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Abstract

Machine learning systems based on minimizing average er-
ror have been shown to perform inconsistently across impor-
tant subsets of the data, and this defect is not exposed by a
low average error for the entire dataset. In some social and
economic applications, where data represent people, this can
lead to discrimination of underrepresented gender, ethnic and
other groups. Distributionally Robust Optimization (DRO) at-
tempts to address this problem by minimizing the worst ex-
pected risk across subpopulations. We establish theoretical
results that clarify the relation between DRO and the opti-
mization of the same loss averaged on a weighted training
dataset. A practical implication of our results is that neither
DRO nor curation of the training set represent a complete so-
lution for bias mitigation.

Introduction

Machine learning algorithms are increasingly used to sup-
port real-world decision-making. Optimizing for the loss av-
eraged on the overall population can yield models that per-
form poorly on specific subpopulations, amplifying injus-
tices in our society (Chouldechova 2017).

Distributionally Robust Optimization (DRO) (Ben-Tal,
Ghaoui, and Nemirovski 2009) bridges two perspectives on
this problem. DRO seems to offer a promising solution be-
cause it minimizes the worst loss observed on multiple dis-
tributions (which e.g. represent each subpopulation). How-
ever, it can be shown that, under weak conditions, DRO is
closely related to minimizing average loss on some mixture
of those distributions — that is, a training set in which the
subpopulations have been weighted. Our contributions are:

1. We establish results that clarify the relation between
DRO and the optimization of the same loss averaged on

a correctly weighted training set.

. We also show that neither DRO nor curation of the train-
ing set are a complete solution of our initial problem due
to the implicit assumptions DRO makes on the data.

We use this mathematical understanding to provide a
minimal set of practical recommendations with which
to approach real-life bias mitigation. This is guided by
our results which show DRO is not applicable if we are
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unable to obtain an acceptable result with systems opti-
mized for each subpopulation alone.

Proofs and an extended discussion of the results and their
implications are included in the supplemental file.

DRO and Data Curation

Traditionally, training a machine learning model seeks pa-
rameters that minimize a risk Cp(w) that is the expecta-
tion of a loss function with respect to a single distribution
of training examples. Alas, even when the training distri-
bution is representative of the actual testing conditions, the
trained system might perform very poorly on selected sub-
sets of examples (Chouldechova 2017). In real life, this can
be a source of major injustice. DRO seemingly addresses
this problem by considering instead a collection Q of ‘train-
ing distributions’ and minimizing the expected risk observed
on the most adverse distribution:

i C .
min max p(w)

(D
We can introduce calibration coefficients rp that control
how we compare costs for different distributions:
min max (Cp(w) —rp) . (2)
For convex cost functions we already know that finding
a local minimum of the DRO problem (1) is equivalent to
minimizing the usual expected risk with respect to a single,
well-crafted, training distribution, because one can reformu-
late the DRO problem as a constrained optimization problem
and rely on standard convex duality results (Bertsekas 2009).
‘We show that similar results hold for the local minima of the
nonconvex costs typical of modern deep learning systems,
and also hold when the family Q is infinite.
Let ¢(z,w) be the loss of a machine learning model where
w € R? represent the parameters of the model and z € R"
are examples. The following theorem generalizes the result
by Arjovsky et al. (Arjovsky et al. 2019) by eliminating the
Karush-Kuhn-Tucker (KKT) conditions.

Theorem 1 (Finite case). Let Q = {P1,..., Pk} be a finite
set of probability distributions on R™ and let w* be a lo-
cal minimum of the DRO problem (1) or the calibrated DRO
problem (2). Let the costs Cp(w) = E,.p[l(z,w)] be dif-
ferentiable in w* for all P € Q. Then there exists a mixture
distribution Pyix = ), A\ Py such that VCp, (w*) = 0.
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When the collection @ is infinite (possibly uncountably)
but satisfies a tightness condition (Billingsley 1999), we can
still show that a DRO local minimum is a stationary point
for a well-crafted training distribution. Adversarial robust-
ness is an example of applying DRO on an infinite family of
distributions.

Theorem 2 (Infinite case). Let Q be a tight family of prob-
ability distributions on R™. Let w* be a local minimum of
problem (2). Let Qnix be the weak convergence closure of
the convex hull of Q. Let there be a bounded continuous
Sunction h(z,w) defined on a neighborhood V of w* such
that VCp(w) = B, plh(z,w)] for all P € Quix and such
that ||h(z,w) — h(z,w')|| < M|w — w'|| for almost all
z € R™ Then Qunix contains a distribution Py, such that

vap (w*) =0.

Conversely, we consider a local minimum of the expecta-
tion of the loss with respect to an arbitrary mixture of dis-
tributions from Q. Such a local minimum always is a local
minimum of a calibrated DRO problem.

Theorem 3 (Converse). Let Ppix = >, A\t Pr be an ar-
bitrary mixture of distributions P, € Q. If w* is a lo-
cal minimum of Cp,_ , then w* is a local minimum of the
calibrated DRO problem (2) with calibration coefficients
rp, = Opk (w*)

Proofs are given in the supplemental file.

Calibration Problems

The calibration constants r p might be a better way than mix-
ture coefficients Ap, to specify which performance discrep-
ancies are deemed acceptable across subpopulations because
there are useful reference points for choosing them. An in-
tuitive approach is to use the calibration constants 7% rep-
resenting the best performance we can reach with our ma-
chine learning model on each distribution P in isolation:
rp» = min,, Cp(w). Solving the DRO problem for these
calibration constants amounts to constructing a single ma-
chine learning system that performs nearly as well on each
distribution P as a system trained for distribution P alone.
Note that based on Theorems 1 and 3, regardless of the
chosen calibration constants, no DRO solution can achieve
a performance better than 7% on any distribution P. If this
were the case, it would mean that 7} was not correctly es-
timated, and the new performance would become the cor-
rected 7. This simple observation forms the basis for a min-
imal set of recommendations to machine learning engineers
who face the difficult task of constructing and deploying
bias-sensitive machine learning systems. These recommen-
dations (summarized in Inset 1) represent intuitively sensi-
ble steps that are supported by our mathematical insights.

Conclusion

Whether fighting bias in machine learning systems is a data
curation or an algorithmic problem has been the object of
much discussion. Our results clarify the relation between a
well-known algorithmic approach, DRO, and the optimiza-
tion of the expected cost on a well-crafted data distribution.
This analysis also clarifies that this well-crafted distribution
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Fighting bias with DRO: recommendations
1. Identify subpopulations P at risk (based on the
available data).

. For each subpopulation, and in isolation, determine
the best performance 7, that can be achieved with
the machine learning model of choice.

. Decide whether the 7}, represent an acceptable set
of performances. There is no point using DRO if this
is not the case. Instead, investigate why the model
performs so poorly on the adverse distributions (in-
sufficient data, inadequate model, etc) until obtain-
ing an acceptable set of rp, .

. Use DRO with calibration coefficients rp to con-
struct a single machine learning system (these are
the calibration coefficients).

. Deploy the system on an experimental basis in order
to collect more data. Sample the examples with the
lowest accuracy in order to determine whether we
missed a subpopulation at risk. If one is found, add
the vulnerable subpopulation to the initial data and
repeat all the steps.

Inset 1: Summary of practical recommendations.

is not universal but depends on often implicit details of the
DRO problem setup such as calibration constants.

Using DRO for fairness without a clear understanding of
its algorithmic limitations can have a negative societal im-
pact. Our recommendations aim to prevent misuses of DRO,
such as lowering performances on the remaining subpopula-
tions to match the error on the most difficult distribution. It
follows from our results that it is also necessary to address
the underlying problems in the most challenging distribu-
tion. We hope that our results and discussion will give more
context to the debate on the sources of bias in machine learn-
ing and help with bias mitigation in real-life scenarios.
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