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Abstract

Classical measurements and modelling that underpin present
flood warning and alert systems are based on fixed and spa-
tially restricted static sensor networks. Computationally ex-
pensive physics-based simulations are often used that can’t
react in real-time to changes in environmental conditions. We
want to explore contemporary artificial intelligence (AI) for
predicting flood risk in real time by using a diverse range of
data sources. By combining heterogeneous data sources, we
aim to nowcast rapidly changing flood conditions and gain a
greater understanding of urgent humanitarian needs.

Introduction
Flood prediction has traditionally been done with physics
based models which can take a while to run (Declan Valters
2018) and are computationally expensive (Teng et al. 2017),
yielding predictions based on outdated data.

Existing solutions to this problem usually rely on a single
data source such as river levels (Le et al. 2019; Mioc et al.
2011) and drainage system sensors (Keung et al. 2018). Such
systems predict sensor values in the future and rarely use
these predictions as an input to a physics-based model, or
indirectly identify which areas are most badly affected.

Other studies use both text and images from twitter (Said
et al. 2020), but fail to account for additional data sources
such as rainfall radar information. Those studies that do of-
ten predict rainfall in advance instead of something more di-
rect such as water depths or flood risk (Agrawal et al. 2019).

To tackle these issues, an AI based approach is explored,
with the goal of making use of a diverse range of data
sources to inform real-time responses from emergency ser-
vices to a flood situation.

This project looks at using rainfall radar data, a
heightmap, an autoencoder, and a traditional flood-based
simulation model (Declan Valters 2018) to train an AI to
predict water depths. It also looks at analysing social me-
dia posts to see if flood-related tweets, including text and
images, can be used further to aid information on the dy-
namically evolving flooding situation - e.g. visual or textual
cues to water depth, suddenness of a flood or humanitarian
situation in different areas.
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Figure 1: The architecture of the final system being devel-
oped (final model architecture subject to change).

The third and final aspect of the project is combining the
above heterogeneous data sources to make a more robust sin-
gle unified prediction of near-term flood risk, in that uncer-
tainties in 1 modality can be compensated for by another.

Rainfall Radar for Flood Prediction
Taking rainfall radar data from the Met Office and a
heightmap from the Ordnance Survey, a Convolutional Neu-
ral Network (CNN)-based autoencoder with multiple inputs
is being developed to predict water depths in 2 dimensions.
The model design was originally inspired by U-Nets (Ron-
neberger, Fischer, and Brox 2015) that were employed to
predict rainfall radar in 2D (Agrawal et al. 2019), although
since then the model has undergone significant revisions
which were influenced by (Silberer and Lapata 2014).

To generate labels to train an autoencoder, the data is
fed first through the traditional physics based model HAIL-
CAESAR (Declan Valters 2018) (which is a headless im-
plementation of CAESAR-Lisflood (Coulthard et al. 2013)),
the output of which is used to generate labels to train the au-
toencoder. Generated labels are a 2D array of binary values
- i.e. water / no water.

Social Media for Flood Severity Analysis
It has been observed that social media users are commu-
nicating for a range of purposes during disasters, from the
status of public infrastructure to crowdsourcing volunteers
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(Kankanamge et al. 2020). For this reason, tweets from twit-
ter are also being analysed as part of the project. Example
questions being asked are “Can flood severity be inferred
from social media posts?” and “Can we classify images by
the sentiment of the associated tweet?”.

Answering such questions could help in understanding
humanitarian needs in different locations. By identifying
where is most badly affected, information about the help that
is most urgently needed there can be used to direct available
resources. Water depths could also be estimated here.

To answer these questions, posts from twitter were
downloaded from various hashtags including more gen-
eral ones such as #floods and #flashfloods -
as well as hashtags for more specific flooding events,
like #StormChristoph, and #HuricaneEta. A trans-
former encoder has been implemented to predict the senti-
ment (positive / negative) of the tweets downloaded - with
the labels calculated from the emojis in the tweet text.

Using this model as a starting point, the above questions
will be answered.

Fusion Model
It is planned to investigate fusion model approaches to han-
dle the disparate data sources mentioned above in a single
system to generate a single unified near-term prediction of
flood risk. To do this, the CLIP model (Radford et al. 2021)
will be used as a base model. It will then be extended by
combining the available disparate data sources.

By geospatially analysing social media posts, tweets and
their sentiments can be paired with nowcasted water depth
predictions using CLIP to detect communities most imme-
diately at risk or in most urgent need of assistance.

Project Timeline
In the first phase of the project, existing literature was re-
viewed to identify potential promising approaches, such as
rainfall radar data from CEDA and social media from twitter.
In the second phase, data was downloaded and parsed. This
phase took much longer than expected due to the complex
nature of the rainfall radar data.

The third phase began by implementing and training some
initial models with mixed results. This phase continues to
the time of typing, during which continuous experiments are
being run to incrementally improve upon the initial model
designs.

In the fourth phase, the disparate datasets mentioned
above will be tied together into a single system (described
above).

Finally, the project will be written up into the thesis itself.

Future Work
For the rainfall radar autoencoder model, once the imple-
mentation of the autoencoder is complete, is is planned to
enhance the model by binning water depths (e.g. 0cm to
1cm, 1cm to 50cm, 50cm to 1m, 1m+) instead of predicting
a binary label. Adding additional data layers to the model
may also improve accuracy (e.g. satellite data).

Building on the work done so far, the available data sources
and their associated models will be combined into a single
system using CLIP (Radford et al. 2021) with the goal of
improving situational awareness in flooding events. Addi-
tionally, other disparate data sources (e.g. satellite data) will
also be explored.
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