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Abstract

This paper considers a multi-state Log Gaussian Cox Process
(“LGCP”) on a graph, where transmissions amongst states are
calibrated using a non-parametric approach. We thus consider
multi-output LGCPs and introduce numerical approximations
to compute posterior distributions extremely quickly and in a
completely transparent and reproducible fashion. The model
is tested on historical data and shows very good performance.

Introduction
Our paper builds on (Álvarez et al. 2010; Aglietti,
Damoulas, and Bonilla 2019) and considers Log Gaussian
Cox Processes to model the movements of agents across
multiple states in a graph. Our viewpoint is mostly practical,
as it is key to have access to closed-form and numerically
stable expressions that can be implemented, run and checked
extremely quickly by specialists and non-specialists alike.

Contributions First, we define a graph Log Gaussian Cox
Process, which corresponds to estimating the probability
structure of a probabilistic graphical model (“PGM”) at the
population level via a multi-output LGCP, and extend results
from the single-state case. Second, we derive novel pseudo-
closed form expressions for the posterior distribution of the
graph LGCP, thus enabling quick and reproducible compu-
tations and avoiding the computational burden of existing
techniques.

Graph Log Gaussian Cox Process
For the sake of simplicity, we limit ourselves to a basic di-
rected graph representing the path of agents seeking to ac-
complish a given task. Indeed, we consider time series (over
t = 1, · · · , T periods) of count data, St, It, Rt and Dt, rep-
resenting the count of agents in, respectively, the Start, In-
terim, Result and Drop-Out states. In addition, we consider
the changes in those quantities and denote those by lower-
case letters, so that it := It − It−1 represents the number
of newcomers in the interim state in period t. In keeping
with the literature (as we generalise (Møller, Syversveen,
and Waagepetersen 1998)), we posit Poisson-type dynamics
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Figure 1: A simple Graph Log Gaussian Cox Process.

for the daily changes in states’ populations:

it ∼ Pois(λt), rt ∼ Pois(γt), dt ∼ Pois(δt), (1)

where λt, γt, δt are (random) hazard rate functions. Impor-
tantly, this is a macro-level model in the sense that it ignores
more refined segments in the population of agents or indi-
vidual features and considers the overall population flows.
However, our setup can be extended to more structured pop-
ulations.

We now specify the functions λt, γt, δt as exponentials
of GPs, or Gaussian processes (Rasmussen and Williams
2006):
• log λt = fλt ∼ GP(Kλ)

• log γt = fγt ∼ GP(Kγ)

• log δt = fδt ∼ GP(Kδ)1.
Thus, we model the latent features as GPs and use time as
well as additional state-dependent features as inputs to the
covariance matrix. 2 We denote by f ξ the T × 1 vector of
latent features for each ξ = λ, γ, δ, by yξ the related vec-
tor of counts3 (i.e., new interim, new result or new drop-out
agents), and the corresponding T × T kernel matrix by Kξ.

Deriving the Posterior Distribution
For ξ = λ, γ, δ, since yξt |ξt ∼ Pois(ξt) for t = 1, · · · , T ,
the posterior distribution of the latent feature vector f ξ, con-

1We use GP(Kξ) as shorthand notation for a Gaussian Process
with zero mean whose kernel matrix entries depend on a chosen
kernel and a given input feature vector. We could consider a multi-
output GP introducing dependence amongst the different states.

2For the sake of simplicity, we choose an RBF kernel and a zero
mean function for the GPs but obtained very similar results with a
Matern 3/2 kernel. We also explored a multi-output LGCP.

3For instance, yλ = [i1, · · · , iT ]T .

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12923



ditional on the observed vector of counts yξ, is simply

p(f ξ|yξ) ∝ exp
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yξ

T
f ξ −
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ef
ξ
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(
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)T
Kξ−1 (

f ξ −mξ
) )
, (2)

as indicated in (Diggle et al. 2013). Because this posterior
distribution is not tractable, one must resort to numerical or
probabilistic techniques to derive it.

Local Laplace: A Closed-Form Approximation
We introduce a new technique related to the Laplace approx-
imation, but allowing to bypass any optimisation step to de-
rive closed-form expression. Indeed, the posterior distribu-
tion p(f ξ|yξ) can be approximated by:

p(f ξ|yξ) = φµξ,Σξ(f
ξ), (3)

where φµξ,Σξ is the multivariate Gaussian density with the
parameters (where f̂ ξt = log(yξt ) and Hξ = diag(yξ)):

µξ = Σξ
(
Kξ−1

mξ + Hξ f̂ ξ
)

Σξ =
(
Kξ−1

+ Hξ
)−1

.

Total Count Probabilities
Supposing now that we have derived a (Gaussian) posterior
distribution, say fξt = log ξt ∼ N(µξ,t, σ

2
ξ,t), and since

yξt |ξt ∼ Pois(ξt), we can derive an approximate distribution
of yξt , for ξ = λ, γ, δ:

P
(
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(4)

where αξt = 1

e
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and βξt = e
−

µξ,t+σ2ξ,t2


e
σ2
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, thanks to

matching moments of Gamma and lognormal distributions.
Importantly, this is a (simple) negative binomial distribution.
Thus, combining our proposed local Laplace approximation
with this expression implies that all quantities of interest are
available in closed-form and do not require any optimisation.

Results and Benchmarking Exercise
Techniques such variational inference (“VI”) or Markov
Chain Monte Carlo (“MCMC”) are usually employed (Ras-
mussen and Williams 2006; Teng, Nathoo, and Johnson
2017) to derive posterior distributions. To test our analytical
approach, we have thus run MCMC, VI, the Laplace approx-
imation and our proposal on the “Road casualties in Great
Britain” data (Harvey and Durbin 1986)4. (For the sake of
brevity, only the number dt of killed drivers is shown here).

4Being a “driver”, a “killed driver” and a “killed van driver” are
considered as states.

Figure 2: Time series of new deceased drivers dt per quarter
in Britain, 1969-1986, realised and estimated via different
techniques.

Discussion
LGCPs are useful tools for modelling, as combining agent
dynamics on a graph with a Bayesian non-parametric cali-
bration results in a flexible and yet parsimonious tool. We
have shown that such a framework yielded very good empir-
ical results. We have introduced a number of numerical ap-
proximations that allow fast, reproducible and robust com-
putations of the posterior distribution, and thus the distribu-
tion of the agent population on the graph.
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