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Abstract

This paper exploits self-supervised learning (SSL) to learn
more accurate and robust representations from the user-item
interaction graph. Particularly, we propose a novel SSL model
that effectively leverages contrastive multi-view learning and
pseudo-siamese network to construct a pre-training and post-
training framework. Moreover, we present three graph aug-
mentation techniques during the pre-training stage and ex-
plore the effects of combining different augmentations, which
allow us to learn general and robust representations for the
GNN-based recommendation. Simple experimental evalua-
tions on real-world datasets show that the proposed solution
significantly improves the recommendation accuracy, espe-
cially for sparse data, and is also noise resistant.

Introduction
More recently, graph neural networks (GNNs)(Wu et al.
2020) are widely adpoted in the recomender system and re-
sult in the state-of-the-art recommendation performance (He
et al. 2020). However, GNNs and their variants used in
recommendation tasks are confronted with several limita-
tions (Wu et al. 2021): (1) Data sparsity: The observed in-
teractions are extremely sparse w.r.t. the entire space, mak-
ing it difficult for GNN models to learn high-quality rep-
resentations; (2) Noisy interactions: Observed interactions
like views and clicks are usually noisy, e.g., a user clicks a
item by mistake. Unfortunately, GNNs are based on neigh-
borhood aggregation schemes that may exaggerate the im-
pact of noisy interactions in representation learning.

We alleviate these limitations by leveraging self-
supervised signals extracted from the user-item graph to
improve representation learning. Specifically, we propose a
novel framework called Contrastive Multi-view Pre-training
and Pseudo-Siamese Post-training framework (CMP-PSP)
for graph-based recommendation. Firstly, CMP-PSP uses
contrastive learning techniques (Chen et al. 2020) to pre-
train general user and item embeddings representing each
user/item’s unique attribute. We propose to sub-sample and
augment the subgraphs, and consider three data augmen-
tation strategies, including node perturbation (it randomly
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throws away a certain part of vertices along with their con-
nections), edge noising (it adds and drops a certain ratio
of edges), and embedding masking (it masks a certain part
of subgraph’s ID embeddings), to transform the user-item
subgraph into different views. With the debiased contrastive
loss, we optimize the model parameters to maximize the
similarity between representations of the same node from
different augmented views. In the post-training stage, we
adopt a pseudo-siamese network to augment representations
for downstream recommendation tasks.

Methodology
Contrastive Multi-view Pre-Training (CMP): It consists
of the following three components: (1) an augmentation
mechanism that transforms a sampled subgraph into two cor-
related views of the same subgraph; (2) two dedicated sub-
graph GCNs as the graph encoders to obtain node represen-
tation h = GCN(G̃, Ẽ). Ẽ denotes embeddings of the corre-
sponding nodes in the subgraph G̃. They are followed by a
shared MLP. We use MLP with one hidden layer to obtain
z = W (2)σ(W (1)h); and (3) the debiased contrastive loss
that determines whether the two representations are derived
from the same data points. Specifically, we randomly sam-
ple a subgraph from the original graph G. Then we apply
devised augmentation operations to this subgraph to obtain
two different augmented views, containing 2N users and
2M items. Following (Chen et al. 2020), for each user u, we
treat the same user u in the different views as the positive
pairs (zi

u, z
j
u), and treat other 2(N − 1) users as the nega-

tive pairs. Then the loss function for a positive pair (zi
u, z

j
u)

is defined as:

Luser = − log
exp(s(zi

u, z
j
u)/τ)∑2N

k=1 1[k 6=i,j]exp(s(zi
u, z

k
u)/τ)

, (1)

where s(·) measures the similarity between two representa-
tions and is set as s(u, v) = cos(u, v) = u>v/‖u‖‖v‖,
1[k 6=i] ∈ {0, 1} is an indicator function, and τ is the temper-
ature parameter. Analogously, we obtain the contrastive loss
of the item side Litem.

Here, we also consider the relation between a user and
an item in the representation process. Generally, items that
have not been interacted with are treated as the negative sam-
ples. However, there may exist false negative items; that is,
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some negative items might be potential positive items that
the user likes. To alleviate this problem, we leverage the de-
biased contrastive loss (Chuang et al. 2020) to approximate
the distribution of negative examples. For each user u, the
loss needs to be optimized becomes:

Litem
user =

N∑
l=1

− log
exp(s(zl

u, z
j
i )/τ)

exp(s(zl
u, z

j
i )/τ) + Lg′

,

g
(
zl
u, z

j
i ,
{
zk
i

}L
k=1

)
=

1

1− τ+

(
1

L

L∑
k=1

(N )− τ+LP

)
,

g′
(
zl
u, z

j
i ,
{
zk
i

}L
k=1

)
= max

{
g
(
zl
u, z

j
i ,
{
zk
i

}L
k=1

)
, e−

1
τ

}
,

where L = M − 1. Here a sampled negative item may
comes from the positive items with a probability 1 − τ+.
N = exp(s(zl

u, z
k
i )/τ) andP = exp(s(zl

u, z
j
i )/τ). Finally,

we can summarize the objective of the pre-training:Lssl =
Luser + Litem + Litem

user.
Pseudo-Siamese Network for Post-Training (PSP): Us-
ing the pseudo-siamese network architecture, similar model
structure may have different parameters, enabling our model
to learn meaningful representations of the different input
separately and combine them at a higher level. Afterwards,
we concatenate the learned user and item features to form
richer augmented representations for prediction. Here, the
prediction is defined as the inner product of the final user
and item representations: ŷui = hTuhi.

To learn model parameters, we employ the Bayesian Per-
sonalized Ranking (BPR) loss, which is a pairwise loss that
enforces the prediction of an observed interaction to be
higher than its unobserved counterparts:

LBPR = −
n∑

u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) + λ‖Θ‖2, (2)

where λ controls the L2 regularization strength, Θ denotes
the set of model parameters, and Nu denotes the set of items
that are interacted by user u.

Results
Performance Comparisons: Table 1 shows the overall per-
formance comparison results. Compared to NGCF (Wang
et al. 2019) and LightGCN (He et al. 2020) (the best
GCN-based CF baseline), CMP-PSP achieves 3.71% on Re-
call@20, 4.52% on NDCG@20 for the Gowalla dataset. The
improvement is attributed to CMP-PSP’s ability to alleviate
the data sparsity and noisy interactions issues in user-item
interaction learning with self-supervised signals.
Model Robustness: We conduct an experiment to investi-
gate CMP-PSP’s robustness to the data sparsity. The results
are summarized in the Figure 1. To verify CMP-PSP’s ro-
bustness to data sparsity, we use different proportions of
the entire training set. We can find that the performance of
LightGCN and SGL-ED deteriorates greatly when using less
training data. However, the performance of CMP-PSP de-
creases slightly with less training data. This result indicates
that CMP-PSP is able to alleviate the data sparsity problem

Dataset Gowalla

Method Recall NDCG

NGCF 0.1569 0.1327
LightGCN 0.1810 0.1524
SGL-ED 0.1835 0.1539

CMP-PSP 0.1877 0.1593

Table 1: Overall Performance Comparisons.

Figure 1: Impact of sparse data. The bars represent Re-
call@20 values and the polylines denote the performance
degradation gain.

greatly. We attribute this result to the ability of CMP-PSP
to figure out useful interactions and reduce dependence on
certain edges by comparing different augmented views of
nodes.
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