maximizes the lower bound of con-
ditional MI between the output features of a positive pair.

log(2K − 1)−Lsup(x, z;F ,K) ≤ I(F (x);F (z)|c) (3)

Proposition 4.2. SelfCon loss maximizes the lower bound of
MI between the output features from the backbone and the
sub-network.

log(2K − 1)− Lself (x; {F ,G},K) ≤ I(F (x);G(x)|c)
(4)

SupCon and SelfCon loss have a negative sample size
of 2(K − 1) because of the augmented negative pairs for
SupCon and the sub-network features for SelfCon.

We extend the above MI bound to the MI between the
intermediate and last feature of a backbone. Although MI is
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ill-defined between the variables with deterministic mapping,
previous works view the training of a neural network as a
stochastic process (Shwartz-Ziv and Tishby 2017; Goldfeld
et al. 2019; Saxe et al. 2019). Thus, encoder features are
considered as random variables, which allows us to define
and analyze the MI between the features.
Proposition 4.3. As F (x) and G(x) are conditionally in-
dependent given the intermediate representation T (x), they
formulate a Markov chain: G ↔ T ↔ F (Cover 1999).
Then, the following is satisfied.

I(F (x);G(x)|c) ≤ I(F (x);T (x)|c) (5)

Proposition 4.3 states that minimizing SelfCon loss, which
maximizes the lower bound of MI between the features from
the backbone and the sub-network, can encourage the inter-
mediate features to learn the class-related information from
the last features. Although there is indeed a gap in Eq. 5, the
gap between I(F (x);G(x)|c) and I(F (x);T (x)|c) may
not be large since we implement G(x) as a simple linear
transformation of T (x) in practice. We empirically demon-
strated the actual increment of I(F (x);T (x)|c) in Section
5.4.

Discussion 4.2. How does increasing I(F (x);T (x)|c) im-
prove classification performance? To understand the in-
formation that SelfCon loss maximizes, we decompose the
r.h.s. of Eq. 5 as follows:

I(F (x);T (x)|c) = I(F (x);T (x), c)− I(F (x); c) (6)
= I(F (x);T (x))︸ ︷︷ ︸

(□)

+ I(F (x); c|T (x))− I(F (x); c)︸ ︷︷ ︸
(■)

.

(□) implies that T (x) is distilled with refined information
(not conditional with respect to c) from F (x), so the encoder
can produce better representation (Hjelm et al. 2018; Bach-
man, Hjelm, and Buchwalter 2019). On the other hand, (■) is
interaction information (Yeung 1991) that measures the influ-
ence of T (x) on the amount of shared information between
F (x) and c. Increasing this interaction information means
the intermediate feature enhances the correlation between
the last feature and the label. Therefore, when we jointly
optimize (□ + ■), the intermediate and last features have
aligned label information.

In this sense, SelfCon loss is based on the InfoMax princi-
ple (Linsker 1989), which is about learning to maximize the
MI between the input and output of a neural network. It has
been proved that InfoMax-based loss regularizes intermediate
features and improves performance in semi-supervised (Ras-
mus et al. 2015) and knowledge transfer (Ahn et al. 2019) do-
mains. Similar to the previous works, SelfCon loss increases
the classification accuracy by regularizing the intermediate
feature to have class-related information aligned with the last
feature.

Discussion 4.3. Is SelfCon loss applicable to unsupervised
representation learning? The unsupervised version of
SelfCon loss is a lower bound of (□) in Eq. 6. By maxi-
mizing only (□), the last feature may follow the intermediate

feature, learning redundant information about the input.1 This
could be the reason why SelfCon learning does not work in
an unsupervised environment (refer to Appendix C.1). How-
ever, to mitigate this problem, we propose in Appendix C.2
a loss function to prevent the backbone from following the
sub-network. For this aim, we remove the term in Eq. 2 where
ω = F (i.e., anchor from backbone) and ωj = G (i.e., con-
trastive pair from sub-network). This modification improves
upon NT-Xent loss (Chen et al. 2020) in the unsupervised
CIFAR-100 experiment.

5 Experiment
We present the image classification accuracy for standard
benchmarks, such as CIFAR-10, CIFAR-100 (Krizhevsky
2009), Tiny-ImageNet (Le and Yang 2015), ImageNet-100
(Tian, Krishnan, and Isola 2019), and ImageNet (Deng et al.
2009), and extensively analyze the results. We report the
mean and standard deviation of top-1 accuracy over three
random seeds. We used the optimal structure and position
of the sub-network, however, the overall performance was
comparable to or better than the baselines. The complete
implementation details and hyperparameter tuning results are
presented in Appendix B.

We also have implemented SupCon with a single-viewed
batch (SupCon-S) and SelfCon with a multi-viewed batch
(SelfCon-M) in order to examine the independent effects of
the single-view and the sub-network. Note that their loss
functions only require the change of the anchor set I and
corresponding positive and negative sets (i.e., Pij and Ni) in
Eq. 1 and 2.

5.1 Representation Learning
We measured the classification accuracy of the representation
learning protocol (Chen et al. 2020), which consists of 2-
stage training: (1) pretraining an encoder network and (2)
fine-tuning a linear classifier with the frozen encoder (called
a linear evaluation). In Appendix D, we compared with other
supervised losses in the 1-stage training framework (i.e., not
decoupling the encoder pretraining and fine-tuning).

Small-scale benchmark The classification accuracy is
summarized in Table 1. Interestingly, the loss functions in
the single-viewed batch outperform their multi-viewed coun-
terparts in all settings. Furthermore, our SelfCon learning,
which trains using the sub-network, shows higher classifi-
cation accuracy than CE and SupCon. The effects of the
sub-network are analyzed in Section 5.3.

Large-scale benchmark We summarized the experimental
results for the ImageNet-100, of which 100 classes were ran-
domly sampled (Tian, Krishnan, and Isola 2019), and the full-
scale ImageNet (Table 2). Our SelfCon learning that includes
the sub-network consistently outperforms SupCon learning
on both ImageNet-100 and ImageNet. In particular, SelfCon
showed a higher efficiency ratio (i.e., cost-to-accuracy) than

1In supervision, a suboptimal case where T (x) becomes a sink
for F (x) does not happen because the deeper layers have a larger
capacity for label information (Shwartz-Ziv and Tishby 2017).
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ResNet-18 ResNet-50
Method Single-

View
Sub-
Net. CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet

CE ✓ 94.7±0.1 72.9±0.1 57.5±0.3 94.9±0.2 74.8±0.1 62.3±0.4

SupCon 94.7±0.2 73.0±0.0 56.9±0.4 95.6†±0.1 75.5†±0.2 61.6±0.2

SelfCon-M ✓ 95.0±0.1 74.9±0.1 59.2±0.0 95.5±0.1 76.9±0.1 63.0±0.2

SupCon-S ✓ 94.9±0.0 73.9±0.1 58.4±0.3 95.8±0.1 76.7±0.1 62.0±0.2

SelfCon ✓ ✓ 95.3±0.2 75.4±0.1 59.8±0.4 95.7±0.2 78.5±0.3 63.7±0.2

Table 1: The results of the linear evaluation for small-scale benchmarks. Bold type is for all the values of which the standard
deviation range overlaps with that of the best accuracy. We used the same batch size of 1024 and a learning rate of 0.5 as Khosla
et al. (2020) did in CIFAR experiments. †: We have re-implemented SupCon and also run their official code for credibility, but
the accuracy was slightly lower than their reported numbers.

ImageNet-100 ImageNet

ResNet-18 ResNet-50 ResNet-18 ResNet-34 ResNet-50Method Single-
View

Sub-
Net.

Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc.

CE ✓ - - 83.7 - - 86.4 - - 69.4 - - 72.7 - - 76.5‡

SupCon ×1.5 ×2.1 85.6 ×1.7 ×1.9 88.2 ×1.5 ×2.2 71.2 ×1.5 ×2.1 74.9 ×1.7 ×2.1 78.0‡

SelfCon-M ✓ ×1.6 ×2.1 85.8 ×1.8 ×2.2 88.7 ×1.7 ×2.3 71.6 ×1.7 ×2.2 75.5 ×1.8 ×2.2 78.4
SupCon-S ✓ ×1.0 ×1.0 84.9 ×0.9 ×0.8 87.8 ×0.9 ×1.0 70.2 ×0.9 ×1.0 74.4 ×0.9 ×0.9 77.5
SelfCon ✓ ✓ ×1.0 ×1.0 86.1 ×1.0 ×1.0 88.7 ×1.0 ×1.0 71.4 ×1.0 ×1.0 75.6 ×1.0 ×1.0 78.6

Table 2: The classification accuracy for ImageNet-100 and ImageNet. We summarized the ratio of memory (GiB / GPU) and time
(sec / step) based on those of SelfCon in each architecture. ‡: We used the results in the same setting as ours (e.g., B = 1024)
reported by Khosla et al. (2020) (refer to Figure 4 in their original paper).

SupCon, SelfCon-M, and SupCon-S. Different from small-
scale benchmarks, we observed that the training difficulty
of large-scale images could degrade the performance of the
single-viewed method (see SupCon-S vs. SupCon). The poor
performance of SupCon-S, which consumes an amount of
memory and time similar to SelfCon, reflects the superiority
of SelfCon.

On large-scale benchmarks, the difference in accuracy
between SelfCon and SelfCon-M was smaller than that on
small-scale benchmarks. We suppose that it is mainly at-
tributed to the over-/under-fitting problem. In fact, various
factors (e.g., architecture, dataset, batch size, and training
epochs) in combination can affect the bias-variance trade-
off. For example, the ImageNet result on ResNet-18 appears
to be affected by the underfitting from a small architecture
and a huge dataset (also refer to Appendix E.2). We inten-
sively analyzed the effects of different factors in terms of the
single-view and multi-view in Section 5.2.

Ensemble prediction with sub-network The co-trained
sub-network is a novel strength of SelfCon learning as an
efficient and simple boosting technique. In practice, training
an extra linear classifier after the frozen sub-network does not
demand a high cost in the fine-tuning scheme. We can thus ob-
tain two additional linear evaluation results by (1) fine-tuning
a classifier after the sub-network output and (2) ensembling
the predictions of two classifiers. Table 3 indicates that the
ensemble prediction is the most powerful technique we have
proposed. In particular, SelfCon can achieve a significant
performance gain of +3.0% on ImageNet without requiring
cost-intensive techniques such as multi-viewed batch or larger

Method CF-100 Tiny-IN IN-100 IN

CE 74.8 62.3 86.4 76.5
SupCon 75.5 61.6 88.2 78.0
Backbone 78.5 63.7 88.7 78.6
Sub-network 73.3 58.9 87.6 78.5
Ensemble 80.0 65.7 89.1 79.5
⌞Gain (vs. CE) +5.2 +3.4 +2.7 +3.0
⌞Gain (vs. SupCon) +4.5 +4.1 +0.9 +1.5

Table 3: Classification accuracy with the classifiers after back-
bone, sub-network, and the ensemble of them. The ResNet-50
encoder is pretrained by the SelfCon loss function.

batch size (Chen et al. 2020; Khosla et al. 2020). Refer to
Appendix F for the results on ResNet-18.

Downstream tasks Thus far, we have observed the Self-
Con’s superiority via linear evaluation performance. While
our main goal is supervised classification on the target dataset,
we can further use the pretrained encoder to transfer to other
downstream tasks. Hence, in Table 4, we summarized the re-
sults of the downstream tasks, eight fine-grained recognition
datasets and two semantic segmentation or object detection
datasets, to further verify the transferability of the SelfCon’s
pretrained encoder. SelfCon outperforms SupCon in most
of the downstream tasks, implying that ImageNet-pretrained
SelfCon contains more generalized representation. Specifi-
cally, SelfCon greatly improves up to +6.8% and +4.4% for
fine-grained and semantic segmentation tasks, respectively.
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Method CUB Dogs MIT67 Flowers Pets Stanford40 Cars Aircraft

SelfCon 62.2 91.8 72.3 85.7 90.6 77.5 45.2 39.0
SupCon 56.8 92.3 65.5 82.8 89.6 76.7 40.4 37.6

(a) Fine-grained Recognition

Method VOC COCO

SelfCon 71.6 48.1
SupCon 69.6 43.7

(b) Semantic Segmentation

Method VOC COCO

SelfCon 63.0 29.4
SupCon 61.8 28.8

(c) Object Detection

Table 4: Downstream task results of SelfCon and SupCon encoders. The ResNet-34 model pretrained on ImageNet is transferred.
The evaluation metric is (a) linear evaluation accuracy, (b) mIoU, and (c) mAP. For the semantic segmentation, we used a
DeepLabV3+ module (Chen et al. 2018), and for the object detection, we used a RetinaNet detector (Lin et al. 2017). The dataset
details are in Appendix B.
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Figure 3: (a–c) The train and test accuracy on ResNet-18 for different views and loss functions. The accuracy is measured with a
linear classifier during the linear evaluation. (d) CIFAR-100 accuracy on ResNet-18 at different epochs. The solid and dashed
lines are for train and test accuracy, respectively.

5.2 Single-View vs. Multi-View
Single-view reduces generalization error. In Figures 3a-
3c, SupCon shows higher train accuracy, but lower test ac-
curacy than SupCon-S, and the same trend is observed with
SelfCon-M and SelfCon (blue vs. red). Compared with single-
view, multi-view from the augmented image makes the en-
coder amplify the memorization of data and results in overfit-
ting to each instance. In addition, Figure 3d shows that Self-
Con gradually enhances generalization ability, while SelfCon-
M and SupCon achieve a little gain in test accuracy despite
the fast convergence.

Multi-view is advantageous for small batch size. In su-
pervised learning, a large batch size has been known to reduce
generalization ability, which degrades performance (You, Git-
man, and Ginsburg 2017; Luo et al. 2018; Wu et al. 2020).
We examined whether the performance in a supervised con-
trastive framework is also dependent on the batch size. In
Table 5, SelfCon showed the best performance in every case
except for the batch size of 64. However, the multi-viewed
method outperformed the single-viewed counterpart in 64-
batch experiments, where underfitting may occur because
of large randomness from the small batch size or the small
number of positive pairs. In the ImageNet experiment on
ResNet-18 (see Table 2), SelfCon-M also outperformed ev-
ery method, implying that it is more important to mitigate
underfitting for large-scale dataset. Conversely, in ResNet-
34 and ResNet-50, SelfCon showed the best performance.
In summary, multi-viewed methods may have good perfor-
mance in the underfitting scenario (e.g., small batch size,
small epochs, or large-scale benchmark).

Single-view is efficient in terms of memory usage and com-
putational cost. To investigate the efficiency of a single-
viewed batch against a conventional multi-viewed batch, we

Batch Size
Method

64 128 256 512 1024

CE 74.9 74.9 74.1 73.3 72.9
SupCon 74.8 73.8 72.9 72.5 73.0
SelfCon-M 75.8 76.5 75.9 75.0 74.9
SupCon-S 73.6 75.3 75.0 74.0 73.9
SelfCon 74.0 76.6 77.0 75.8 75.4

Table 5: The classification accuracy of CIFAR-100 on
ResNet-18 with various batch sizes.

have compared the required memory and time cost in Table
2. Due to the additional augmented samples, the computa-
tional cost of the multi-viewed approaches is around twice
as much as their single-viewed counterparts. SelfCon, on
the other hand, outperformed every method with a low cost
under a range of experimental conditions, while SupCon-S
showed poor performance in the large-scale benchmarks. In
Appendix G, we summarized the detailed numbers of the
costs for SelfCon and SupCon. Although SelfCon requires
the additional parameters owing to the sub-network, its mem-
ory and computation cost in practice are much more efficient.

5.3 What Does the Sub-network Achieve?
Regularization effect SelfCon loss regularizes the sub-
network to output similar features to the backbone network.
It prevents the encoder from overfitting to the data, and it is
effective in multi-viewed as well as single-viewed batches.
In Figures 3a–3c, we confirm the regularization effect (i.e.,
lower train accuracy, but higher test accuracy) by compar-
ing each bar of the same color. The strong regularization
of the sub-network helped SelfCon (also with multi-view)
outperform the SupCon counterparts. This trend can also be
observed in Figure 3d and Table 5.
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Figure 4: Gradient norm of each ResNet-18 block and convo-
lutional layer. We computed gradients from the SupCon loss
(Left) and SelfCon-M loss (Right), both from the same ini-
tialized model. All convolution layers in the block are named
by order.

Figure 5: Grad-CAM (Selvaraju et al. 2017) visualizations
for the feature-level multi-view generated by the sub-network.
Along with the original image, each map visualizes the gradi-
ents from the sub-network (Left) and the backbone network
(Right), respectively.

Mitigating the vanishing gradient SelfCon learning sends
more abundant information to the earlier layers through the
gradients flowing from the sub-networks. Previous works
(Lee et al. 2015; Teerapittayanon, McDanel, and Kung 2016;
Zhang et al. 2019a) also have pointed out that the success
of the multi-exit framework owes to solving the vanishing
gradient problem. In Figure 4, a large gradient flows up to
the earlier layer in the SelfCon-M, whereas a large amount of
the SupCon loss gradient vanishes. Note that the sub-network
is positioned after the 2nd block of the ResNet-18 backbone
network. Thus, there is a significant difference in the gradient
norm in the 2nd block of the encoder.

Feature-level multi-view One of the advantages of Self-
Con learning is that it relaxes the dependency on multi-
viewed batches. This is accomplished by the multi-views
on the representation space made by the parameters of the
sub-network. In Figure 5, we visualize the gradient of Self-
Con loss w.r.t. the intermediate layer of the backbone network
(ResNet-18), right before the exit path. Both networks focus
on similar but clearly different pixels of the same input image,
implying that the sub-network learns another view in the fea-
ture space. As the multi-view in contrastive learning requires
domain-specific augmentation, recent studies have explored
domain-agnostic methods of augmentation (Lee et al. 2020;
Verma et al. 2021). SelfCon could be an intriguing future
work in that auxiliary networks could be an efficient substi-
tute for data augmentation.

5.4 Mutual Information Estimation
We argue that minimizing SelfCon loss maximizes the lower
bound of MI, which results in the improved classification
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Figure 6: Test accuracy and the estimated mutual information
of different methods. SelfCon-M*α denotes SelfCon-M* loss
with hyperparameter α. When α ≥ 0.2, the test accuracy was
similar to that of SelfCon-M.

performance presented in Section 4. To empirically confirm
this claim, we design an interpolation between SupCon and
SelfCon-M loss as follows:

Lself -m∗ =
1

1 + α
Lsup +

α

1 + α
Lself -m

∣∣∣
ω=G

(7)

If α = 0, Lself -m∗ is equivalent to the SupCon loss, and if
α = 1, then Lself -m∗ is almost the same as SelfCon-M loss.
We cannot make the exact interpolation because SelfCon-M
has contrastive pairs from the sub-network, whereas SupCon
does not.

In Figure 6, we estimated MI with ResNet-18 and CIFAR-
100 using various estimators: InfoNCE (Oord, Li, and Vinyals
2018), MINE (Belghazi et al. 2018), and NWJ (Nguyen,
Wainwright, and Jordan 2010). We measured I(F (x);T (x))
because it is difficult to estimate the conditional MI. We
observed a clear increasing trend for both MI and the test
accuracy as the contribution of SelfCon becomes larger (i.e.,
increasing α). After SelfCon loss increases the correlation
between F (x) and T (x), the rich information in earlier fea-
tures enables the encoder to output a better representation
because the intermediate feature is also the input for the sub-
sequent layers. Refer to Appendix H for a detailed SelfCon-
M* loss formulation and the exact numbers.

6 Conclusion
We have proposed a single-viewed supervised contrastive
framework called Self-Contrastive learning, which self-
contrasts the multiple features from a multi-exit architecture.
By replacing the augmentation with the sub-network, SelfCon
enables the encoder to contrast within multiple features from
a single image while significantly reducing the computational
cost. We verified by extensive experiments that SelfCon loss
outperforms CE and SupCon loss. We analyzed the success of
SelfCon learning by exploring the effect of single-view and
sub-network, such as the regularization effect, computational
efficiency, or ensemble prediction. In addition, we theoreti-
cally proved that SelfCon loss regularizes the intermediate
features to learn the label information in the last feature, as
our MI estimation experiment has supported.
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