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Abstract

Intensive care in hospitals is distributed to different units that
care for patient populations reflecting specific comorbidities,
treatments, and outcomes. Unit expertise can be shared to po-
tentially improve the quality of methods and outcomes for
patients across units. We propose an algorithmic rule pruning
approach for use in building short lists of human-interpretable
rules that reliably identify patient beneficiaries of expertise
transfers in the form of machine learning risk models. Our
experimental results, obtained with two intensive care mon-
itoring datasets, demonstrate the potential utility of the pro-
posed method in practice.

Introduction

Intensive care in hospitals is distributed to different units, or
sites, that care for patient populations reflecting specific co-
morbidities, treatments, and outcomes (Nguyen, Perrodeau,
and et al. 2014). Site expertise can be shared to potentially
improve the quality of methods and outcomes for patients
across sites (Caldas et al. 2021). An explicit and translatable
understanding of which patients would benefit from site ex-
pertise is important as externally derived knowledge may not
be applicable to an entire site population. Machine learning
(ML) can be used to identify subpopulation beneficiaries of
site expertise, however, ML model reliability is essential. In-
terpretable ML models, such as decision lists, bear consid-
erable relevance for this purpose as their decisions can be
understood and verified by domain experts.

We aim to identify knowledge transfer opportunities
among specialized medical and surgical intensive care units
(ICU) that could benefit patients across units. We propose
an algorithmic rule pruning approach for use in building
short lists of human-interpretable rules that reliably iden-
tify patient beneficiaries of expertise transfers in the form
of ML risk models. Rule pruning is performed using per-
mutation testing with the novel contribution of using the k-
nearest neighbors (KNN) ML algorithm as a non-parametric
approach to probability estimation.
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Related Work
Decision Lists
Decision lists are ML models that comprise an ordered
list of rules. The appeal of decision lists is their human-
interpretable component rules organized in simple list-like
structures. Decision list construction is composed of two
main tasks: rule generation and rule selection. Rule prun-
ing with permutation testing can be applied prior to rule
selection as a non-parametric approach to estimate the
probability that rules are derived from a non-permutated
(original) dataset and not influenced by sampling variance
(Frank 2000). Permutation testing is commonly applied with
non-parametric probability estimation using chi-square or
Fisher’s exact tests. However, permutation testing with chi-
square or Fisher’s exact tests typically require sample class
predictions, which are not feasible without classifier score
decision thresholds. Our non-parametric approach using the
KNN algorithm does not require sample class predictions.

Federated Classifier Selection
The federated classifier selection (FRCLS) algorithm gener-
ates a decision list with rules that identify regions of the fea-
ture space for which a classification model developed using
data from an external site provides more accurate outcome
predictions than a classification model developed using data
from the local site (Caldas et al. 2021). Rule selection to
generate the list is performed using a heuristic that maxi-
mizes the lower confidence bound on a variable that esti-
mates external site model competence, which is a parametric
approach that approximates the model competence variable
distribution as normal (Caldas et al. 2021). Rules that de-
scribe small numbers of samples violate normal distribution
assumptions. Inappropriate selection of these rules can result
in lengthy decisions lists that overfit to training sample data.
Rule pruning has application to remove rules influenced by
sampling variance for more reliable rule selection.

Methods
We demonstrate the utility of our algorithmic rule prun-
ing approach using two datasets, CH and MIMIC-II, with
1,563 and 1,776 samples, respectively. Each dataset was par-
titioned into two separate sites based on patient ICU stay
with either medical (MICU) or surgical (SICU) focus. An
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Figure 1: FRCLS pipeline is shown for a cross-validation
fold with site models trained using random forest classifiers.

implementation of the RADSEARCH algorithm was used
to generate rules (Moore and Schneider 2002). Two experi-
ments were conducted for each dataset: experiment 1 with
SICU considered the local site and MICU considered the
external site and experiment 2 with the local and external
site assignments switched. Two decision lists were gener-
ated with and without rule pruning prior to rule selection
for each experiment using a 5-fold cross-validation scheme
with the FRCLS implementation shown in Figure 1. Rule
pruning was performed with the KNN algorithm trained on
rule features that measure the number of described samples
and external site model competence for these samples to es-
timate the probability that rules are derived from the non-
permutated (original) dataset. Rules with probability esti-
mates below 0.70 were pruned.

The decision lists generated with and without rule pruning
prior to rule selection were assessed on whether the external
site model applied to rule-identified local patients improves
the area under the receiver operating characteristic curve
(ROC-AUC) over that obtained with application of solely
the local model to all patients. The number of decision list
rules was also assessed as it influences the feasibility of the
list’s use in practice.

Results

Experiment: ROC-AUC
Dataset Local Local and External

1: CH 0.875 (0.021) 0.879 (0.028)
MIMIC-II 0.851 (0.034) 0.830 (0.051)

2: CH 0.888 (0.012) 0.893 (0.002)
MIMIC-II 0.708 (0.022) 0.761 (0.050)

Table 1: ROC-AUC average (standard deviation) for the lo-
cal site model and for the local site model with the external
site model applied to patients identified by rules selected af-
ter pruning. Decision lists generated with rule pruning for
3 of 4 experiments successfully identify subpopulations of
local ICU patients for whom application of the external site
model improves ROC-AUC (in bold), on average, over that
obtained with application of solely the local site model.

Experiment: p-value
Dataset Without Pruning With Pruning

1: CH 0.531 (0.311) 0.203 (0.141)
MIMIC-II 0.891 (—) 0.812 (—)

2: CH 0.811 (0.324) 0.555 (0.445)
MIMIC-II 0.703 (0.120) 0.602 (0.107)

Table 2: Average (standard deviation) p-value of a one-sided
binomial test with the null hypothesis that the fraction of
rule-identified samples with corrected outcome predictions
out of all samples with changed predictions with the use of
the external site model is 0.50 (alternative: > 0.50). Rule
pruning results in smaller p-values (in bold), on average.

Experiment: Number of Rules
Dataset Without Pruning With Pruning

1: CH 1.8 (1.2) 1.7 (0.5)
MIMIC-II 7.8 (9.2) 1.8 (1.3)

2: CH 6.8 (4.3) 1.7 (0.5)
MIMIC-II 14.8 (7.2) 4.2 (2.8)

Table 3: Average (standard deviation) number of decision
list rules. Decision lists generated with rule pruning are
shorter (in bold), on average, and are thus, more inter-
pretable and reliable for use in practice.

Conclusion
Ensuring decision list reliability would enhance insight into
beneficial expertise transfer opportunities to improve out-
come risk assessments across sites as well as prevent inap-
propriate transfers that could lead to harmful assessments.
This research takes a step to improve decision list rule re-
liability by incorporating permutation testing with use of a
non-parametric ML approach to probability estimation.
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