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Abstract

An agent’s ability to distinguish between sensory effects that
are self-caused, and those that are not, is instrumental in the
achievement of its goals. This ability is thought to be central
to a variety of functions in biological organisms, from percep-
tual stabilisation and accurate motor control, to higher level
cognitive functions such as planning, mirroring and the sense
of agency. Although many of these functions are well stud-
ied in AI, this important distinction is rarely made explicit
and the focus tends to be on the associational relationship be-
tween action and sensory effect or success. Toward the de-
velopment of more general agents, we develop a framework
that enables agents to disentangle self-caused and externally
caused sensory effects. Informed by relevant models and ex-
periments in robotics, and in the biological and cognitive sci-
ences, we demonstrate the general applicability of this frame-
work through an extensive experimental evaluation over three
different environments.

Introduction
An agent’s ability to distinguish between sensory effects that
are self-caused, and those that are not, is instrumental in the
achievement of its goals. A seminal work (von Holst 1954)
on this distinction in biological agents coined the terms reaf-
ference and exafference to mean: the parts of an observation
that are caused by the agent’s own action, and the parts of an
observation that are caused by external conditions or events
respectively. The subtlety of the distinction is highlighted by
Von Holst:

If I shake the branch of a tree, various receptors of my
skin and joints produce a reafference, but if I place my
hand on a branch shaken by the wind, the stimuli of
the same receptors produce an exafference.

The distinction has played a central role in developing the-
ories to explain a broad range of physiological phenom-
ena (von Holst 1954; Blakemore, Wolpert, and Frith 2000;
Wolpert and Flanagan 2001; Medendorp 2011; Fukutomi
and Carlson 2020).

In some of the earliest experiments performed by Mittel-
Staedt and Von Holst (von Holst 1954) it was demonstrated
that reafference plays an important role in the modulation of

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparative view of reafference. The forward
model estimates reafferent effects from the efference copy
and the agent’s observation. Reafference is compared with
subsequent observations to determine exafference.

sensory signals. If a fly is placed inside a vertically striped
rotating cylinder, in an attempt to stabilise itself the fly will
rotate its body to compensate for the perceived motion. This
optomotor-reflex, is not observed when the fly moves of its
own accord in a stationary cylinder, even though the sen-
sory consequences are essentially equivalent. If the head of
the fly is rotated 180 degrees, effectively switching the po-
sition of its eyes, and the cylinder is again rotated, as one
might expect the fly will rotate itself in the opposite di-
rection. However when again moving of its own accord it
will overcompensate and begin to spin. The inversion of the
modulating reafferent signal leads the optomotor-reflex to
correct in the wrong direction. The mechanism that under-
pins these observations was made more precise in subse-
quent work (Miall and Wolpert 1996) in which a compara-
tive theory of reafference was introduced, see Fig. 1. The ef-
ference copy (or corollary discharge (Sperry 1950)), a copy
of an internal outward motor signal or action, along with
a forward model (Kawato 1999; Wolpert, Ghahramani, and
Jordan 1995; Wolpert and Flanagan 2001) estimates the reaf-
ferent sensory consequences. The estimate is compared with
subsequent sensory data, and any error is attributed to exaf-
ference. For the fly, the exafferent passing of stripes across
its optical field is a signal to correct its motion if knocked
off course or blown by the wind.

Although there is substantial experimental evidence for
the theory (Straka, Simmers, and Chagnaud 2018), it does
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not inherently explain how the forward model comes to pro-
duce good estimates of the reafferent signal. A biological
agent experiences changes in their motor system over their
lifetime, for example, through growth, disease or misfortune
in the case of the fly. Experiments with humans suggests that
the forward model is to some extent adaptive (Wilke, Syn-
ofzik, and Lindner 2013), and that reafferent estimates are
learned through experience. If reafference is to be learned
through experience, an important question is raised: if an
agent only ever experiences a mixture of reafference and ex-
afference as the total afferent signal, then how does the for-
ward model come to model only the reafferent signals? In
other words, how is an agent able to draw the distinction be-
tween sensory effects that are self-caused and those that are
externally-caused.

The aim of this work is to investigate this fundamental
question. Specifically, we are interested in mechanisms that
can disentangle reafference from exafference in ways that
preserve causal relations between action and sensory effects.
After all, it is these causal relations that provide an agent
with the information that is most widely applicable to the
task at hand. As one might expect, reafference, although not
referred to as such, turns out to be central to many important
problems in AI, ranging from credit assignment and plan-
ning to localisation and stabilisation in robotics.

Drawing on the long history of reafference in AI, and in-
spired by experiments with biological agents, our aim is to
develop a formalisation of reafference that is representative
of a general causal perspective. We believe such a formal-
isation to be a step in the right direction for many of the
important open problems in AI and that it could have wider
conceptual implications in related fields.

Our core contributions lie in our formalisation of reaffer-
ence as a causal estimand and an algorithm that allows an
agent to disentangle reafference and exafference from expe-
rience. The key ingredient in our approach, both practically
and theoretically, is the act of doing nothing. Rather than at-
tributing errors to external influence, external influences are
modelled explicitly and any error is considered simply as
model error which should be minimised. Crucially, the act
of doing nothing allows an agent to draw the desired distinc-
tion by reasoning counterfactually about the effects of its
actions. In an attempt to ground our work, which has both
conceptual and practical components, we are informed by
relevant concepts and experiments performed in the biologi-
cal and cognitive sciences, using them as a basis for our own
experiments with artificial agents.

Background
An agent is situated in an environment where it can take ac-
tion. The agent’s actions have some effect on the state of
the environment, and therefore on what the agent observes.
These effects may be initially unknown to the agent as they
are in our setting, or may be known (to the extent that they
can be inferred) in advance. The environment in which the
agent is situated may evolve without the agent taking ac-
tion, for example through the action of another agent, or by
some other process. Where self-caused effects are known in
advance, the problem of disentanglement is deferred to the

source of the reafferent model, which for artificial agents is
the developer.

In early work on reasoning about action in AI, the causal
relationships between actions and their effects are assumed
known and are represented as a program expressed in a logi-
cal form. This program acts as the agent’s reafferent forward
model with which it can infer self-caused effects. In early
work in situation calculus, for example (McCarthy 1963)
and its derivatives, the environment evolves with statements
of the form do(A,S) where A is an action (e.g. move(x, y))
and S is a situation or state of the world. The agent can query
the logic program with an action to obtain the logical con-
sequences. The agent also might generate a plan by instead
querying with a goal state, where the plan is generated by
reasoning about the consequences of action. Using a lan-
guage like PDDL for example, a similar approach can be
taken for planning in robotics. The agent is provided with an
a priori forward model that is derived from the structure and
properties of its body. This model is a kind of causal model
and is based on our knowledge of physics; we have again
taken time to disentangle the relevant causal relationships
ourselves.

Although planning in these settings is still a challenging
problem and useful in many applications, we cannot always
rely on knowing, or being able to specify the causal rela-
tions that are required for building a reafferent model for the
agent. It is not always clear how each aspect of the agent’s
observation is related to its action; vision is a particularly
difficult example. This has led to the development of meth-
ods that instead try to learn or discover the relevant relation-
ships automatically.

As discussed previously, this is what biological agents do
in one form or another through their experience, or perhaps
through their evolution in the case of a fly. One view of
how biological agents might draw the distinction is that the
predictability of a sensory signal determines whether it is
reafferent or exafferent, with the reafferent signal being the
more predictable. It is easy to estimate the reafferent sig-
nal produced by shaking a tree branch, but more difficult
to predict the observed exafference that is due to the wind.
The implementation of this view is typically quite crude, and
rather ends up as a model of the association between action
and sensory effect. One possible implementation is to re-
move external influence altogether, making exafference un-
predictable only to the extent that a model has not previously
seen these influences and is therefore bad at predicting their
effects.

In (Schroder-Schetelig, Manoonpong, and Worgotter
2010), a bipedal robot learns to walk. The forward model
is trained when the robot is situated on a flat surface, the
robot is later tested on sloped surfaces. The robot is success-
ful in stabilising itself in the new sloped environment using
its forward model and exafferent error signal. This approach
has again deferred the problem of disentanglement, leaving
it up to us to determine a suitable training environment. Al-
though the agent is now free to learn the effects of its actions,
it is generally difficult to create an environment that is free
of external influence. In this instance, the learned forward
model suffers from bias. It has not disentangled the effect
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on its observation that is due to gravity. Clearly the grav-
itational effect is not due to the agent’s action and should
be considered exafferent. If we wanted to send this robot to
Mars it would fail to stabilise since the forward model is
working with the measure of Earth’s gravity. One might ar-
gue that gravity need not be modelled as exafference if we
are not on an interplanetary mission since it is constant on
Earth. Nevertheless, there is a conceptual issue to address
and that is that the gravitational effect is not caused by the
agent’s action, and that there are other similar variables of
interest that may be difficult to control for. The assumption
that underpins this experiment can be found in a number of
other works (Bechtle, Schillaci, and Hafner 2016; Schillaci
et al. 2016). The essential issue with the approach is that the
choice of environment determines what effects are consid-
ered reafferent.

Going further still, in order to maximise return and there-
fore solve the task it has been given, a reinforcement learn-
ing (RL) agent must model the long-term effects of its ac-
tion and typically does so via its value function. It is not
clear to what extent model-free RL agents learn reafference.
They are able to exploit and maximise return, but likely work
with an associative model of an action’s effect on observa-
tion (or return) rather than a causal one. What is clear is
that RL agents are attentive to only those aspects relevant
for maximising return (Lapuschkin et al. 2019). A similar
phenomenon is seen in the other learning paradigms, most
clearly in supervised learning (Geirhos et al. 2020). This se-
lective associational modelling of reafferent signals by RL
agents leads to less robust policies, worse generalisation
performance, and exacerbates problems with learning long
term dependencies between action and return. If for exam-
ple, early in training an agent finds that particular aspects
of (or effects on) its observation lead to reward in the short
term, it may neglect to model those aspects that turn out to
be relevant for obtaining more reward long term.

In addressing some of these open problems, a number of
works have tried to provide agents with a means to better
learn the effects of their actions, often by introducing no-
tions that are related to causality, such as counterfactuals
(Buesing et al. 2018; Mesnard et al. 2021) or imagination
(Schrittwieser et al. 2020). They have also been a key mo-
tivation for works most closely related to ours (Bellemare,
Veness, and Bowling 2012; Corcoll and Vicente 2020).

Decisions, Actions & Interventions
To act is to bring about change in an environment. One
popular formalisation of action comes from decision the-
ory, where an agent’s decision is represented as a variable
A whose outcome is an action. The effects of the action are
determined by the relationship between A and the variables
that represent the state of the environment. A decision is
made by an agent given its observations and beliefs about
the world, which are themselves variables, in pursuit of a
goal.

In Pearl’s conception of causal inference (Judea Pearl
2000), actions are instead represented as interventions, that
is, changes to the underlying relationships between state
variables, and not as outcomes of decision variables. In their
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S′(i)

Figure 2: Dashed nodes indicate unobserved variables.
Dashed edges show the direction of causation as in a stan-
dard causal graph. They additionally indicate that some
edges may be missing between variables in the correspond-
ing collections. For example, a particular variable that is
present in the agent’s observation X(i) may not have any
baring on its decision. Similarly, the action the agent decides
upon may not affect every part of the state S′(i).

simplest form, they fix the value of a variable, for example
do(X = x), where X is some state variable and x is a value.

To determine causal relations in practice we find ourselves
intervening on variables that look very similar to what might
be called decision variables in decision theory. To be con-
crete, consider the following prevalent introductory exam-
ple: a new treatment T is to be tested for its effectiveness
in combating a particular disease. The effect of T on patient
health Y is to be estimated to determine whether the drug
is suitable for wider use. Although T is typically referred
to as the treatment variable, it in fact represents a medical
practitioner’s decision to give (T = 1), or not give treatment
(T = 0). The intervention is therefore a modification of the
decision making mechanism; do(T = 1) will fix the value
of the decision to be give treatment, regardless of patient
heath, age etc. Of course, causal inference is more general
than this, one can intervene on any observed state variable,
not just those that look like decision variables.

For the purposes of our work, an action is the outcome
of a decision variable. An intervention is a modification of
the mechanism that determines the outcome of the decision
variable, do(A = a) sets the agent’s decision to the action a
without regard for the agent’s observations or beliefs. This
setup allows us to formalise reafference as the changes in an
agent’s observation that are due to changes in the decision
variable A.

Formalising Reafference
Formally, we consider the following stochastic control pro-
cess. The environment transitions according the distribution
T (St+1 = st+1|St = st, At = at). T gives the probabil-
ity of an environment transitioning to a particular state st+1

given the current state st and the agent’s action at. An agent
observes xt, which is derived from the state according to
the distribution O(Xt = xt|St = st). Actions are selected
by the agent according to a policy π(At = at|Xt = xt)
or by intervention do(At = at). The time index t is useful
for determining the direction of causal relations, however
going forward we drop it as we are generally interested in
the effect of an action on a particular observation x. We treat
each triple (Xt, At, Xt+1) in isolation, with X ′ denoting the
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Figure 3: Difference in differences to get the average reaf-
ferent effect. The individual reafferent effect can be found
similarly by conditioning on the current observation x, with
realisations of X ′ being the possible observations after x.

possible observations after a specific observation x. The de-
generate random variable X is used to denote the current
observation. The potential outcome of the agent’s next ob-
servation taking action a is denoted as X ′(a). The causal
graph that we work with is presented in Fig. 2.

Doing Nothing
In the treatment problem presented previously, T is a bi-
nary variable whose outcome is determined by the practi-
tioners decision, give treatment, do not, or more generally,
act, do not. Not acting, or doing nothing turns out to be cru-
cial in determining reafference. This action, which we de-
note ∅ and refer to as the null-action, sets a baseline that
allows the agent to reason If I do nothing, there are only ex-
afferent effects. For many environments the choice of ∅ is
quite natural, for example, as the action with least (ideally
zero) expenditure of energy. Or, in videos games, where the
action is commonly referred to as noop (no operation) and
represents an absence of input from the player. The decision
variable A may be continuous or discrete, but requires such
a null-action to be explicitly chosen.

Reafferent Effects
The Average Causal Effect (ACE), sometimes referred to as
the Average Treatment Effect (ATE), is a common causal
estimand of interest in many settings. The average reafferent
effect (ARE) turns out to be well captured by this estimand
and corresponds to the ACE of action on observation.

δ(a) =E[X̄ ′(a)]− E[X̄ ′(∅)]
The ARE is taken over all observations, i.e. over all time
steps, as indicated by the □̄, see Fig. 3. As an illustrative
example, consider the following Structural Causal Model
(SCM):

A := Bernoulli(pa)

Z := Bernoulli(pz) Z ′ := Bernoulli(pz)

Y := N (0, 1) Y ′ := (A ∗ Z) + Y

It depicts an agent taking an action A to move into an empty
space Z = 1, the space may already be occupied Z = 0.
The agent observes X = (Y, Z) where Y is the agent’s cur-
rent position. Z = 1 is a precondition for the successful
execution of the action A, otherwise Y does not change (i.e.

Y ′ = Y ). By inspection it can be seen that δ(1) = (pz, 0).
To get the individual reafferent effect one can condition on
a specific observation:

δ(a|X = x) =E[X ′(a)|X = x]− E[X ′(∅)|X = x]

In the example above, we need only to condition on Z as
the reafferent effect is invariant to Y . Again by inspection,
δ(1|Z = 0) = (0, 0) and δ(1|Z = 1) = (1, 0), corre-
sponding to the unsuccessful/successful act of moving into
the filled/empty space respectively. Here we are computing
the reafferent effect for each observation, that is, for every
observed value of Z and Y . This is possible because we
have access to the SCM, if the quantity is to be estimated
additional assumptions are required, specifically, that the es-
timator is representative of the SCM.

Assumptions
We make a number of assumptions that are standard in the
causal inference literature: faithfulness, consistency, posi-
tivity, unconfoundedness, parallel trends and time indepen-
dence. The following assumptions warrant some clarifica-
tion:

Parallel trends The exafferent effect is the same regard-
less of the action taken for a particular observation (see Fig.
3).

Time independence The reafferent effect does not change
with time. This assumption is broken if, for example, there
is an unobserved state variable that interacts with time and
with the action to produce its effect, such as age in biological
agents.

Unconfoundedness There are no unknown confounders
in the formalisation presented, the environment state con-
tains all variables that might influence the next state (other
than the agent’s action). Although not all variables are ob-
served by the agent, only those that the agent does observe
have immediate causal relationships to its action, in other
words, an agent makes a decision based only on what it
observes. As such, conditioning on the observation X will
eliminate any backdoor paths.

Uncounfoundedness can be broken in an alternative for-
mulation in which actions are also dependant on unobserved
state variables. Although it seems counter intuitive that ac-
tions could be decided based on something that is not ob-
served, it is helpful to remember that, at least for biological
agents, taking action is not an instantaneous process. The
line between agent and environment is not as clear as it is
for artificial agents. A may be influenced by the state of the
agent’s body, not all of which forms part of X . If the value
of A is measured after this happens then S can be said to
directly influence A. Another source of confounding might
come from an agent’s beliefs, since these are derived from
previous observations, unless they are conditioned upon,
backdoor paths may be present. To avoid these confound-
ing issues, we assume agents take action based only on the
current observation, and that actions are not influenced by
S. These assumptions are reflected in the causal graph pre-
sented in Fig. 2 but may not be realistic for more complex
(biological) settings.
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(a) (b) (c) (d)

Figure 4: Disentangling reafference and exafference in Cartpole. Observations and (estimated) effects are shown over time, with
the agent taking an action at each step. Graphs show (a) observation, (b) total effects, (c) reafferent effects, and (d) exafferent
effects. Estimated effects are shown as dotted lines. An action is an instantaneous force applied to the cart which has an
instantaneous effect on the carts (angular) velocity. Actions do not have an instantaneous effect on the carts position or angle.

Algorithm 1: Estimating Effects via SGD
Objective function L (MSE); Model fθ; Policy π;
Environments env(i);
Initial observations x(i) ∼ env(i);
while stopping criteria not met do

Sample actions a(i) ∼ π(x(i));
Take actions x′(i) ∼ env(i)(a(i));
Ground truth (total) effect δ = x′ − x;
Estimate exafference δ̂∅ = fθ(x, ∅);
Estimate reafference δ̂a = fθ(x,a)− δ̂∅;
Gradient∇θL(δ̂a + δ̂∅, δ; θ);
Apply Gradient Update θ ← θ − η∇θ;
x← x′;

end

Estimating Reafference
Using the formalism presented in the previous sections, we
develop an algorithm that trains a forward model to disen-
tangle and estimate reafferent and exafferent effects. The al-
gorithm is presented in Alg. 1.

An agent should learn the reafferent forward model as
it gathers experience, this avoids issues with storing large
amounts of observations for later use. A common trick that
was devised in the deep reinforcement learning literature is
to sample observations from multiple environments (Mnih
et al. 2016), this ensures that the elements of the mini-batch
are closer to i.i.d., a replay buffer (Lin 1992; Schaul et al.
2016) might also be used to break temporal correlation.

Assuming the use of a neural network fθ with an MSE ob-
jective, the network will learn both the reafferent and exaf-
ferent effects. Each mini-batch is a collection of experience
triples (x,a,x′) each is a vector of observations/actions col-
lected from the environments. The algorithm is estimating
the individual reafferent effect for each observation/action.
fθ(x, ∅) is estimating the effect δ(∅|X = x). fθ(x, a) is es-
timating the total effect E[X ′|A = a,X = x] − E[X|A =
a,X = x]. The reafferent estimand δ(a|X = x) which is
estimated as fθ(x, a)− fθ(x, ∅) is expanded below.[

E[X ′|A = a,X = x]− E[X|A = a,X = x]
]
−[

E[X ′(∅)|A = a,X = x]− E[X(∅)|A = a,X = x]
]

It is assumed that the observed and counterfactual expecta-
tions of the current observation are equal, which here is triv-
ially true since X is observed. The counterfactual quantity
is estimated by the model by extrapolating from observed
instances of doing nothing. The reafferent effect is 0 when
a = ∅ since the same model is used to compute both ob-
served and counterfactual quantities. The estimated total ef-
fects for both a and ∅ are compared with the ground truth
to obtain the loss. To estimate the ARE the model can be
provided with only the action as input. This may introduce
confounding since X is no longer conditioned upon. To rem-
edy, the agent can perform a randomised trial, removing the
dependence on X and any potential backdoor paths by using
a suitably random policy. The ARE can also be estimated by
averaging over all individual effects, however the estimate
may be biased by the policy.

Experimental Evaluation
Alg. 1 is applied to three different environments. To demon-
strate the effectiveness and general applicability of our ap-
proach, we perform a number of experiments. Each show-
cases, or has a parallel with, an important concept or exper-
iment performed in related fields. They are described in the
relevant section below. Training and model details for each
experiment, as well as additional experiments are presented
in the supplementary material. All code and data is publicly
available1.

(i) Cartpole The Cartpole environment is a simple phys-
ical system with a cart that moves along a horizontal axis
and a pole that should be balanced on top. This version of
the environment has three actions [−β, 0, β], each applies a
horizontal force of magnitude β to the cart, with 0 applying
no force (null-action). The agent observes the cart’s posi-
tion and velocity, and the pole’s angle and angular velocity.
Exafferent effects are due to gravitational acceleration, or
velocities produced by previous actions. Reafferent effects
are changes in the next observation that are due to the force
applied to the cart by the agent.

Experiment (i.1) demonstrates that by doing nothing the
agent can properly recover both reafferent and exafferent ef-
fects - including the constant gravitational effect. This is in
contrast to the bipedal robot example (Schroder-Schetelig,

1https://github.com/BenedictWilkins/disentangling-reafference
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 5: Disentangling in the Atari Freeway environment (left) and Artificial Ape environment (right). Images show (a) current
observation x, (b) ground truth total effect x′ − x, (c) predicted reafferent effect, and (d) predicted exafferent effect. Effects are
scaled [−1, 1]→ [0, 1]. See text for discussion.

(a) (b) (c) (d) (e)

Figure 6: Disentangling in Artificial Ape with congruent
reafference and exafference. (a) observation (b) ground truth
total effect (c) estimated total effect (d) estimated reaffer-
ent effect (e) estimated exafferent effect. In this example the
agent and platform have rotated in opposite directions, lead-
ing to a cancellation in the total effect.

Manoonpong, and Worgotter 2010) in which the gravita-
tional effect was absorbed by the forward model as exaf-
ference. Results for (i.1) are shown in Fig. 4. Actions have
an instantaneous effect only on the velocities and not on po-
sition or angle, this is an environment implementation detail
that is reflected in the result.

(ii) Atari Freeway In this environment the agent (a
chicken) is attempting to cross a road while cars drive past.
The agent, can move forward, backward, or stay where it
is (null-action). The agent is presented with visual observa-
tions (images) and should disentangle the reafference, move-
ment of its body, from exafference, cars driving past. The
aim of this experiment is to show that our approach can sep-
arate the body of an agent from the rest of the environment.
Results are presented in Fig. 5 (left).

Here body is meant loosely as the pixel representation of
the agent where actions have local effects. In this instance,
the agent does not explicitly recognise its body as an inde-
pendent entity as we have given it no capacity to do so. It
is however able to create a clean separation between reaffer-
ence and exafference, where reafference happens to corre-
spond to effects local to its body. The ability to distinguish
body from environment is an important first step in develop-
ing embodied agents, in this instance for localisation, and for
solving problems such as mirroring. A deeper exploration of
reafference in these contexts is needed, but is currently be-
yond the scope of this work.

(iii) Artificial Ape The neural mechanisms that underpin
reafference, and in particular the comparative theory have
been investigated in numerous works. In one study, an ape
was placed on a rotating platform, restrained but with some

freedom to move its head. The authors studied vestibular
neuron signals and found that there was indeed a distinc-
tion made between passive and active movement of the head
(Cullen 2004; Roy and Cullen 2004).

In the spirit of these works, the Artificial Ape environment
places an agent into a 3D scene with a collection of moving
cubes (Wilkins and Stathis 2022). The agent can rotate its
view left and right or maintain its current view (null-action).
The movement of the cubes is independent of the agent’s ac-
tion and so is exafferent. The agent stands on a platform that
is rotated randomly, rotating the agent’s perspective with it.
The goal here is two fold: (iii.1) to distinguish exafference
on the visual system due to the movement of the cubes from
the reafferent perspective shifts, and (iii.2) to distinguish the
congruent exafferent perspective shifts from the reafferent
perspective shifts. Results for (iii.1) are presented in Fig. 5
(right). The agent’s action is to rotate its view by a small
angle, leading to the highlighted vertical edges seen in the
predicted reafferent effect. The chequered cubes in the scene
are moving up/down relative to the view leading to the high-
lighted horizontal edges seen in the predicted exafferent ef-
fect. In this experiment the platform has been removed as it
does not play a role.

Results for (iii.2) are presented in Fig. 6. To aid interpreta-
tion by reducing aleatoric uncertainty, the colour of the plat-
form is an indicator of the future direction of motion of the
platform. An analogue in the experiment with apes might be
the whirr of the platform motor, or feeling of acceleration in
the rest of the body. This introduces some incongruency to
the effects, however the vast majority of variables are con-
gruent. A more detailed analysis with truly congruent effects
is presented in the supplementary material. The result shows
a cancellation effect in the signals that is similar to what is
observed in the original experiment when the apes head and
platform move in opposite directions. The result suggests
that our approach is viable as even in the case of congruence
the agent is able to properly estimate the effects.

Discussion
Average Reafferent Effects (ARE) Our focus has been
on estimating the individual reafferent effects, that is, the
reafferent effect for a particular observation for some action.
The primary reason for this is that reafference tends not to be
same for all observations, this renders the ARE essentially
useless. Consider for example, averaging over the visual ef-
fects in Freeway. If the reafferent effect is similar over all
observations, or over subsets of observations, then the ARE
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might be more useful to the agent. If in Artificial Ape instead
of a visual observation the agent observed angular velocity
then estimating the ARE might be appropriate.

Multi-step Reafference Reafference as defined thus far
considers only single-step effects, that is, the effect of the
agent’s action on the next observation. In practice, effects
may be extended in time, be delayed, or we may want to
model the effect of an action over multiple time steps. Each
case is essentially asking what effect does action at have on
observation xt+n?. To estimate multi-step effects, the model
should compute counterfactual estimates for all intermediate
actions during training. Then at test time take n− 1 consec-
utive null-actions for comparison. An exploration of this is
left as future work.

Gaps in Biological Reafference In some of the earliest
work on reafference, Helmholtz noted that if one presses
gently on their eye the world appears to move, however re-
mains stationary when the eye is moved by the extraocular
muscles (von Helmholtz and Southall 1924). This suggests
that there is some reafferent modulation of the signal in the
latter case that keeps the world stationary whenever our eyes
saccade. It might also suggest a gap in biological reaffer-
ence, since in the first instance the eye movement is also
self-caused, just by a different motor mechanism and yet it is
treated as exafferent. Our approach to modelling reafference
has no such gaps. This might be an indicator that the mecha-
nism behind biological reafference differs in some important
way, or just that evolution has found shortcuts in cases where
modelling such effects is really not necessary.

Higher Cognitive Functions Although the current moti-
vation for learning reafference is for use in problems such as
stabilisation, it has otherwise appeared in investigations of
higher-level cognitive functions. For example in mirroring
(Blakemore and Frith 2005; Rajmohan and Mohandas 2007)
(theory of mind), the sense of agency (Haggard 2017) and
the early development of self (Lewis 2012; Jékely, Godfrey-
Smith, and Keijzer 2021), although there is some debate sur-
rounding the extent of its role (Zaadnoordijk, Besold, and
Hunnius 2019). While many of these functions are still out
of reach in AI, it is clear that reafference plays an impor-
tant role. Our hope is that by developing biologically in-
spired agents, such as those that can distinguish self-caused
from externally-caused sensory effects, we gain some under-
standing of these problems. To use mirroring as an example,
knowing the effects of one’s actions seems crucial in being
able to imitate another. Further, for one agent to recognise
another as an agent with its own beliefs and intentions, it
seems similarly crucial (Gallese and Goldman 1998).

Related Work
Contingency Awareness Contingency awareness (Wat-
son 1966), a close conceptual relative of reafference is in-
vestigated in (Bellemare, Veness, and Bowling 2012). The
term contingent regions was coined to mean the region of
an observation that is affected by an agent’s action. From
a causal perspective, (Corcoll and Vicente 2020) defines a
measure similar to that used to determine contingent regions.

These measures are similar to our work in that action effects
are compared counterfactually to determine a causal rela-
tion. However, they do not determine the causal extent of the
relation. It is noted in (Corcoll and Vicente 2020) that a spe-
cial do-nothing would not work well for estimating effects,
arguing that doing nothing still has an effect on the observa-
tion (or at least the return). We believe this to be a concep-
tual oversight. While it is true that there is an effect on the
observation, this effect should be ascribed to environmental
influence. If the null-action is taken there is by our definition
no edge from A to X ′ in the causal graph. This baseline is
what allows us to determine the extent of the causal relation
between the other actions and the agent’s observation.

Associational Approaches The following approaches
take advantage of strong regularisation or implicit model
biases to perform some kind of disentanglement. The gen-
eral idea is to condition on actions and inspect the inter-
nals of a model, or use salience maps, to determine the
controllable regions of the observation. (Choi et al. 2019)
takes advantage of spatial attention mechanisms and trains
an inverse-dynamics model, (Yang et al. 2019) uses an
action-conditioned beta-VAE, similarly (Zhong, Schwing,
and Peng 2020) uses an action-information bottle neck with
strong regularisation and (Oh et al. 2015) learns action-
conditioned dynamics models. These works differ from ours
in that they learn associational relations between action
and observation. Additionally, measures of the relation are
strongly subject to hyper-parameter choices and are biased
by exafferent effects.

Controllable Factors of Variation One line of work
(Thomas et al. 2018; Bengio et al. 2017; Sawada 2018) de-
fines and makes use of selectivity as a measure of what they
call independent controllable factors of variation. These fac-
tors correspond to aspects of the environment that are con-
trollable independently of other aspects, for example, the
chicken in the Freeway environment. There are parallels
with our work in that the changes in these factors would for
the most part be represented as reafferent effects. However,
rather than effects, they are more abstract latent representa-
tions of what can be independently done in an environment.
In Cartpole for example, the cart and pole as a whole would
be modelled as a factor, and the chicken in Freeway as an-
other. The factors in Artificial Ape are less clear.

Conclusions & Future Work
In this work we have investigated reafference in the con-
text of artificial agents and AI. We formalised reafference
as a causal estimand that can be estimated by a counterfac-
tual comparison of doing nothing and doing something. This
gives an agent the means to distinguish between self-caused
and externally-caused sensory effects. By drawing links be-
tween reafference in AI and related fields, through our ap-
proach we have taken steps towards developing more gen-
eral biologically inspired agents. Future work includes ex-
ploring some of the higher-level cognitive functions that are
related to reafference. For example, by integrating our ap-
proach into a planning system, reinforcement learning agent,
or a mirroring mechanism.
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