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Abstract

Current Heterogeneous Network Embedding (HNE) models
can be roughly divided into two types, i.e., relation-aware and
metapath-aware models. However, they either fail to repre-
sent the non-pairwise relations in heterogeneous graph, or
only capable of capturing local information around target
node. In this paper, we propose a metapath based multi-
level graph attention networks (MMAN) to jointly learn
node embeddings on two substructures, i.e., metapath based
graphs and hypergraphs extracted from original heteroge-
neous graph. Extensive experiments on three benchmark
datasets for node classification and node clustering demon-
strate the superiority of MMAN over the state-of-the-art
works.

Introduction
Heterogeneous Network Embedding (HNE) has been a chal-
lenging task due to multiple vertice and relation types and
diverse feature spaces of node content. Current HNE mod-
els can be roughly divided into two categories: relation-
aware and metapath-aware methods. Relation-aware meth-
ods(Zhang et al. 2019; Hu et al. 2020) directly aggregate
information from neighboring nodes, with attention mecha-
nism which assigns different weights for different relations.
However, due to the hop constraint, the information they
capture is somewhat local. Metapath-aware methods(Wang
et al. 2019; Fu et al. 2020) use metapath, a composite
relation between two vertices, to transform heterogeneous
graph into multiple homogeneous graphs, which can be then
learned by homogeneous GNNs. However, in most cases,
metapaths simultaneously connect over two end nodes, caus-
ing these models lose semantic integrity.

To address the limitations above, we introduce a novel
metapath based Multi-level Graph Attention Networks,
namely, MMAN. MMAN first constructs metapath-based
graph and hypergraph extracted from original heteroge-
neous graph and then hierarchically conducts graph-level
and hypergraph-level aggregation to generate more compre-
hensive node embeddings. We evaluate the proposed method
for node classification and node clustering on heteroge-
neous graphs. Experiment results show the superiority of our
model over the state-of-the-art works.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our Proposed Approach
Unifying Content Feature Space In order to project all
types of node features into the same latent space, we have
x′i = Wb · xi, where xi ∈ Rdb and x′i ∈ Rd are the
former and transformed features of node i, respectively.
Wb ∈ Rdb×d is the linear transformation matrix exclusively
for nodes of type b ∈ Bv .
Graph-level Aggregation Given a metapath based graph
GPs = {Vs, EPs } extracted from original heterogeneous
graph G, we first perform the aggregation on GPs to pre-
liminarily learn the local pairwise relations and obtain the
basic embeddings of the end nodes. Since each metapath
based neighbor of certain node shows different importance
in aggregation, we introduce attention mechanism to assign
weight coefficients to different neighbors. The generated
embeddings x∗ will be further processed in the hypergraph-
level attention.
Hypergraph-level Aggregation For metapath based hyper-
graph GPh = {Vh, EPh }, hypergraph-level aggregation is
composed of two components: intra hyperedge aggregation
and inter hyperedge aggregation. Intra hyperedge aggrega-
tion combine the information of nodes within the same hy-
peredge and incorporate it with intermediate path feature to
compute a single vector (metapath based hyperedge embed-
ding). Let x∗i be the i-th node vector, ej ∈ Ei indicates all
the hyperedges connected to it, vk ∈ ej is the node within
hyperedge ej and hτj is intermediate path feature. We have
hj = Fintra(hτj , {x∗k, ∀vk ∈ ej}), where Fintra indicates
intra hyperedge aggregation.

Inter hyperedge aggregation generates the target node
embedding by aggregating information of all the meta-
path based hyperedges connected to it. We have fPi =
Finter(x∗i ,hj , ∀ej ∈ Ei}), where Finter indicates inter hy-
peredge aggregation. Attention mechanisms are applied at
both steps of intra and inter hypergraph aggregation. Then,
MMAN concats all the metapath specific node embeddings
and generate final node embeddings fi = fP1

i ⊕ · · · ⊕ fPc
i .

Semi-supervised and Unsupervised Training Through the
multi-level graph aggregation schema above, we have ob-
tained the low-dimension embeddings for all the nodes in
heterogeneous graph. For semi-supervised learning, with the
guide of a small fraction of labeled nodes, we apply cross
entropy between the output prediction and labels as the loss
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Figure 1: Quantitative results on node clustering task.

function, formulated as:

L = − 1

|Bv|
∑
b∈Bv

1

|Vb|
∑
i∈Vb

yilog(ỹi), (1)

where Bv is node type set, yi is the one-hot label vector of
node i and ỹi is the predicted probability vector generated
by Multi-Layer Perceptron (MLP):ỹi = MLP (fi).

For unsupervised learning, we propose a hyperedge nega-
tive sampling loss function as followed:

L = −
∑
e∈E

σ(
∑
µ∈e

logfµ)−
∑
e′∈E−

σ(
∑
µ′∈e′

−logfµ′). (2)

where E is the set of observed hyperedges, while E− is the
set of negative hyperedges sampled from unobserved hyper-
edges.

Experiments
Dataset and Baseline Algorithms We evaluate our pro-
posed model on three real-world datasets:DBLP, AMiner
and IMDB. We compare MMAN with seven state-of-
the-art embedding methods including two homogeneous
graph embedding, i.e. GCN(Kipf and Welling 2017) and
GAT(Veličković et al. 2018), one heterogeneous hypergraph
embedding method, i.e., DHNE(Tu et al. 2018) and four
heterogeneous graph embedding methods, i.e., HAN(Wang
et al. 2019), MAGNN(Fu et al. 2020), HGT(Hu et al. 2020)
and HetGNN(Zhang et al. 2019).
Parameter Settings MMAN is trained for 100 epochs with
early stopping strategy. The graph attention and hypergraph
attention component both consist of one layer with hidden
units set to 128 and 64, respectively. We set learning rate to
0.005 for DBLP and IMDB and 0.01 for AMiner, respec-
tively. The number of attention head T is 8 and dropout
rate is 0.5. We utilize L2 regularization to avert overfitting
and set weight decay to 0.001. We split 20% nodes as train-
ing set, 10% as validation set and others as test set for all
datasets. For baseline models, we optimize their hyperpa-
rameters with validation sets, separately.
Node Classification Performance As Table 1 shows,
MMAN outperforms all the baselines on all three evalu-
ation datasets, which demonstrates the superiority of our
method on node classification task. On IMDB and AMiner,
MMAN outperforms the second to best baseline HAN by
4%˜12%, which demonstrates the rich information gain in
embedding process provided by the structure and feature
content embedded in intermediate path. Compared with the
most competitive baseline MAGNN, MMAN has 4%˜6%

Dataset DBLP AMiner IMDB
Metrics(%) Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

GCN (b1) 90.15 89.56 90.23 90.48 49.78 45.73
GAT (b2) 91.56 91.11 90.78 91.56 55.28 49.44

DHNE (b3) 79.46 78.84 80.68 79.55 42.23 43.64
HetGNN (b4) 88.10 87.95 89.83 90.06 50.12 51.56

HGT (b5) 91.00 90.82 93.59 92.97 58.43 57.79
HAN (b6) 92.33 91.69 92.74 92.68 56.73 54.03

MAGNN (b7) 92.15 92.20 93.24 92.67 59.85 59.43
MMAN 93.37 93.15 96.86 96.62 60.42 60.53

Table 1: Experiment results on node classification task

improvement over it, which strongly proves the effective-
ness to concern multiple relations when encoding metapath
instances. As for DBLP, MMAN outperforms the best base-
line MAGNN by 1%˜2%.
Node Clustering Performance We also conduct node clus-
tering task. We extract the latent embeddings of labeled
nodes from trained models and feed them into K-Means
algorithm. Normalized mutual information (NMI) and ad-
justed rand index (ARI) are used as the evaluation metrics.
The results are showed in Figure 1. It’s clear to see that
MMAN consistently outperforms the other baselines on all
three datasets.

Conclusion
This paper proposes a metapath based multi-level graph at-
tention networks (MMAN) for heterogeneous graph em-
bedding. The experiment results on node classification and
clustering tasks demonstrate the superiority of MMAN over
seven state-of-the-art algorithms.
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