Do We Need a New Large-Scale Quality Assessment Database for Generative Inpainting Based 3D View Synthesis? (Student Abstract)
DOI:
https://doi.org/10.1609/aaai.v36i11.21656Keywords:
3D View Synthesis, Perceptual Image Quality, InpaintingAbstract
The advancement in Image-to-Image translation techniques using generative Deep Learning-based approaches has shown promising results for the challenging task of inpainting-based 3D view synthesis. At the same time, even the current 3D view synthesis methods often create distorted structures or blurry textures inconsistent with surrounding areas. We analyzed the recently proposed algorithms for inpainting-based 3D view synthesis and observed that these algorithms no longer produce stretching and black holes. However, the existing databases such as IETR, IRCCyN, and IVY have 3D-generated views with these artifacts. This observation suggests that the existing 3D view synthesis quality assessment algorithms can not judge the quality of most recent 3D synthesized views. With this view, through this abstract, we analyze the need for a new large-scale database and a new perceptual quality metric oriented for 3D views using a test dataset.Downloads
Published
2022-06-28
How to Cite
Sadbhawna, . ., Jakhetiya, V., Subudhi, B. N., Shakya, H., & Mumtaz, D. (2022). Do We Need a New Large-Scale Quality Assessment Database for Generative Inpainting Based 3D View Synthesis? (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 13039-13040. https://doi.org/10.1609/aaai.v36i11.21656
Issue
Section
AAAI Student Abstract and Poster Program