
The Bullets Puzzle: A Paper-and-Pencil Minesweeper

Todd W. Neller, Hien G. Tran
Gettysburg College

{tneller, tranhi01}@gettysburg.edu

Abstract

In this paper, we introduce a technique for AI genera-
tion of the Bullets puzzle, a paper-and-pencil variant of
Minesweeper. Whereas traditional Minesweeper can be lost
due to the need to guess mine or non-mine positions, our puz-
zle is fully deducible from a minimal clue set. Puzzle gener-
ation is based on analysis and optimization of solutions from
a human-like reasoning engine that classifies types of deduc-
tions. Additionally, we provide insights to subjective puzzle
quality, minimal clue sampling trade-offs, and optimal bullet
density.

Introduction
A Bullets puzzle (Figure 1) is defined as (1) a grid with a
subset of grid cells each containing a bullet, and (2) a subset
of clue cells, i.e. non-bullet grid cells that are known to the
puzzler and indicate the number of bullets orthogonally or
diagonally adjacent to each clue cell. The puzzler initially
knows only the clue cells (shown in Figure 1) and the num-
ber of hidden bullets. The solution, i.e. the positions of all
bullets, can be fully deduced from the initial information. In
the Figure 2 solution, bullets are indicated by circles, and
other non-bullet, non-clue cells are marked with diagonal
slashes.

Thematically, we imagine the clues as metal detector
readings for one searching a field for bullets from the Civil
War1.

In this paper, we explore the use of AI techniques in
the improved design and generation of this paper-and-pencil
variant of the classic computer puzzle game Minesweeper.
This variant was originally designed by the first author on
December 14th, 2010. We begin with a history and descrip-
tion of Minesweeper, including a discussion of what we con-
sider a design flaw: that randomly generated puzzles may not
be fully deducible and may require guessing that results in a
loss. Accordingly, we survey prior work towards guess-free
Minesweeper variants.

Following this, we describe the knowledge representation
and reasoning at the core of our computations using at-least

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This is illegal on many federally recognized Civil War battle
sites.

constraints. We outline a human-like deduction system that
produces an explanation of a human-like sequence of solu-
tion steps that we used to form an objective function for our
subjective tastes in Minesweeper reasoning. We discuss how
a single puzzle is generated, and how we employ stochastic
local search to generate puzzles optimized for our subjective
tastes.

Next, we share and interpret data regarding the choice for
how many minimal clue subsets to sample for a given bul-
let configuration, as well as which bullet density we recom-
mend for best puzzles.

Finally, we share future possible work in refined reason-
ing steps and non-paper-and-pencil Minesweeper, and sum-
marize our conclusions.

Related Work
Since this is a paper-and-pencil variant of Minesweeper, we
survey Minesweeper’s history, what we consider its main
design flaw, related work to address that design flaw, and
known computational complexity results.

In Windows® Minesweeper (Figure 3), like the Bullets
Puzzle, one has a known number of mines that must be
found. However, there is no initial information. A player
may right-click to mark a position with a flag (indicating
belief that a mine is there) or may left-click a position to re-
veal a clue or mine. If a mine is revealed, the player loses.
Thus, the first click may reveal clue information dynami-
cally, or end the game with the revelation of a mine. If a
clue revealed would be a “0” clue (i.e. empty position with
no adjacent mines), trivial revelations of adjacent cells are
performed until all contiguous “0” clues are revealed. While
many puzzles may be solved through logic alone, mines are
randomly distributed and may present situations where the
player must guess a safe position and reveal it. For example,
in the upper-left corner of Figure 3, the last mine could be in
either unmarked square to satisfy constraints. However, the
player must choose one to reveal and has a 0.5 probability
of losing despite having reasoned perfectly through all given
information.

In logic puzzles like Minesweeper, it is generally pre-
sumed that logic alone is sufficient to solve the puzzle. From
this perspective, the need to guess initially or during the
solving process, admitting possibility of loss through no
fault of the player, is a design flaw in Minesweeper.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12819

2
1 1 1

3 3 3 1
3 3

2
4 4 6

2 2

Figure 1: Example Bullets puzzle
with 16 bullets

2 z
������

z
��

��
z z1 1 1 ��

�� 3 3 3 ���� 1

����
z3 z3 z

2 z
��

z
��

z
��z

�� 4 4 6 z
��

�� 2 z z z z2

Figure 2: Solution to example Bullets
puzzle

Figure 3: Minesweeper situation
where a guess is necessary.

When discussing the lineage of Minesweeper puzzle
games, writers point to a progression from Jerimac Ratliff’s
1979 “Cube” (Ahl 1979) where one guesses a mine-free path
through 3× 3× 3 cube vertices with no information for rea-
soning, through Ian Andrew’s 1983 “Mined-Out” (Mined-
Out) where number clues were first added to a 2D grid
traversal challenge, to the July 1990 “Mine 2.9” (Mine 2.9),
a beta version of Windows® Minesweeper.

Efforts to produce guess-free computer versions of
Minesweeper include those of Paweł Marczewski (Mar-
czewski 2021), Christian Czepluch (Czepluch 2021), Simon
Tatham (Tatham 2021), and many others. Most do not doc-
ument how they create guess-free puzzles, but Marczewski
and Czepluch both approach the problem by not committing
to a fixed mine configuration unless forced to by logic. Mar-
czewski writes, “If you try to guess, the game will always
choose the worst scenario. Except when you are forced to
guess (there are no safe cells anywhere). Then, guessing is
completely safe.” This is reminiscent of the Nifty Assign-
ment “Evil Hangman” (Schwarz 2011) where there is no
initial commitment to a solution and the set of possible so-
lutions narrows according to player guesses.

Richard Kaye has proven the Minesweeper consis-
tency problem to be NP-complete (Kaye 2000b) and in-
finite Minesweeper to be Turing-complete (Kaye 2000a).
For consistent boards, Minesweeper inference is co-NP-
complete (Scott, Stege, and van Rooij 2011). However, like
other NP-Complete constraint satisfaction problems such as
3-SAT (Gent and Walsh 1994), Dempsey and Guinn show a
similar phase transition in computational complexity where
a mine density over 20% of cells leads to exponential growth
in Minesweeper reasoning (Dempsey and Guinn 2020).

The earliest published paper-and-pencil variant of
Minesweeper we have found is that of Dan Moore’s de-
signs (Moore and Vallely 2012), and other similar books
have been published since. Moore’s puzzles do not pro-
vide the number of mines as a constraint, but do guarantee
unique, fully-deducible solutions, usually involving 21–23
mines hidden in a 10 × 10 grid. The novelty of our contri-
bution is in our detailed discussion of AI-assisted design of
high quality puzzles of this type.

At-Least Constraint Reasoning
In representing knowledge about a Bullets puzzle, we assign
one variable per grid cell to indicate whether there is a bullet
(true) or no bullet (false). A literal c or¬c means that a bullet
is or is not in the cell corresponding to variable c. A literal is
satisfiable if that literal is true in a possible world consistent
with known facts.

Consider a cell with clue 4 and no knowledge of the 8 ad-
jacent cells. In propositional logic, one might represent this
as a disjunction of

(
8
4

)
= 70 possible conjunctions of literals

that represent all the ways the cells may be consistent with
that clue constraint. While we could represent our knowl-
edge in that way, this would lead to a bloated representation
and inefficient reasoning. Furthermore, this form of expres-
sion for the fact that there are exactly 16 bullets in the 49
cells of Figure 1 would require

(
49
16

)
≈ 3.348109 × 1012

conjunctions.
We instead opt to represent our puzzle knowledge with at-

least constraints that consist of (1) a number k, (2) a list l of
variables, and (3) a value v (true/false), such that the at-least
constraint expresses that “at least k of the variables in l must
have value v.

Consider an interior clue 3 which expresses that there
are mines in exactly 3 of its 8 adjacent cells. This may
be equivalently expressed as the two at-least constraints:
“At least 3 adjacent cell variables are true.” and “At least
5 adjacent cell variables are false.” We number the cell
variable from 0 through |C| − 1, where C is the set
of all cells, and |C| is the number of cells, in left-to-
right, top-to-bottom western reading order as in Figure 5.
Thus, the left-most 3 clue in Figure 1 would correspond
to c15 having value false and have associated at-least con-
straints atLeast(3, {c7, c8, c9, c14, c16, c21, c22, c23}, true)
and atLeast(5, {c7, c8, c9, c14, c16, c21, c22, c23}, false).

For reasoning about such at-least constraints, we modified
Donald Knuth’s Dancing Links (DLX) algorithm (Knuth
2011) such that each row in the doubly-linked matrix cor-
responds to an at-least constraint and each column corre-
sponds to a variable. This reasoner is at the core of type 1
and type 2 puzzle reasoning steps as defined in the next sec-
tion.

12820

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1

0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1

1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 0:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 1:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1 2:

1 1 1
1 3

2
5 3

3 1
2 2 3 2

2 1

Figure 4: Example human-reasoning solution for a 7 × 7, 15-bullet puzzle with an energy of -11.0 that was generated with 10
minimal clue set samples over 1000 iterations of hill descent. After the initial puzzle board, each successive board is preceded
by “n:” where n is the deduction type. Highlighted in gray are both the minimal set of clues necessary for the deduction and
the cells that were deduced. Clue cells and other cells where only bullet/no-bullet knowledge is used are not highlighted.

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34
35 36 37 38 39 40 41
42 43 44 45 46 47 48

Figure 5: Reference grid for the cell indexing of a 7× 7 puzzle.

Human Reasoning Steps
As a simple approach to puzzle generation, one can of-
ten optimize puzzle design for greatest computational solu-
tion time and expect puzzles to be generally difficult. How-
ever, the most computationally difficult puzzles are not al-
ways the most subjectively enjoyable puzzles to solve. Most
constraint satisfaction algorithms we create employ some
form of brute-force, depth-first search which bears no re-
semblance to human reasoning. We do not maintain deep
call stacks for hypotheses, nor would we have fun simulat-
ing such on paper.

Our approach is then to create a solver that solves these
puzzles with a human-like approach, study the puzzles with
their human-like solutions, learn what we can about the char-
acteristics of solutions we enjoy, and then optimize designs
for those characteristics.

For this work, we categorize reasoning steps into three
types:

Type 0 Deductions involving a single clue

Type 1 Deductions involving multiple clues without knowl-
edge of the total number of bullets

Type 2 Deductions involving multiple clues with knowl-
edge of the total number of bullets

Our solver always seeks a deductive step of the lowest
number type, preferring simplest-type next steps in the solu-
tion. Thus, a type 1 deduction is only attempted when there
are no remaining type 0 deductions. Necessarily, a type 2
deduction will fully solve our puzzles and will only occur as
a final step in our solution.

What follows is a description of the algorithm for each
type. Two terms are important to understand for these de-
scriptions: (1) Hidden cells are those that are initially empty,
i.e. non-clue cells devoid of information. (2) Unknown cells
are hidden cells where we have not yet deduced whether or
not the cell has a bullet. For example, we can deduce that
a cell has no bullet (becoming known) without knowing its
associated number of adjacent bullets (remaining hidden).
This is a necessary difference between this paper-and-pencil

12821

puzzle and the dynamic Minesweeper solving experience.

Type 0: Single Cell Clue
For type 0 reasoning, we need not employ any complex rea-
soning engine. We simply iterate through our clues that have
adjacent unknown cells, looking for one for which all un-
knowns must have all or no bullets in order to satisfy the
clue’s constraints. Finding one, we mark all adjacent un-
knowns as known and store information of this type 0 step.

Type 1: Multiple Cell Clues
This is the most computationally complex step of our solver.
We will illustrate this step using the second-to-last type 1
deduction of the example solution in Figure 4. Contrast the
second-to-last solution state with the state before to see the
relevant clues and deduced cells of the reasoning step.

We first identify the subset of clues with adjacent un-
known cells. With zero-based indexing left-to-right and top-
to-bottom as in Figure 5, such clues are the “3” clue at cell
29, the “1” at 30, the “2” at 35, and the “2” at 37. For clue
“2” at cell 35, we can express relevant facts as follows:

• “At least 2 of the cells 28, 29, 36, 42, and 43 have bullets.”
• “At least 3 of the cells 28, 29, 36, 42, and 43 do not have

bullets.”
• “Cell 28 has a bullet.” (At least 1 of cell 28 has a bullet.)
• “Cell 29 does not have a bullet.” (At least 1 of cell 29 has

no bullet.)

From these, the solver will deduce that there is exactly 1
bullet in adjacent unknown cells 36, 42, and 43.

We initially construct a solver that attempts to find a
deduction using only this subset of cell variables and the
bullet/no-bullet knowledge of those cells adjacent to them. If
there is a type 1 deduction, we choose the possible deduction
with minimal index, and test each of the clues sequentially
for whether they can be removed from the clue list while still
allowing that deduction, retaining or discarding each clue
accordingly. We thus compute a minimal clue subset neces-
sary for that deduction. In our second-to-last reasoning step
of Figure 4, the least-index deduction is that there is no bul-
let at cell 42, and that both “2” clues at cells 35 and 37 are
the minimal clue subset needed to deduce that fact.

Finally, using the minimal clue subset, we test whether
further deductions are possible in other unknown cells from
the minimal clue subset. Continuing with our example, we
find that both “2” clues allow us to further deduce that there
must be a bullet at cell 44. Thus all type 1 steps have a min-
imal clue subset and a resulting deduction set, the informa-
tion of which are stored. These cells are highlighted with
shading in Figure 4.

As an implementation detail, for efficient, minimal rea-
soning around subsets of cells, we wrap our at-least reasoner
in an object that creates a mapping to an alternate cell num-
bers for only the variables involved.

Type 2: Multiple Cell Clues and Number of Bullets
Assuming that there is a solution for the given puzzle, a type
2 step is guaranteed to deduce all remaining bullet positions

and thus all remaining non-bullet positions. Given that we
only apply our solver to puzzles with known solutions, this
final solution step asserts the only possible configuration of
remaining bullets, marks all cells as known, and stores in-
formation of this type 2 step.

Single Puzzle Generation
When initially creating a single puzzle to optimize that has
n × n cells with b bullets, we create a list of cell indices
and shuffle, with the first b entries having the indices of
the puzzle’s bullets. Data concerning the bullets, the hid-
den cells, and the unknown states of cells are represented as
single-dimensional arrays with row-major ordering of cells.
For non-bullet cells, the number of adjacent bullets are com-
puted (as potential clues), and we initially assume all clues
are unhidden.

Next, we compute a random minimal clue subset. Taking
non-bullet cell indices, we shuffle them and iterate through
each. For each potential clue, we hide the clue and create a
reasoner to check whether we can still deduce all bullet posi-
tions. If not, we unhide that clue cell and it is confirmed as a
necessary clue in our minimal clue subset. Once we have it-
erated through all clues, those remaining are a minimal clue
subset; hiding any one would leave us unable to solve the
puzzle.

Puzzle Optimization
We optimize a puzzle by treating bullet placement as a
combinatorial optimization problem and applying simple
stochastic local search in the form of hill descent on an en-
ergy (i.e. objective) function that is a numeric measure of
puzzle badness according to our subjective puzzle tastes as
detailed below.

The step function moves one bullet to a different non-
bullet position by swapping a random pair of indices from
the first b entries and the last n2− b entries in the aforemen-
tioned bullet-cell/non-bullet-cell list. The new state results
in new clues, new sampling of minimal clue subsets, and
new energy computations. If the minimal sampled energy of
the new puzzle state is greater (i.e. worse) than the energy of
the previous puzzle state, we undo the change, restoring the
previous state. Otherwise, we retain the new state.

The energy of a given puzzle is defined as
(0× n0) + (−1.5× n1) + (n2 × (n2 − 3))

where ni is the number of type i deductions in our human-
like solution. This expresses that it is generally good to have
more type 1 deductions whereas type 0 deductions are neu-
tral. Also, 1-2 type 2 bullet deductions are desirable, but too
many or no type 2 bullet deductions are less satisfying, es-
pecially far too many bullet deductions. We choose the -1.5
coefficient for n1 as this coefficient produces the best sub-
jective results for our puzzles in trial-and-error tuning of n1,
and we choose the 0 coefficient for n0 because type 0 deduc-
tions are regarded by us as neutral. Large numbers of bullets
in a type 2 deduction often imply a significant concentration
or corner/edge dispersion of bullets. Note that this energy
function can be modified according to the subjective prefer-
ences of any puzzler.

12822

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Number of Minimal Clue Samples

−11

−10

−9

−8

−7

−6

M
ea

n
E

n
er

gy

n=4, b=5

n=5, b=7

n=6, b=11

n=7, b=15

Figure 6: Energy decreases as the number of sampled minimal clue sets increases.

We now turn our attention to a complex design matter for
puzzle generation: There are generally many different mini-
mal clue subsets for any given bullet configuration, and it is
not efficient to enumerate them for all but the smallest puz-
zles. We therefore sample s minimal clue subsets and use
the first one with the minimum energy. In the next section,
we share data and conclusions concerning the computational
time expense versus quality trade-off faced when computing
with s samples.

Sampling Minimal Clue Sets
If we were to seek to enumerate and evaluate all possible
minimal clue subsets, there would be considerable compu-
tational expense for each step of our stochastic local search.
We therefore opt for a sampling approach. As our sample
size increases, we better approximate the optimal energy for
the given bullet configuration. However, this comes with a
proportionally higher computational time for puzzle genera-
tion. In this section, we vary the sample size to measure how
this affects puzzle quality.

Figure 6 visualizes our experimental data in generating
puzzles with different numbers of sampled minimal clue
subsets for different puzzle sizes. Each line represents a se-
ries of experiments each of which generated 1000 puzzles
with a fixed n × n grid with b bullets, optimized for 500
iterations of hill descent. Each b was chosen to minimize
mean generated puzzle energy with respect to n according
to the experiments of the next section. Most optimizations
were observed to reach their minimum within 500 iterations.
Mean energy 90% confidence intervals are shown for each
1000 puzzles generated.

As one can see, the puzzle quality increases as expected

(with decreased energy) when we sample a greater number
of minimal clue subsets. Of practical interest is the fact that,
for 4 ≤ n ≤ 6, much of the quality gain is from the first
3 samples. The decreasing energy slope levels considerably
thereafter. For n = 7, one could argue that 5 samples might
be a better number. As with the elbow method in clustering,
there is a subjective judgement for the diminishing returns
of increased sampling.

Of course, one’s application constraints in computational
time and space should inform the best trade-off. Gener-
ating a few, small high-quality puzzles would suggest a
higher number. Generating larger puzzles with limited com-
putational resources would suggest a smaller number. For
our high-computational experimental needs, we have used 3
samples per bullet puzzle configuration for the next experi-
ment.

Bullet Density
Another design parameter of great interest is the bullet den-
sity that is expected to generate puzzles with minimal en-
ergy (and thus maximal subjective quality) according to our
energy function. If we have too few or too many bullets,
we observe more type 0 steps and fewer type 1 steps. Such
puzzles lose both complexity and interest. For brute-force
constraint satisfaction by computer, (Dempsey and Guinn
2020) showed that a mine density above 20% enters a phase
transition for worst-case computational complexity for dy-
namic, computer Minesweeper. Given that our energy func-
tion correlates with human-like solution complexity for a
static, paper-and-pencil variant of Minesweeper, it is of in-
terest how this compares to computational complexity from
a practical puzzle generation perspective.

12823

0.1 0.2 0.3 0.4 0.5 0.6

Bullet Density

−11

−10

−9

−8

−7

−6

−5

−4

−3

M
ea

n
E

n
er

gy

n=4, b=1-10

n=5, b=3-13

n=6, b=6-16

n=7, b=10-20

Figure 7: A bullet density of approximately 0.3 appears best for our energy function.

In Figure 7, we plot bullet density versus mean energy.
Each line represents a series of experiments on an n×n grid
varying the number of bullets b. Bullet density is b

n2 , i.e. the
fraction of cells containing bullets. For each bullet density
in an experimental series, we generate 1000 puzzles with a
minimal clue set sample size of 3 for 500 iterations of hill
descent. Our narrow 90% confidence intervals are visualized
with shaded bands.

What is striking is how consistent the ideal bullet density
is as we vary the grid size. A bullet density of approximately
0.3 appears ideal for all grid sizes for our energy function.
For Minesweeper, this mine density would correspond to
near the top end of the phase transition shown in (Dempsey
and Guinn 2020).

Another observation is that the larger the puzzle grid size,
the less sensitive the puzzle quality is to the number of bul-
lets. The aforementioned similar published paper-and-pencil
Minesweeper variant (Moore and Vallely 2012) had puzzles
with densities ranging from 0.21 to 0.23. While such puzzles
lack our type 2 deductions, these are likely suboptimal yet
reasonable density choices for that variant.

Future Work
There are two primary ways we would like to extend this
work. First, we could extend this work to generate high-
quality, no-guess Minesweeper puzzles. The only modifica-
tion necessary would be to simulate the unhiding of clues
and automated 0-clue revelation as one would experience
with Minesweeper.

The second extension would be to further refine our Bul-
lets puzzle’s classification of human reasoning steps. For ex-
ample, with n clues, one could have a new reasoning step

numbering of type 1 through n + 1 where type n + 1 in-
volves all clues and knowledge of the number of bullets, and
other type numbers reflect the minimum number of clues
needed to make the deduction. (Thus, type 1 in the new sys-
tem would be type 0 in this paper.) This approach essentially
differentiates between different possible type 1 reasoning
steps of this paper, and we might prefer having some larger,
more difficult clue interactions.

Given that one would differentiate between type 1 steps of
this paper, one would likely need to modify our type 1 step
approach to compute all available type 1 steps and prefer
the one with a minimal subset of variables needed, making
the solver more human-like still by preferring simplest next
steps for a given solution state.

Conclusions
In this work, we have approached the generation of Bullets
puzzles, a paper-and-pencil variant of Minesweeper, by ex-
pressing subjective aesthetics of what we most enjoy in such
puzzles as an objective energy function to be optimized by
stochastic local search. The energy of a given puzzle is de-
fined as

(0× n0) + (−1.5× n1) + (n2 × (n2 − 3))

where n0 is the number of deductions requiring the knowl-
edge of a single clue and its adjacent cells, n1 is the number
of deductions requiring the interaction of multiple clues, and
n2 is the number of bullets deduced at the end using the con-
straint of the known number of bullets in the grid.

Since it would be computationally expensive to enumer-
ate and evaluate all minimal clue subsets, we sampled sub-
sets and experimented to observe the effect of the number

12824

of samples on puzzle quality, observing the expected dimin-
ishing returns with increased samples. For highly repetitive
experimental generation of puzzles, we found 3 samples to
be adequate for good quality, small grid puzzles.

Further, we experimented with varying bullet density and
found that, for our objective energy function, a bullet density
of approximately 0.3 yielded best puzzles.

References
Ahl, D. H., ed. 1979. Basic Computer Games - TRS-80 Edi-
tion. Creative Computing Press. ISBN 0916688402.
Czepluch, C. 2021. Mines-Perfect. https://sourceforge.net/
p/mines-perfect/wiki/Home/. Accessed: 2021-09-01.
Dempsey, R.; and Guinn, C. 2020. A Phase Transition in
Minesweeper. CoRR, abs/2008.04116.
Gent, I. P.; and Walsh, T. 1994. The SAT Phase Transi-
tion. In Cohn, A. G., ed., Proceedings of the Eleventh Euro-
pean Conference on Artificial Intelligence, Amsterdam, The
Netherlands, August 8–12, 1994, 105–109. John Wiley and
Sons.
Kaye, R. 2000a. Infinite versions of Minesweeper are Turing
complete. http://web.mat.bham.ac.uk/R.W.Kaye/minesw/
infmsw.pdf. Accessed: 2021-09-01.
Kaye, R. 2000b. Minesweeper is NP-complete. Mathemati-
cal Intelligencer, 22(2): 9–15.
Knuth, D. E. 2011. Dancing Links. In Selected Papers
on Fun and Games, 437–472. Cambridge University Press.
ISBN 978-1-57586-584-3.
Marczewski, P. 2021. Kaboom. https://pwmarcz.pl/
kaboom/. Accessed: 2021-09-01.
Mine 2.9. 2021. Minesweeper Wiki Windows Minesweeper
Version History. http://www.minesweeper.info/wiki/
Windows_Minesweeper#Version_History. Accessed:
2021-09-01.
Mined-Out. 2021. Minesweeper Wiki Mined-Out Page.
http://www.minesweeper.info/wiki/Mined-Out. Accessed:
2021-09-01.
Moore, D.; and Vallely, J. 2012. Minesweeper Puzzles:
100 explosive Minesweeper Puzzles. Clarity Media. ISBN
9781479230433.
Schwarz, K. 2011. Evil Hangman. http://nifty.stanford.edu/
2011/schwarz-evil-hangman/. Accessed: 2021-09-01.
Scott, A.; Stege, U.; and van Rooij, I. 2011. Minesweeper
may not be NP-complete but is hard nonetheless. Mathemat-
ical Intelligencer, 33(4): 5–17.
Tatham, S. G. 2021. Mines: from Simon Tatham’s Portable
Puzzle Collection. https://www.chiark.greenend.org.uk/
~sgtatham/puzzles/js/mines.html. Accessed: 2021-09-01.

12825

