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Abstract

Sound event detection aims to identify the sound events in
the audio recordings, whose applications seem to be evident
in our daily life, such as the surveillance and monitoring ap-
plications. In this paper, we present a novel framework for
the detection task, by combining using several improvements.
To compress the model efficiently while retaining the detec-
tion accuracy, the self-distillation paradigm is employed to
improve offline training. To empower the machines with the
ability of uncertainty estimation, the Monte Carlo dropout is
used in our framework. Moreover, the inference data augmen-
tation strategy is utilized to improve the robustness of the de-
tection task. Lastly, we present an interactive interface, which
can be used to visualize the detection and the uncertainty for
the prediction. We hope our tool can be helpful for practical
machine listening.

Introduction
Carrying a great deal of information, sound can be found
everywhere in our everyday environment. As a complicated
behavior of human beings, the listening skill to the sound
events is natural and can be taken for granted (Virtanen,
Plumbley, and Ellis 2018). However, the listening-based
perception is quite challenging for the machines. Efficient
sound event detection (SED) can not only stimulate the un-
derstanding of the sounds from the complex mixture of au-
dio signals but also can be helpful for the association mod-
eling between the vast variety of sounds in everyday life.
In recent years, several novel methods have been proposed
to analyze this sound event automatically. Despite the efforts
that have been made, a robust SED system is still confronted
with several challenges (Zhu et al. 2020). To name a few, the
very diverse acoustic characteristics of the sounds and the
varying distance between the sound sources and the data-
collection devices can greatly add to the detection difficulty.

Since the revolution of deep neural networks, deep
learning-based approaches have become the methodological
choice for SED, while real-world implementations are still
scarce, especially in safety-critical applications. In the prac-
tical settings, the detection model should not only be accu-
rate but also provide the confidence (Guo et al. 2017) of the
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prediction. In other words, the model should indicate when
they are likely to make wrong predictions. As an example,
if the sound event detection model cannot confidently iden-
tify the presence or absence of the rare event (Chen and Jin
2019), the model may not be deployed in the practical set-
tings, as wrong predictions can result in a great cost.

As aforementioned, the deep models tend to be over-
confident (Hershey et al. 2017) and are poor at quantify-
ing the uncertainty of predictions. Sustainable efforts have
been made to quantify and measure the uncertainty of deep
models (Guo et al. 2017), such as the Markov chain Monte
Carlo (MCMC) dropout (Neal 2012), Laplace approxima-
tion (MacKay 1992), variational Bayesian methods (Louizos
and Welling 2016) and Deep Ensemble (Lakshminarayanan,
Pritzel, and Blundell 2017), with the goal to overcome the
computationally constraints of Bayesian-based method. In
this paper, the Monte Carlo dropout is used in the study due
to its simplicity and efficiency.

In this demo, we aim to build a trusted framework for
sound event detection on mobile phones. Specifically, sev-
eral improvements have been made to detect the sound event
for the audio signals using different architectures, including
self-distillation, uncertainty estimation for the predictions,
and inference data augmentation.

Methodology
Figure 1 illustrates an overview framework for the SED task,
which can be divided into two main modules. In the first
module, offline training of the detection task can be con-
ducted. While, in the second part, the real-time inference
can be performed, leveraging the models trained in the pre-
vious stage. The technical details can be found in the follow-
ing sections. The snapshot of the interactive interface is also
given in the figure.

Offline Training Using CNN/Transformer
After collecting the audio signals, the detection model can
be trained, which has tens of millions of parameters. The
previous decade has witnessed the rise of CNNs for end-
to-end sound signal analysis. However, to better obtain the
long-range context, the researchers employ the self-attention
mechanism for the CNNs. Recently results suggested the
Transformer architecture can provide superior performance

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13236



Figure 1: Framework of proposed approach. (a) presents the offline training stage, while the inference part is given in (b). (c) is
the snapshot for the EasySED application.

for the audio classification task, speech command recogni-
tion, and emotion recognition task. In our implementation,
both the CNN and Transformer architectures are used and
the user can select the architecture by using an interactive
interface. In our experiments, Transformer architecture can
provide better detection performance compared with stan-
dard CNNs, using various sound event detection bench-
marks.

Self-Distillation

Generally, the SED models have tens of millions of param-
eters, which is not employable for mobile devices. Knowl-
edge distillation can be used to compress the SED model
(Fu et al. 2019). However, here we employ the so-called
self-distillation (Zhang et al. 2019) which can greatly de-
crease the computation time, compared with vanilla knowl-
edge distillation (Hinton, Vinyals, and Dean 2015). The key
idea of self-distillation is to jointly train the teacher model
and the self-similar student model together. Previous exper-
iments also suggested that the self-distilled model can pro-
vide higher accuracy on held-out data.

Uncertainty Estimation

As aforementioned, the practical SED applications are still
scarce, as the detection system does not know when it will
generate wrong predictions. How to detect the interesting
events from the audio signals with uncertainty estimation,
is still under-explored in previous studies, especially for the
devices with limited computation recourse. In this paper, the
MC dropout is used in our experiments, to quantify the un-
certainty of the predictions from the SED model, as it is easy
and scalable to modern datasets and architectures. By using
the MC dropout, we can get the uncertainty of our predic-
tions in real-time, which will be displayed in the interface
(as shown in Figure 1).

Data Augmentation For the Inference
To further improve the robustness of our method, we also
explore a strategy that can augment the samples. For each
sound signal, we can generate additional examples by shift-
ing the temporal window in both directions, by 30 ms in-
crements. Our main motivation is that: shifting the context
window around the original clip can create new examples
that are slightly different (time-shifted) from the original
one, but still contain the target sound event. In this way, the
model can aggregate the multiple predictions to reduce the
variance, thus increasing the robustness of the detection sys-
tem (Wang et al. 2020).

Demonstration
After the training phase, both the teacher model and stu-
dent model will be uploaded to a cloud server automatically,
which is equipped with the NVIDIA GTX 3090Ti GPU.
Using the presented interface, the user can upload the au-
dio recordings for the evaluation. The detection can be con-
ducted using the compact model stored in the mobile de-
vices, or the large model which is stored in the cloud server.

Conclusion
Robust sound event detection is a long-standing goal for
machine listening. In this paper, we aim to demonstrate an
uncertainty-aware framework for understanding the sound
event task. Moreover, an interface is provided to visualize
the detection task and the uncertainty of our prediction is
also given. The current interface can be further fine-tuned
for specific rare event detection. We hope our tool can be
helpful for a practical machine listening system.
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