
NeuralArTS: Structuring Neural Architecture Search with Type Theory
(Student Abstract)

Robert Wu1, Nayan Saxena , Rohan Jain
University of Toronto

ML Collective
1rupert@cs.toronto.edu

Abstract

Neural Architecture Search (NAS) algorithms automate the
task of finding optimal deep learning architectures given an
initial search space of possible operations. Developing these
search spaces is usually a manual affair with pre-optimized
search spaces being more efficient, rather than searching from
scratch. In this paper we present a new framework called Neu-
ral Architecture Type System (NeuralArTS) that categorizes
the infinite set of network operations in a structured type sys-
tem. We further demonstrate how NeuralArTS can be applied
to convolutional layers and propose several future directions.

Introduction
Neural Architecture Search (NAS) has proven to be a com-
plex but important area of deep learning research. The aim of
NAS is to automatically design architectures for neural net-
works. Most NAS frameworks involve sampling operations
from a search space. For example, Efficient Neural Archi-
tecture Search (ENAS) uses a controller based on reinforce-
ment learning (RL) to sample child networks (Pham et al.
2018). Yu et al. (2019) and other recent works have identi-
fied flaws in NAS algorithms, motivating improved methods
for network construction. Search spaces are usually manu-
ally developed pre-search, rely heavily on researchers’ do-
main knowledge, and often involve trial and error; it’s more
of an art than a science. Additionally, the domain of net-
work operations is infinite given the multitude of basic oper-
ations and hyperparameters therein. It’s hard to know which
operations produce better performance in learning tasks. In
this paper, we introduce a framework to potentially improve
search spaces using generation and heuristics.

Neural Architecture Type System
Artificial neural networks can be interpreted as a program-
ming domain, where operations can be categorized into type
systems. A type system T is a formal system in which every
element has a type τ , which defines its meaning and the op-
erations that may be performed on it (Coquand 2018). One
intuitive property of networks is the shape of the data as it
moves through layers. Classes of operations such as pooling
or convolution layers have mappings between input/output

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(I/O) dimensions, which can range from totally flexible (can
be placed anywhere in a network) to complex (perhaps re-
quiring a specific input and output shape). Therefore, it is
possible to categorize operations into a type system based
on these I/O mappings, opening new possibilities for search
space optimisation in NAS. This idea can be extended to
network subgraphs, since they can be abstracted as a block
of operations with compound dimension functions. A con-
sequence is that layers and subgraphs are also interoperable.

τ = , ,

L0? ?

Figure 1: Possible interchange of L0 ∈ τ with other L̃ ∈ τ
or subgraph [L̃1, . . . , L̃n] ∈ τ . The unspecified topologies
on either end represent previous/subsequent layers.

This idea is intuitive and not entirely new; it’s explored
in Elsken et al. (2021), albeit informally. To be formal and
precise, the domain U of network operations can be catego-
rized with a type system T centred around data shape com-
patibility. Compatibility is fundamental in informing which
operations can precede, follow, or replace each other. For
each operation layer L with shape dimensions {1, . . . , d},
define IL = (I

(1)
L , . . . , I

(d)
L ) and OL = (O

(1)
L , . . . , O

(d)
L ) to

be the shapes of I/O data. Assume I/O shapes have the same
number of dimensions for simplicity.

Dimension Functions
While these shapes can be constants, they are generally map-
pings that can be defined as a dimension function fL. Opera-
tion layer L can have several other properties such as depth,
stride, or bias values. Some or all of these properties may
influence OL, and they can be encapsulated in fL. A dimen-
sion function can therefore be abstracted as OL := fL(IL).

Equivalence Properties
NeuralArTS can centre around replacement/interchange of
operation layers. Let LA, LB ∈ U be arbitrary layers with
I/O dimensions (ILA

, OLA
) and (ILB

, OLB
) respectively.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13085



Definition 1 (Complete-Equivalence). LA and LB are com-
pletely equivalent if all of their properties are equivalent.
LA = LB ⇐⇒ (ILA

, . . . , OLA
) = (ILA

, . . . , OLB
).

Definition 2 (Type-Equivalence). LA and LB are consid-
ered type-equivalent if their I/O dimension functions are
equivalent. In other words, LA and LB belong to the same
type, τ . LA ∼ LB ⇐⇒ fLA

= fLB

Definition 3 (Instant-Equivalence). LA and LB are instant-
equivalent at input size I if their I/O dimension functions
intersect at I . LA ⊥I LB ⇐⇒ fLA

(I) = fLB
(I)

Sequential Compatibility
Let IL be the domain of acceptable input shapes into L, and
OL be the range of output shapes produced from L.
Definition 4 (Forward-Compatibility). LA is forward com-
patible to LB if all output shapes of LA are acceptable as
input to LB . LA → LB ⇐⇒ OLA

⊆ ILB

Definition 5 (Complete-Compatibility). LA is completely
compatible to LB if they’re mutually forward-compatible.
LA ↔ LB ⇐⇒ LA → LB ∧ LB → LA

These properties regarding sequential compatibility of LA

and LB are potentially useful in network construction; the
controller in ENAS can change to consider compatibility in
making direct and skip connections (Pham et al. 2018).

Generative Example: Convolutional Layers

∼ ∼

Figure 2: Type-equivalent convolutions that can be inter-
changed: a 5x5; a 7x7 with p = 1; and a 3x3 with d = 2.

Let S0 be the original ENAS search space (Pham et al.
2018) and C ∈ S0 be a convolution with kernel size k,
padding p, and dilation d. These properties dictate type-
equivalent convolutions. To test the efficacy of NeuralArTS,
we first added some type-equivalent dilated variants of con-
volutions to S0. We found that adding even a single such
convolution can outperform the baseline.

SEARCH SPACE VAL ACC TEST ACC
S0 (Baseline) 80.47% 74.67%

S0 + Conv(k = 3, p = 2, d = 2) 81.91% 78.64%

Table 1: Performance of ENAS with a dilated convolution.

f
(i)
C (I

(i)
C ) :=

⌊
I
(i)
C + 2p

(i)
C − d

(i)
C (k

(i)
C − 1)− 1

s
(i)
C

⌋
+ 1 (1)

We introduce a generation technique that, without loss of
generality, bounds two of (k′, p′, d′) to (K,P,D) and de-
rives the third using the convolution’s I/O dimension func-
tion f

(i)
C (I

(i)
C ) detailed in equation 1. Let (k, p, d) be the

properties of the original seed operation L0 ∈ τ . Let

(K,P,D) be the generation parameters, which include ex-
actly one None and two positive integer ranges (inclusive).
Algorithm 1 explores the Cartesian product of (K,P,D) to
produce candidate tuples (k′, p′, d′) of properties. Each tu-
ple’s None value is replaced and derived from the other two
values and the original properties (k, p, d).

Algorithm 1: GenerateTypeEquivalentConvs

1: let settings = []
2: assert (K,P,D).count(None) = 1
3: for (k′, p′, d′) ∈ (K × P ×D) do
4: if K = None then derive k′ = 2p′−2p−d(k−1)

d′+1

5: else if P = None derive p′ = d′(k′−1)
2

6: else if D = None derive d′ = 2p′

k′−1

7: if k′, p′, d′ ∈ N then settings.append((k′, p′, d′))
8: end for
9: return settings

Conclusion and Directions for Future Work
This generation method can be improved with “smarter” do-
mains of operation properties; if performance proves to be
continuous with respect to these properties, linear or man-
ifold optimization might help generate more refined search
spaces to speed up NAS. Another exciting prospect is that
NeuralArTS can act as a heuristic for pre-optimized search
spaces. It can naı̈vely eliminate completely-equivalent (or
even type-equivalent) operations in preprocessing. More
practical is changing the controller to modulate operation
likelihoods at the type (rather than operation) level. If per-
formance for types could be generalized, NeuralArTS can
also be used to hierarchize NAS by performing shallow type-
searches first, and then choosing random or “best” repre-
sentative(s) from each type. We hypothesize these directions
might lead to improvements of NAS algorithms.

Acknowledgements
We would like to thank George-Alexandru Adam & Chuan-
Yung Tsai for their comments and discussions that greatly
influenced this paper. We are also grateful to Qi Jia Gao for
assistance in the experimental setup. Finally, we thank the
ML Collective community for their continued support.

References
Coquand, T. 2018. Type Theory. The Stanford Encyclopedia
of Philosophy (Fall 2018 Edition), Edward N. Zalta (ed.).
Elsken, T.; Staffler, B.; Zela, A.; Metzen, J. H.; and Hutter, F.
2021. Bag of Tricks for Neural Architecture Search. arXiv
preprint arXiv:2107.03719.
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient Neural Architecture Search via Parameters Shar-
ing. In International Conference on Machine Learning,
4095–4104. PMLR.
Yu, K.; Sciuto, C.; Jaggi, M.; Musat, C.; and Salzmann, M.
2019. Evaluating the Search Phase of Neural Architecture
Search. arXiv preprint arXiv:1902.08142.

13086


