Early Forecast of Traffic Accident Impact Based on a Single-Snapshot Observation (Student Abstract)
DOI:
https://doi.org/10.1609/aaai.v36i11.21644Keywords:
Graph Neural Network, Traffic Prediction, Graph WaveletAbstract
Predicting and quantifying the impact of traffic accidents is necessary and critical to Intelligent Transport Systems (ITS). As a state-of-the-art technique in graph learning, current graph neural networks heavily rely on graph Fourier transform, assuming homophily among the neighborhood. However, the homophily assumption makes it challenging to characterize abrupt signals such as traffic accidents. Our paper proposes an abrupt graph wavelet network (AGWN) to model traffic accidents and predict their time durations using only one single snapshot.Downloads
Published
2022-06-28
How to Cite
Meng, G., Jiang, Q., Fu, K., Lin, B., Lu, C.-T., & Chen, Z. (2022). Early Forecast of Traffic Accident Impact Based on a Single-Snapshot Observation (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 13015-13016. https://doi.org/10.1609/aaai.v36i11.21644
Issue
Section
AAAI Student Abstract and Poster Program