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Abstract

While AI planning and Reinforcement Learning (RL) solve
sequential decision-making problems, they are based on dif-
ferent formalisms, which leads to a significant difference in
their action spaces. When solving planning problems using
RL algorithms, we have observed that a naive translation of
the planning action space incurs severe degradation in sam-
ple complexity. In practice, those action spaces are often en-
gineered manually in a domain-specific manner. In this ab-
stract, we present a method that reduces the parameters of
operators in AI planning domains by introducing a param-
eter seed set problem and casting it as a classical planning
task. Our experiment shows that our proposed method signif-
icantly reduces the number of actions in the RL environments
originating from AI planning domains.

Introduction
Recent success stories in Reinforcement Learning (RL) have
renewed the interest in applying RL algorithms for solv-
ing AI planning tasks, as these tasks can be cast as a goal-
oriented Markov decision process (MDP). The action space
of an RL environment is then often obtained by a direct
mapping from grounded PDDL (Planning Domain Defini-
tion Language) operators. The number of actions in the RL
environment then rapidly grows as the number of objects in
a planning task increases, which significantly degrades the
performance of RL algorithms. To alleviate the issue, re-
searchers have manually engineered the problem domains,
either by generating the action space for the MDP indepen-
dently from the PDDL action schema (Dzeroski, Raedt, and
Driessens 2001), or by reducing the parameters of the PDDL
action schema (Silver and Chitnis 2020). In this abstract, we
define redundant parameters of action operators from the RL
perspective and present an automated method of identifying
these parameters using lifted mutex groups (Fiser 2020).

Preliminaries
In this section, we introduce notations for the normalized
PDDL tasks and lifted mutex groups. A normalized PDDL
task Π:=〈L,O, I, G〉 is defined over a first-order language
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L, a finite set of schematic operatorsO, an initial state spec-
ification I , and a goal specification G. A schematic operator
o := 〈head(o), pre(o), add(o), del(o)〉 consists of the atom
head(o) indicating the name of the operator, the precondi-
tions pre(o), the add effects add(o), and the delete effects
del(o). We denote parameters of operator o by params(o).
An operator with an empty parameter set is called ground
operator, and its head is a ground atom. We use notation
o↓(P/a) to denote a set of ground operators induced by as-
signing constants a to a subset of parameters P and ground-
ing the remaining parameters with all possible constants.
A plan for the normalized PDDL task Π is a sequence of
ground operators leading the initial state to a goal state.

A mutex group M is a set of mutually exclusive ground
predicates in any state s. For example, consider a grip-
per domain where a ball b1 can be placed in either room
r1 or r2. Then, {at(b1, r1), at(b1, r2)} is a mutex group
since the ball b1 can only be in one of the rooms in
any state. A lifted mutex group (LMG) is a lifted pred-
icate that produces mutex groups when grounded. For-
mally, an LMG is a tuple 〈vf , vc, atom〉 with a finite set
of fixed variables vf , a finite set of counted variables vc,
and a finite set of atoms, atom. Let’s consider an LMG
l :=〈{?ball}, {?room}, at(?ball, ?room)〉 in the gripper do-
main where a robot with two grippers moves two balls b1
and b1 between two rooms r1 and r2. We can obtain two
mutex groups: (1) l↓(?ball/b1) = {at(b1, r1), at(b1, r2)}
by assigning b1 to the fixed variable ?ball and ground-
ing the count variable ?room, and (2) l↓(?ball/b2) =
{at(b2, r1), at(b2, r2)} by assigning b2 to the fixed variable
?ball. Note that different groundings of fixed variables vf (l)
result in different sets of ground atoms, and the groundings
of the counted variables vc(l) generate the ground atoms
within the mutex group. We say a lifted mutex group l is
relevant to the schematic operator o if atom(l) ∈ pre(o),
and Fiser (2020) provides a method for identifying a set of
LMGs given a PDDL task Π.

Proposed Approach
The motivation of our work is to reduce the action space of
an AI planning task, described as a goal-oriented MDP for
RL. The set of RL actions L of such an MDP is composed
of operator labels, one for each ground planning operator.
We identify an assignment of labels to planning operators
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such that it generates a smaller label set L′, while produc-
ing an equivalent transition system. We start by defining a
valid label reduction. Next, we present a parameter seed set
problem, and show the PDDL encoding for the problem.

Given two sets of labels L and L′, a label reduction from
L to L′ is valid if, for each reachable state, L′ distinguishes
any two outgoing transitions that are distinguished by L.
From the planning perspective, at most one operator that cor-
responds to a reduced label may be applicable in a reachable
state s. Formally, a set of operatorsO′ ⊆ O is an applicable
operator mutex group (AOMG) if |{o | s |= pre(o), o ∈
O′}| ≤ 1 for any reachable state s. Naturally, a partition-
ing of operators into AOMGs defines a valid operator label
reduction, and vice versa. Here, we find AOMGs separately
for each lifted schematic operator, by removing some pa-
rameters from the schematic operator. For example, consider
a lifted schematic operator pick(?ball, ?room, ?gripper)
with three parameters {?ball, ?room, ?gripper} in the grip-
per domain with two balls and two grippers. Since a gripper
cannot be placed in different rooms in the same state, one
possible set of AOMGs is a partition of the ground operators
according to the assignments to the subset {?ball, ?gripper}
of all parameters, {{pick(b1, r1, g1), pick(b1, r2, g1)}, . . . ,
{pick(b2, r1, g2), pick(b2, r2, g2)}}.

Given a lifted schematic operator o and an LMG l =
〈vf (l), vc(l), atom(l)〉, if atom(l) ∈ pre(o), a set of ground
operators o↓(X/c) induced by assigning any constants c
to X = params(o) \ vc(l) is an AOMG. If assignments to
the fixed variables vf (l) are known, the assignments to the
counted variables vc(l) can be uniquely identified in a state.
Once these parameters are identified, their values are known,
another LMG l′ could be used to uniquely identify its own
vc(l′). Thus, we can iteratively reduce the subset of param-
eters that are required to be known. We formulate this itera-
tive process as the following parameter seed set problem.

Input: A schematic operator o with parameters params(o)
and a set of relevant lifted mutex groups L.
Find: A subset X ⊆ params(o) of parameters such that
there exist X1, . . . Xk with (i) X = X1 ⊆ X2 ⊆ . . . ⊆
Xk = params(o), and (ii) Xi+1 = Xi ∪ vc(l) for some
l ∈ L with vf (l) ⊆ Xi.

Observe that any assignment to the solution of the parameter
seed set problem corresponds to an AOMG.

To solve the parameter seed set problem, we encode it as
a planning task Πo = 〈Lo,Oo, Io, Go〉. The Lo contains a
single predicate mark and a constant symbol for each pa-
rameter in params(o). The set of operators Oo consists of
two schematic operators seed and getl, one per each rel-
evant LMG l, where seed :=

〈
seed(x), ∅, {mark(x)}, ∅

〉
and getl :=

〈
getl,{mark(x) |x ∈ vf (l)}, {mark(y) | y ∈

vc(l)}, ∅
〉
. The initial state Io is an empty set ∅, and the goal

is Go = {mark(x) | ∀x ∈ params(o)}. Each plan π can be
associated with Xπ = {c | seed(c) ∈ π}, which is a set
of constants extracted from the ground operators seed(c) of
the plan π. This subset Xπ of params(o) is a solution to the
parameter seed set problem. For a schematic operator o, as-
signing any constants c to the seed-set X of its parameters
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Figure 1: Reduction of Action Labels.

results in a set of ground operators o↓(X/c) that is guaran-
teed to be an AOMG. Hence, all operators in that set can be
assigned the same label when forming the MDP.

Evaluations and Conclusion
We implemented our approach using CPDDL for finding
lifted mutex groups (Fiser 2020) and the Forbid-Iterative
unordered top-quality planner (Katz, Sohrabi, and Udrea
2020) to find parameter seed-sets X . We evaluated fourteen
AI planning domains from International Planning Competi-
tions, and reported the reduction in the number of RL actions
in Figure 1. For each problem instance, the x-axis shows the
number of grounded operator labels before the reduction and
the y-axis shows the number of reduced labels. Our approach
shows a substantial reduction of the label set, going beyond
2 orders of magnitude on some instances. To evaluate the
advantage of the action space reduction, we translated the
PDDL task to a goal-oriented MDP with the reduced label
set, and trained DDQN RL agents on four AI planning do-
mains, Blocks, Ferry, Gripper, and Logistics. We observed
that the reduction of action labels improved sample effi-
ciency by approximately 300, 000 steps in Ferry and Grip-
per domains, and more than 500, 000 steps in Blocks and
Logistics. Overall, our preliminary evaluation shows that the
presented approach significantly reduced action spaces, re-
sulting in improved sample efficiency of RL algorithms.
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