PESTO: Switching Point Based Dynamic and Relative Positional Encoding for Code-Mixed Languages (Student Abstract)

Authors

  • Mohsin Ali IIIT Sri City, India
  • Sai Teja Kandukuri IIIT Sri City, India
  • Sumanth Manduru IIIT Sri City, India
  • Parth Patwa UCLA, USA
  • Amitava Das Wipro AI Labs, India AI Institute, University of South Carolina, USA

DOI:

https://doi.org/10.1609/aaai.v36i11.21587

Keywords:

Word Embeddings, Code Mixing, Sentiment Analysis, Social Media

Abstract

NLP applications for code-mixed (CM) or mix-lingual text have gained a significant momentum recently, the main reason being the prevalence of language mixing in social media communications in multi-lingual societies like India, Mexico, Europe, parts of USA etc. Word embeddings are basic building blocks of any NLP system today, yet, word embedding for CM languages is an unexplored territory. The major bottleneck for CM word embeddings is switching points, where the language switches. These locations lack in contextually and statistical systems fail to model this phenomena due to high variance in the seen examples. In this paper we present our initial observations on applying switching point based positional encoding techniques for CM language, specifically Hinglish (Hindi - English). Results are only marginally better than SOTA, but it is evident that positional encoding could be an effective way to train position sensitive language models for CM text.

Downloads

Published

2022-06-28

How to Cite

Ali, M., Kandukuri, S. T., Manduru, S., Patwa, P., & Das, A. (2022). PESTO: Switching Point Based Dynamic and Relative Positional Encoding for Code-Mixed Languages (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12901-12902. https://doi.org/10.1609/aaai.v36i11.21587