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Abstract

Point cloud has gained a lot of attention with the availabil-
ity of large amount of point cloud data and increasing ap-
plications like city planning and self-driving cars. However,
current methods, often rely on labeled information and costly
processing, such as converting point cloud to voxel. We pro-
pose a self-supervised learning approach to tackle these prob-
lems, combating labelling and additional memory cost is-
sues. Our proposed method achieves results comparable to
supervised and unsupervised baselines on widely used bench-
mark datasets for self-supervised point cloud classification
like ShapeNet, ModelNet10/40.

Introduction
Existing approaches for deep learning on point cloud are
based on supervised learning or generative models like GAN
and autoencoder (Wu et al. 2017; Yang et al. 2018; Qi et al.
2017a). A couple of attempts have been made for contrastive
learning on point cloud (Zhang and Zhu 2019). Still, they
mainly depend on a sampling of positive and negative pairs
and require point cloud to be converted into voxel or need 2d
images of point cloud, which takes additional memory. We
propose an approach to directly utilize the irregular point
cloud without converting it into voxel.

Our Contributions:
• To the best of our knowledge, we are the first to apply

graph contrastive learning on the point cloud data.
• We propose a novel self-supervised learning pretraining

approach to combat challenges associated with current
supervised approaches for point cloud.

• Through an extensive set of experiments, we validate the
proposed method’s efficiency and achieve results compa-
rable to supervised techniques designed for point cloud.

Proposed Method
Our architecture is similar to MERIT (Jin et al. 2021),
and can be divided into three parts: augmentation, encoder-
projector-predictor and multi-scale contrastive learning.
Given a point cloud p = {x1, x2....xn}, where xi ∈ Rd
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Figure 1: view1 and view2 are two augmented views of in-
put, employed by fθ and fϵ for learning representation rθ
and rϵ by utilizing cross-model and cross-view loss. gθ, gϵ
and qθ are the two-layer MLPs. sg is stop gradient.

and d=3 represents 3D point from set of point clouds P .
Our model first produces two augmented views from x and
then processes them using online and target encoder which
generate representation Yθ = fθ(view1), Zθ = gθ(Yθ) and
Yϵ = fϵ(view2), Zϵ = gϵ(Yϵ) and similarly for cross-views.
The target encoder outputs Z1 and Z2 representation for
each view. Online encoder’s projected output is then pass to
predictor qθ which generates H1 = qθ(Z1) and H2 = qθ(Z2).
Now cross-view and cross-model contrastive loss utilizes
H1, H2 and Z1, Z2 while performing multi-scale bootstrap-
ping of representations, similar to MERIT (Jin et al. 2021),
as shown in Fig. 1. Once the model is trained we can use
learned representation Yθ for our downstream tasks.

Augmentation In contrastive learning, selecting the right
augmentation is very important. Through our experimental
studies we choose the following series of augmentation for
each view: For view1 we first rotate the input randomly fol-
lowing by jitter, scale and finally shifting. For view2 we first
rotate by 45◦ following by jitter and shuffle.

Cross-Model Learning Cross-model contrastive learning
uses pairs from two different models, online and target.

L1
cn(pi) = − log

exp(sim(h1
pi
, z2pi

))∑N
j=1 exp(sim(h1

pi
, z2pj

))
, (1)
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In above equation h1
pi
∈H1, z2pi

∈ Z1 and sim(.) denotes co-
sine similarity. (h1

pi
, z2pj

)+ is the positive pair which attracts
two same point-nodes representation from different views
of different encoders. The parameters ϵ of target network
updates as an exponential moving average of the online en-
coder parameters θ, i.e. ϵ← τϵ+(1−τ)θ. We also construct
extra negative pair (h1

pi
, z2pj

)− which act as regularizer for
our loss. Similarly L2

cn(pi) can be calculated in a similar
fashion. By combining L1

cn(pi) and L2
cn(pi) we get:

Lcn =
1

2N

N∑
i=1

(L1
cn + L2

cn) (2)

Cross-View Learning Cross-view contrastive learning
discriminates the pair representations from two views in the
online encoder which acts as strong regularizer to our loss.

L1
inter(pi) = − log

exp(sim(h1
pi
, h2

pi
))∑N

j=1 exp(sim(h1
pi
, h2

pj
))
, (3)

L2
inter(pi) for view2 can be obtained in similar fashion.

L1
intra(pi) = − log

exp(sim(h2
pi
, h1

pi
))

exp(sim(h2
pi
, h1

pj
)) + γ

. (4)

L2
intra(pi) for view2 can be obtained in similar fashion. γ

denotes cumulative sum of similarity of negative pairs. By
combining inter- and intra- loss we get:

Lcv =
1

2N

N∑
i=1

(L1
cv + L2

cv) (5)

End-to-End Learning We combine cross-model and
cross-view contrastive loss and defined overall loss as:

L = βLcv + (1− β)Lcn (6)

Where β is the balance factor. Cross-view and cross-
model contrastive routes, act as regularizer and enrich self-
supervised signal during optimization.

Experiments and Discussion
We conducted two experiments. First, we performed self-
supervised (SS) training on our model on the ShapeNetCore
(Chang et al. 2015) dataset, having 55 common object cate-
gories with about 51,300 unique 3D models for 150 epochs.
In the second experiment, we performed SS-training on our
model for 150 epochs on a relatively smaller dataset, Mod-
elNet40, containing 12,311 prealigned shapes from 40 cat-
egories. We use only train split (9,843) for the SS-training.
We use DGCNN(Wang et al. 2019) as our encoder throught
all experiments. For downstream tasks in both experiments,
we use ModelNet10 and 40. We use the standard linear eval-
uation protocol to evaluate our model

Ablation study To understand effect of cross-view and
cross-model learning we train our model w/o cross-view and
cross-model, and show results in Table 1.

Methods ModelNet40 ModelNet10

Linear Linear
3D-GAN (Wu et al. 2017) 83.3% 91.0%

Latent-GAN (Achlioptas et al. 2018) 85.7% 95.3%
FoldingNet (Yang et al. 2018) 88.4% 94.4%

ContrastNet (Zhang and Zhu 2019) 84.1% 91.0%
PointNet (Qi et al. 2017a) 89.2% 77.6%

PointNet++ (Qi et al. 2017b) 90.7% -
DGCNN (Wang et al. 2019) 92.9% -

Ours on S 89.36% 94.28%
Ours on S (10%) 86.75% 90.85%

Ours on M 90.22% 93.30%
Ours on M(10%) 88.17% 91.87%

Ours w/o Cross-view on S 87.43% 92.56%
Ours w/o Cross-model on S 88.70% 93.01%

Table 1: Performance of our model on ModelNet40 and Model-
Net10 dataset for Linear evaluation. ‘S’ and ‘M’ denotes ShapeNet
and ModelNet40 respectively. 10% denotes that only 10% data is
used for training of downstream model.

Conclusion
This paper proposed a novel self-supervised learning ap-
proach for point cloud and achieved comparable results to
supervised techniques.
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