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Abstract

Monaural speech enhancement (SE) at an extremely low
signal-to-noise ratio (SNR) condition is a challenging prob-
lem and rarely investigated in previous studies. Most SE
methods experience failures in this situation due to three ma-
jor factors: overwhelmed vocals, expanded SNR range, and
short-sighted feature processing modules. In this paper, we
present a novel and general training paradigm dubbed repeti-
tive learning (RL). Unlike curriculum learning that focuses on
learning multiple different tasks sequentially, RL is more in-
clined to learn the same content repeatedly where the knowl-
edge acquired in previous stages can be used to facilitate cal-
ibrating feature representations. We further propose an RL-
based end-to-end SE method named SERL. Experimental re-
sults on TIMIT dataset validate the superior performance of
our method.

Introduction

Reducing background noise and improving the quality and
intelligibility of degraded speech has been a long-standing
topic in speech processing applications (Loizou 2013). Re-
cently, significant progress on this research topic has been
made with the involvement of deep learning paradigms (Tan
and Wang 2018). However, according to our knowledge,
monaural speech enhancement (SE) at extremely low SNR
conditions is rarely investigated in previous works.

Presently, three challenges restrict the performance of ex-
isting SE algorithms. First, for challenging acoustic scenar-
ios as low SNR conditions, current SE systems usually suf-
fer from performance bottlenecks in recovering clean speech
from mixtures (Li et al. 2021). Second, noise intensities in
real-world scenes change dynamically, which requires SE
systems to accommodate wide expansion of the SNR range
and raises the difficulty of the network design (Hao et al.
2020). The third problem is caused by the limited kernel size
of convolution layers, which often results in a short-sighted
feature extractor. It might severely decrease the performance
because the correlations of harmonics in the spectrogram are
mostly non-local, that is, the value at a base frequency is
strongly correlated with the values at its surrounding over-
tones.
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Methodology
SERL

The basic idea behind SERL is to take the advantage of
multi-stage learning to obtain deep-seated information, and
use these advanced features to provide guidance for shallow
information processing. SERL consists of two stages, and
the network architecture of each stage is identical. The dia-
gram of our proposed system is presented in Fig.1.

The input to the network is the magnitude spectrum after
the STFT operation, denoted by X,,,. Here X,, € RT*F*x1
is a real-valued spectrogram, where 7" represents the num-
ber of time steps and F' represents the number of frequency
bands.

Feature Extractor In a regular convolutional layer, a
fixed convolutional kernel is used for all speech spectra,
making it difficult for the model to cope with diverse en-
vironments. In view of this, we introduce dynamic convolu-
tion (Yang et al. 2019) to meet the requirement as well as
ease the computational burden. Since dynamic convolution
kernels are different in the same mini-batch, we need to fuse
kernels before composing a mini-batch. Compared to mix
multi-branch results at the feature map level, dynamic con-
volution is more efficient because the convolution is com-
puted only once per sample.

Bottleneck Layer Considering the importance of se-
quence modeling, we cascade 18 squeezed temporal con-
volutional modules (S-TCMs) (Li et al. 2021) as bottle-
neck layer. Compared with LSTMs, S-TCMs can obtain bet-
ter performance in temporal sequence processing. Fig.1 (d)
presents the architecture of S-TCM.

Spectrum Reconstructor 'We adopt the GLU formats and
use 2-D deconvolution operation to construct Deconv-GLU,
where the compressed features can be gradually interpolated
and restored to the original size.

Experiments
Dataset

Our experiments are conducted on the TIMIT corpus (Garo-
folo et al. 1993). Clean speeches are mixed with a large num-
ber of non-stationary noises from two public noise datasets.
We generate approximately 30 hours of data for training, 1.5
hours for validation, and 1 hour for testing.



____________________________________________________________________________________________

P e T e e e T T T e e

b
1
Lo Stage 1 1
1
i X Feature | | %%%% LR N
[ e Extractor ]| 15 = |5 ceonstructor
b n||»n n||n
[
| ST mmmmmmmmmmmm- R
! Recalibrate feature representations
e
[
1 | l
Vo Stage 2
1
1
P X Feature — % 5 5 % L Reconstructor [ S,
. i Extractor ElE Bl E e
ol x| |wn n||wx
1
o

(a) Feature Extractor (b) Reconstructor

Deconv-GLU

(c) Recalibration

Deconv-GLU

Sigmoid

Deconv-GLU

Deconv-GLU

Dy-Conv
Input

Conv Deconv-GLU | Deconvolution GLU
Dilated Convolution

Deconv-GLU

\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

| Previous Knowledge | Dy-Conv | Dynamic Convolution

.

____________________________________________________________________________________________

Figure 1: Workflow of SERL. The channel size of each layer is fixed to 64 except for S-TCMs (details in (Li et al. 2021)).

Performance Comparison

SEEN UNSEEN
Method
STOI(%) PESQ STOI(%) PESQ

Noisy 59.80 1.30 52.19 1.24
AECNN 77.86 2.07 59.23 1.53
PHASEN 78.03 1.99 54.40 1.44
CTS-Net 77.10 2.01 56.58 1.53
w/o RL 77.84 2.18 58.20 1.63
SERL 81.11 2.33 61.55 1.71

Table 1: Comparison of different methods.

Figure 2: Spectrum visualization under -15 dB.

We report the results of different methods in Tables 1. For
both seen and unseen noise cases, SERL achieves the best
results compared to recent state-of-the-art algorithms.
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As shown in Fig.2, the basic skeleton without RL is com-
parable with SERL in local information processing, but be-
comes worse in terms of long-term spectrum recovery (red
box in the figure). This finding supports our design of using
RL to provide global macro guidance.
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