

Artificial Intelligence Approaches to Build Ticket to Ride Maps

Iain Smith, Calin Anton
MacEwan University, Edmonton, Alberta, Canada
smithi23@mymacewan.ca, antonc@macewan.ca

Abstract
Fun, as a game trait, is challenging to evaluate. Previous re-
search explores game arc and game refinement to improve
the quality of games. Fun, for some players, is having an
even chance to win while executing their strategy. To ex-
plore this, we build boards for the game Ticket to Ride
while optimizing for a given win rate between four AI
agents. These agents execute popular strategies human play-
ers use: one-step thinking, long route exploitation, route fo-
cus, and destination hungry strategies. We create the under-
lying graph of a map by connecting several planar bipartite
graphs. To build the map, we use a multiple phase design,
with each phase implementing several simplified Monte
Carlo Tree Search components. Within a phase, the compo-
nents communicate with each other passively. The experi-
ments show that the proposed approach results in improve-
ments over randomly generated graphs and maps.

Introduction
Fun has no current evaluation, but ways of evaluating the
quality of games have been developed and explored. Game
refinement (Sutiono et al. 2014) and game arc (Silva et al.
2018) have been used to measure the quality of games
based on the number of available options. These measures
do not consider the quality of available moves; they strictly
count the number of moves. Both these measures fail to
consider that players may prefer different kinds of moves.
They also do not consider if none of the remaining moves
correspond to a player's strategies. To overcome these
limitations and avoid evaluating the quality of every move,
we consider a simplified measure of quality. Our strategy
is to start with the desired win rate among several player
agents then build games that produce a win ratio close to
the desired one when simulated. To make games evenly
fun, we try to balance the win ratio between different
strategies of Ticket to Ride players. By balancing win
rates, we design games that give players an even
opportunity to execute their strategy and win. We assume
that each player agent executes only its chosen strategy.
Our newly designed game allows each player to perform
several moves they deem quality moves and still win an
even number of games. This evaluation would mean
human players have the chance to follow their selected
strategies and produce an engaging game in the process.

Ticket to Ride and Its Rules

Figure 1. Original USA Ticket to Ride board.

Ticket to Ride (TTR) is a board game for 2-5 players in
which players build railway routes between cities and
complete destinations for points. The game board
comprises cities, the connections between them, a deck of
colored train cards, and a destination card deck. Cities can
be connected by either single or double routes. At the
beginning of the game, players draw three destination
cards and must keep at least two. Destinations depict two
cities to connect and points gained from connecting those
cities by building routes between them. If a player fails to
connect the cities of a destination, that player loses these
points. Players build routes between connected cities by
spending train cards. The train cards are drawn from the
top of the train deck or can be picked from five face-up
cards. Players may pick two train cards or a locomotive
that stands in for any color; however, they may only take
that one card if they draw a face-up locomotive. Colored
train cards are collected and spent along with a player's
own trains to build routes of length one to six.

Players get points for each route, according to their
length. Longer routes earn more points than shorter ones.
Routes with any color other than grey must be built using
trains cards that match the route color while grey routes
may be built using any same-color train cards. At any time,
instead of picking train cards, a player may choose to draw

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12844

three new destination cards, of which it has to keep at least
one.

Players begin the game with 45 trains to use when
building routes. The game ends one round after any player
has two or fewer trains remaining. At the end of the game,
players claim points from the destinations they completed,
the routes they built and can claim extra points from
having the longest path of trains. If the routes' lengths and
colours are removed, the game board becomes a multi-
graph with either single or double edges. If double edges
are removed, the multi-graph becomes a simple graph
which we will refer to as the underlying graph of a game
board. The destinations, the double routes, the colours, and
the lengths of the routes can thus be viewed as features
added to the underlying graph.

Previous Work
Silva et al. explored a genetic algorithm to build maps for
Ticket to Ride (Silva et al. 2018). They investigated
underlying graphs which are valid under some restrictions
for a TTR board. The fitness function evaluates the game
arc, which quantifies the number of available moves
throughout a game. The game arc they attempt to match
implies a few decisions at the beginning. The number of
decisions available into the mid-game gradually increases.
Then it decreases to just a few decisions towards the end of
the game.
 Using the same engine and agents as Silva et al. Witter
and Lyford (Witter and Lyford 2020) applied graph theory
and probability tools to explore improvements to Ticket to
Ride. They found that longer routes were
disproportionately overvalued, which could be exploited
by some players and proposed a new method for scoring to
correct this issue. To improve the scoring mechanism, their
method linearly searches modified route values to even the
win rates between agents on the original USA map.

Player Strategies
Players may use any strategy they desire within the limits
of Ticket to Ride's game rules. The information available
to the players is limited because TTR is only partially
observable: train cards and destination cards are hidden
from other players. Without complete information, game
agents that implement general multiplayer strategies like
best-reply search, paranoid, and maxn (Schadd and
Winands 2011) are at a disadvantage. For these reasons,
we only use agents that implement the following popular
strategies used by human players of TTR.

One Step Thinker Agent (OSTA)
The one step thinker agent simulates players that make
decisions turn by turn. This agent selects new destinations
only after completing all the current destinations it has. It

executes a common strategy of some players by
prioritizing expensive destinations and looking to complete
the destinations as quickly as it can from its current
position (Silva et al. 2017).

Path Agent (PA)
The path agent executes a similar strategy to the one step
thinker agent but focuses on scoring on longer, more
valuable routes. Often it works on routes that
simultaneously complete multiple destinations. This agent
never chooses to pick more destinations. After completing
its original destinations, it focuses exclusively on the
highest value routes (Silva et al. 2017).

Long Route Junkie Agent (LRJA)
The long route junkie agent implements a strategy that
never claims low value short routes. It attempts to
complete all the destinations it selected by completing only
routes of length greater than three. By doing so, it typically
loses points from destinations but makes up for them
through the high value of the long routes it built (Silva et
al. 2017).

Hungry Agent (HA)
The hungry agent uses a strategy focused on claiming as
many points as possible from destinations by taking
destinations until it has enough to spend all its trains on
them. Then it formulates a plan to complete all these
destinations while claiming the most important routes first
(Silva et al. 2017).

Map Building Strategy
The overall approach we use is described by:

1) Start with the desired win distribution among
players

2) Select or generate an underlying graph
3) Add double routes
4) Add destinations cards
5) Add lengths to routes
6) Add colors to routes

Steps 3, 4, 5, and 6 optimize the corresponding features
towards the desired win distribution. The graph generating
process in step 2 tries to optimize the graph selection with
respect to the desired win distribution. Ideally, the
optimization process will consider all extensions at once,
but this would create a very large search space. By running
the optimizations separately, we drastically reduce the
search space. Steps 3 and 4; and 5 and 6, respectively, run
separately but are synchronized by exchanging information
after each choice. This further reduces the complexity of
the optimization problem. We build maps using a multi-
phase design inspired by the work of Abukhait et al. on
Nine Men's Morris (Abukhait et al. 2019). The primary

12845

difference is that we apply this design to a game building
agent rather than a game playing agent.

The Distance Function

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
∑ |𝑑𝑑𝑖𝑖 − 𝑐𝑐𝑖𝑖|𝑛𝑛
𝑖𝑖=1

2 − 2𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 (𝑑𝑑𝑖𝑖)

To measure the accuracy of the results, we introduce a
distance between the desired win ratio and a win ratio
calculated by simulating games on the tested board. The
distance can be applied to any number of players (n). In
our simulations, we fixed n to 4 as we experimented with
four different strategies. The distance estimates the sum of
the absolute error between the desired and the calculated
win ratios. The sum is normalized by dividing it by the
sum of the absolute error of the worst-case scenario, which
happens when the agent with the smallest desired win ratio
wins all the games. The value of the absolute error of the
worst-case scenario is 2 − 2𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 (𝑑𝑑𝑖𝑖) , where di is the
desired win rate for agent i, and ci is the calculated win rate
for agent i. After normalization, the distance will have
values between 0 and 1, where 0 means a perfect match
between the desired and calculated win ratio.
 Consider, for example, a desired win ratio d of
(0.35,0.4,0.25). If the calculated win rate c is
(0.34,0.38,0.28), then the distance formula's numerator will
be 0.01+0.02+0.03=0.06. For this d, the worst-case
scenario is when c is (0,0,1). In this case, the denominator
of the distance formula becomes 0.35+0.4+0.75, which is
the same as 2-2*0.25. Thus, the distance is 0.06/1.5=0.04.
 All optimizations try to minimize this distance.
 We use several phases to build an optimized game
board. (see Figure 2) Within a phase, optimizers can
communicate with each other by sharing a common partial
assignment. The purpose is to reduce the possibility of
making changes that cause sudden shifts in the distance
due to a sharp increase in the win rate of one of the agents.

We designed five optimizers; one used to generate an
underlying graph – the graph optimizer (GO), and four
that optimize the features of the board: color – the route
color optimizer (CO), length-the route length optimizer
(LO), double routes – the single-double route optimizer
(SDO), and destination card value -the destination value
optimizer (DO). Each optimizer implements a simplified
Monte Carlo Tree Search (Coulom 2007). The goal is to
generate a full assignment of features that produces a game
board on which players have a win ratio close to the
desired one. We estimate the win ratio of a game board as
the average of 20 simulated games between the player
agents.

Graph Optimizer
The primary requirement of physical boards of TTR is that
the underlying graph must be planar – it can be drawn
without any intersections over edges.

Our graph optimizer starts by creating components of
the graph – which we refer to as subgraphs, using plantri
(Brinkmann and McKay 2007), a C program designed to
produce unique planar graphs. It takes as parameters the
order of the graph and, optionally, a range for the number
of edges of the graph. Using plantri GO produces graphs
with 12 vertices, 25 to 30 edges, and a minimum degree of
2. These numbers were chosen such that the final
underlying graph has 36 cities, between 93 and 108 routes
(some of which will become double routes in the next
phases), and no end-of-the-line cities.

It starts by sampling from the first 10,000 graphs
generated by plantri. It filters out graphs having a vertex of
degree larger than 6 (this ensures that no city will have
more than 7 routes in the final map, which is a feature of
the original USA board). Thus, it reduces the number of
candidates to only 86.

Using a procedure similar to the optimization presented
in the next subsection, it finds three subgraphs that produce
the closest win ratio to the desired one. It then connects
them to create the final underlying graph. It adds 6 edges to
each pair of subgraphs by repeating twice the following
procedure:

1) Select from each graph the pair of vertices with the
lowest degree

2) Add 4 edges by connecting each vertex from a pair to
the vertices from the other pair

3) Remove the edge which connects the highest degree
vertices from each pair.
 The main benefit of this procedure is that it creates
planar graphs and balances the degree sequence of the
resulting graph.

Two-Phase Optimization Design
The optimization proceeds in two phases: one in which the
destination card values and double routes are added; and
one in which route colors and route lengths are added. The
reason for this two-stage approach is that destinations cards
and double routes complement each other, and so do route
colors and lengths. For example, if there are fewer double
routes, a city is more likely to be cut off. This will
negatively influence the players holding destination cards
that contain that city. The main reason for separating the
phases is to reduce the search complexity. Another reason
is that changes in features from one phase may result in
sudden swings in features from the other phase. The two-
phase approach avoids this by splitting the objective of the
optimization between classes of features.
 Each optimizer implements a simplified Monte Carlo
Tree Search. The search ends when a complete assignment
is found of which distance from the desired win ratio is
consistently less than a given termination threshold. If no
such assignment is found, the search returns the best
complete assignment explored. At each step, the search
tries to find an optimal value for a variable. It does so by

12846

selecting the next unassigned variable and randomly
selecting a set of possible values for it. The nodes
corresponding to values that are not selected are labeled
with a number slightly larger than the termination
threshold. The two optimizers, which run within the same
phase, exchange their candidate values to create a
combined partial assignment. Each such partial assignment
is extended to a complete assignment by randomly
choosing possible values for the remaining variables. In
phase one, the remaining features of the board (colors and
lengths) are randomly selected to produce a full game
board. In phase two, the complete assignment represents a
full game board. Twenty games are played on the full
game board, and then the distance between the average
winning ratio of the played games and the desired winning
ratio is calculated. The optimizers return the complete
assignment if the distance is below the termination
threshold. If the distance is above the termination
threshold, each optimizer labels the node corresponding to
the current value with the distance and moves to the next
value. After trying all selected values without returning a
complete assignment, the optimizer chooses the lowest
labeled node from the current and previous steps and
continues the search. By labeling the unselected values
with a number slightly larger than the termination
threshold, we ensure that as long as the selected values are
labeled with numbers larger than the termination threshold,
new values will be chosen.
 The algorithm is guaranteed to terminate as it either
finds an acceptable complete assignment or it exhausts the
search space. There is a theoretical chance that the label of
a node is between the termination threshold and the label
for unselected nodes. In this case, the algorithm may cycle
forever. We did not encounter such a case in our
experiments.
The Destination Value Optimizer (DO)
The Destination Optimizer is provided with a set of
candidate destinations and a set of possible values to be
assigned to the destinations. The special value of -1
denotes that the destination it was assigned to will not be
part of the final game.
The Single-Double Route Optimizer (SDO)
This optimizer considers each pair of connected cities and
decides whether to make the route connecting them double.
It tries to find the optimum number of double routes
between two extremes: having too few may result in very
limited access to an important city, which is undesirable;
having too many may remove conflicts over routes,
making the game less competitive.

Figure 2. Map building strategy.

 The DO and SDO operate synchronously and share
information after each choice. To simulate games, they use
random route length and route color assignments. Since the
random assignment of features produces a high variance of
the game results, the termination threshold for these
simulations was set to 0.2.
 All the routes and destination cards are set at the end of
phase one. Phase two proceeds to select the route lengths
and colors. As per the requirements of TTR, double routes
will be assigned the same length.
The Route Length Optimizer (LO) and the Route Color
Optimizer (CO)
For each step, these optimizers select the best four choices
of their respective feature to further explore. All the
combinations of these choices, 16 in total, are evaluated
through random simulation. The combination with the best
average score is selected, and the corresponding length and
color respectively are chosen by the optimizers.

Experiments and Results
We run three types of experiments:

12847

• Generate a new game board on the underlying
graph of the original TTR. In this case, we start
with the underlying graph of the original USA
board, and optimize the destination values, the
double routes, the route lengths, and the route
colors.

• Generate a completely new game board. In this
case, we apply the full map building strategy as
described in the previous section.

• Generate new game boards by connecting 3
subgames and then optimizing. This is a variation
of the previous case in which 3 independent
subgames (corresponding to subgraphs produced
by GO) are generated. These subgames are then
connected and partially optimized to create the
final game.

 Notice that the last two experiments consist of
generating completely new games.
 To produce a reliable win rate, we simulate 1000 games
on the generated game boards.
 For each experiment, we compare the results with those
obtained from entirely random game boards, which are
produced by randomly selecting all the features added to
the underlying graph. We estimate the distance of the
random game boards by running 1000 simulations on 10
randomly generated boards on the same underlying graph.

Game Boards Generated by Optimizing The Orig-
inal Game Features
We run a complete and a restricted version of optimization
on the underlying graph of the original TTR game, USA
board.

The complete version optimizes all the features without
restrictions. In the restricted one we impose an extra
constraint on the length of a route: it can deviate at most
one unit from the length of the original game. The reason
for this restriction is to preserve some of the geographical
distances between cities. It will be hilarious to have a map
on which the distance between Dallas and Houston is six
units while the distance between Los Angeles and El Paso
is one.

 The results presented in Tables 1 and 2 show that both
types of optimization result in improvements over the
original and randomly produced maps. The HA is favored
in all cases. This seems to be related to the original design
of the game, most probably linked to the value of
destination cards. Fully optimizing the route lengths allows
more room to adjust destination values. Thus this type of
optimization produces the best results.

In Figure 3, we present the map produced by the
restricted optimization applied to the underlying graph of
the original TTR.

Figure 3. Restricted Optimized Ticket to Ride board.

Agent Desired Original
Game
Board

Complete
Optimized
Game
Board

Restricted
Optimized
Game
Board

OSTA 0.25 0.2025 0.215 0.212
PA 0.25 0.0325 0.151 0.141
LRJA 0.25 0.3045 0.251 0.243
HA 0.25 0.4605 0.382 0.402

Table 1. Comparison of average win ratios for original and
optimized game boards generated on the original underly-

ing subgraph.

Original
Board

Complete
Optimized
Board

Restricted
Optimized
Board

Random
Board

0.212 0.1068 0.121 0.1402

Table 2. Comparison of average distances for original and
optimized game boards generated on the original underly-

ing subgraph.

Map Total
Routes

Avg.
Dest.
Card
Value

%
Double
Routes

Total
Trains

Avg.
Route
Length

Orig 100 11.6 28.2 307 3.70
Rest
Opt

123 19.2 57.7 417 3.39

Com
Opt

115 15.133 47.4 368 3.20

Table 3. Comparison of features of original TTR board and
the optimized versions.

In Table 3, we present the comparison of main features in
the original and optimized versions. As Table 3 shows, the
destination values are increased, and so is the number of
double routes. These changes are a disadvantage to the HA

12848

Table 4. Comparison of route color distribution of original
TTR board and the optimized versions.

Lengt
h

Point
Value

%
Routes
Original

%
Restricted
Optimized

% Complete
Optimized

1 1 9 11.4 20.0
2 2 36 16.3 24.3
3 4 20 27.6 13.0
4 7 18 19.5 14.7
5 10 8 17.1 13.9
6 15 9 8.1 13.9

Table 5. Comparison of route length distribution of origi-
nal TTR board and the restricted optimized versions.

since there are more high value destinations for other
agents to claim. Additionally, the HA cannot cut off high
value routes since most are double.
Total trains increase, but the average route length
decreases. This modification limits the LRJA advantage.
 In the original game, the total length of routes of each
color but gray is the same. On the optimized board, routes
of different colors have different distributions; for
example, orange routes cover 16% of the total length,
while red ones cover 8%. This creates an imbalance
between the train cards, which will make some very
desirable while others will be mostly avoided.
 In the optimized game boards, there are many same
color adjacent routes. This forces players to compete for
these colors. We believe that this is an immediate result of
the increase in the number of double routes, which reduces
the competition on routes. In the optimized versions, the
competition is veered towards cards. This gives equal
opportunities to each player no matter what strategy they
use.
 In the original board, short routes are prevalent, and the
most common ones are of length 2. The optimized one has
a more balanced distribution of route lengths, but still
favors the shorter ones. Longer routes are more difficult to
build but are worth more points. We believe that the
increase in the routes' length forces players to choose

longer routes and thus diminishes the advantage the LRJA
and the HA have on the original game.

Table 6. Average win ratios for a game board with a gener-
ated Underlying Graph.

Optimized Board Random Board
0.10103 0.185

Table 7. Comparison of average distance for random and
optimized game boards with a generated Underlying

Graph.

Agent Desired Optimized
OSTA 0.25 0.241
PA 0.25 0.091
LRJA 0.25 0.29
HA 0.25 0.378

Table 8. Average win ratios for a game board generated
from 3 subgames.

 Optimized Board Random Board
0.134 0.178

Table 9. Average distances for a game boards generated
from subgames.

Game Boards with Generated Underlying Graph
For this experiment, we used the Graph Optimizer to
produce a new underlying graph. We then generate an
optimized game board and 10 random game boards. On
each board, we play 1000 games. While this represents
only one experiment, we believe that it indicates that our
approach produces balanced games. Running a single
experiment requires more than 48 hours, and this is the
only reason for the scarcity of data points.

As shown in Tables 6 and 7, this game board is more
balanced than those generated on the original underlying
graph. We attribute these improvements to the performance
of the Graph Optimizer, which aims to produce underlying
graphs which are better suited for creating balanced board
games. However, the PA is still far from having an even
win rate.
double routes, lengths, and colors.

Game Boards Generated by Combining Subgames
In this experiment, we start by optimizing the three
subgraphs chosen by GO, thus producing three
independent sub-games. We then connect the underlying
graphs of these games in the same way in which GO does

Color % Routes % Total trains
Orig Rest

Opt.
Com
Opt.

Orig Rest
Opt.

Com
Opt.

Gray 44 11.4 10.4 30.2 10.0 12.0
White 7 8.9 13.0 8.47 10.5 7.9
Black 7 12.2 12.2 8.79 12.9 12.2
Orange 7 14.6 10.4 8.47 16.1 12.8
Red 7 8.9 8.7 8.79 8.6 6.8
Pink 7 9.7 12.2 8.79 9.8 15.2
Yellow 7 12.2 9.6 8.79 10.8 9.0
Blue 7 11.4 12.2 8.79 10.5 10.9
Green 7 10.6 11.3 8.79 10.5 13.3

Agent Desired Optimized
OSTA 0.25 0.3079
PA 0.25 0.123
LRJA 0.25 0.2907
HA 0.25 0.277

12849

it. The newly added edges are optimized for double routes,
lengths, and colors. We run DO to optimize the
destinations over the entire graph. Finally, we run a
restricted LO, similar to what we did on the original TTR
graph, to balance the route lengths. This step is required to
create "geographically" consistent game boards. The
results (presented in Tables 8 and 9) show an improvement
over the randomly generated game boards. However, they
are worse than those obtained in the previous experiment.
We attribute this to the lack of global optimization for

Interpretation of Results
The results produced by our method are better than their
random counterparts. The distance between desired and
computed win ratios is low for optimized boards. In most
cases, the HA is still favored, likely due to the wide availa-
bility of routes and combinations of destinations it can ex-
ploit. Also, due to the PA's inability to take more destina-
tions, we expect to see it typically perform worse than the
other agents. This does, however, confirm that destinations
play a strong role in the likelihood that a player wins. Even
when there are many routes to use, the main component of
gameplay, building destinations, strongly influences the
game outcome.
 We discovered some interesting patterns in the produced
maps. Longer routes are generated, most likely to force all
players to use them, thus reducing the advantage LRJA has
from focusing on them. The maps tend to have several ad-
jacent routes of the same color. This creates increased
competition on these colors among players whose destina-
tion cards require passing through a city that connects
these same color routes. Thus, a feature of gameplay, not
shuffling in train car cards until all are exhausted, becomes
a forefront issue in the game. It does not arise in the origi-
nal game due to the large number of gray colored routes.

Limitations
Our inquiry assumes that a player follows the same strate-
gy throughout the entire duration of the game. This may be
unrealistic for human players who may follow a certain
strategy for most of the game and change it towards the
end. For example, a player may follow the HA strategy for
most of the game and, towards the end, switch to the strat-
egy of the LRJA.
 The original game rules allow the use of double routes
only when there are at least four players. Since we experi-
mented with four agents, we implicitly assumed that dou-
ble routes were present. Thus, our method, in its current
form, does not extend to a game with two or three players.

Improvements and Future Work
Despite aiming for an equal winning ratio among all
agents, all optimized boards favored the HA. In future in-

quires, it may be interesting to impose a reduced winning
rate for this agent, hoping that it will result in a more bal-
anced game.
 The boards produced by our method deviate substantial-
ly from the original game in terms of the number of routes
and distribution of colors. This issue can be rectified by
imposing extra constraints on optimizations, such as an
upper bound on the total number of routes combined with
lower bounds on the number of routes of each color.
 In phase one of the proposed method, the colors and
lengths of routes – required to produce a full game board-
are randomly chosen. A better understanding of the influ-
ence of these factors on the winning ratio may produce a
heuristic for selecting them. Such a heuristic can improve
the estimation of the distance and reduce the number of
simulations, which will decrease the running time of the
method.

Conclusions
In this paper, we propose a method for generating new
game boards for the Ticket to Ride Game, which allows
selected player strategies to have more uniform chances of
winning the game. The method consists of several phases
in which different features of the game are optimized. We
employed four different player strategies. Our experiments
indicate that the new method produces games that do not
favor or penalize any of the studied strategies. We interpret
the modifications made by our method to the original TTR
game and indicate how they help create a more even
competing field for the studied agents.

References
Abukhait, J.; Aljaafreh, A.; and Al-Oudat, N. 2019. A
Multi-agent Design of a Computer Player for Nine Men's
Morris Board Game using Deep Reinforcement Learning.
In Proceedings of the 2019 Sixth International Conference
on Social Networks Analysis, Management and Security
(SNAMS).
Brinkmann, G. and McKay, B. 2007. Fast generation of
planar graphs. Match-communications in Mathematical
and in Computer Chemistry 58(2).
Coulom, R. 2007. Efficient Selectivity and Backup
Operators in Monte-Carlo Tree Search. In Proceedings of
the 5th International Conference on Computers and Games
.
Silva, F.; Lee, S.; Togelius, J.; and Nealen, A. 2017. AI-
based Playtesting of Contemporary Board Games. In
Proceedings of the 12th International Conference on the
Foundation of Digital Games.
Silva, F.; Lee, S.; Togelius, J.; and Nealen, A. 2018.
Evolving Maps and Decks for Ticket to Ride. In
Proceedings of the 13th International Conference on the
Foundations of Digital Games.

12850

https://ieeexplore.ieee.org/xpl/conhome/8926314/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8926314/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8926314/proceeding

Schadd, M. and Winands, M. 2011. Best Reply Search for
Multiplayer Games. IEEE Transactions on Computational
Intelligence and AI in Games 3(1).
Witter, R. and Lyford, A. 2020. Applications of Graph
Theory and Probability in the Board Game Ticket to Ride.
International Conference on the Foundations of Digital
Games.

12851

	Abstract
	Introduction
	Ticket to Ride and Its Rules
	Previous Work
	Player Strategies
	Long Route Junkie Agent (LRJA)
	Hungry Agent (HA)
	Map Building Strategy
	The Distance Function
	Graph Optimizer
	Two-Phase Optimization Design
	Experiments and Results
	Game Boards Generated by Optimizing The Original Game Features

