
Reinforcement Learning for Datacenter Congestion Control

Chen Tessler1 2* Yuval Shpigelman3 Gal Dalal2 Amit Mandelbaum3 Doron Haritan Kazakov3

Benjamin Fuhrer3 Gal Chechik2 4 Shie Mannor1 2

1 Technion Institute of Technology, 2 Nvidia Research, 3 Nvidia Networking, 4 Bar-Ilan University
chen.tessler@gmail.com, {yuvals,gdalal,amitma,doronh,bfuhrer,gchechik,smannor}@nvidia.com

Abstract

We approach the task of network congestion control in data-
centers using Reinforcement Learning (RL). Successful con-
gestion control algorithms can dramatically improve latency
and overall network throughput. Until today, no such learning-
based algorithms have shown practical potential in this do-
main. Evidently, the most popular recent deployments rely on
rule-based heuristics that are tested on a predetermined set
of benchmarks. Consequently, these heuristics do not gener-
alize well to newly-seen scenarios. Contrarily, we devise an
RL-based algorithm with the aim of generalizing to different
configurations of real-world datacenter networks. We over-
come challenges such as partial-observability, non-stationarity,
and multi-objectiveness. We further propose a policy gradient
algorithm that leverages the analytical structure of the reward
function to approximate its derivative and improve stability.
We show that these challenges prevent standard RL algorithms
from operating within this domain. Our experiments, con-
ducted on a realistic simulator that emulates communication
networks’ behavior, show that our method exhibits improved
performance concurrently on the multiple considered metrics
compared to the popular algorithms deployed today in real
datacenters. Our algorithm is being productized to replace
heuristics in some of the largest datacenters in the world.

1 Introduction
Modern datacenters consist of multiple servers jointly com-
municating at ultra high speeds. As the joint transmission
rate of the servers surpasses the internal connection limita-
tions (e.g., router processing rate) the communication may
become congested. Congested networks suffer from reduced
bandwidth utilization, the appearance of packet loss and in-
creased application latency. Hence, avoiding and preventing
congestion is an important task called congestion control.

Previous work on congestion control has mainly focused
on rule-based methods. As these schemes are rule based, they
are usually optimized for a single set of tasks (as we show
in Table 1). Machine learning methods, as opposed to rule-
based ones, are capable of learning and generalizing based
on data and experience. Specifically, reinforcement learning
(RL) automatically learns a control policy (transmission rate
control in the context of congestion prevention) given an

*Work done during an internship at Nvidia Research.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

environment to interact with and a reward signal. Thus, an RL
algorithm is (1) capable of solving the task without tedious
manual tuning of control parameters and (2) successfully
operate in a vast set of tasks, e.g., generalize, when provided
with diverse training environments.

Most RL algorithms were designed under the assumption
that the world can be adequately modeled as a Markov Deci-
sion Process (MDP). Unfortunately, this is seldom the case in
realistic applications and specifically datacenter congestion
control. As we show below, as opposed to the standard as-
sumptions, this problem is partially-observable and consists
of multiple-agents. These challenges prevent the standard RL
methods from coping within such a complex environment,
and we believe are one of the major reasons such methods
are yet to be deployed in real world datacenters.

From an RL point of view, each agent controls the transmis-
sion of a single application. As there are multiple applications
across multiple servers, this means multiple agents that, due
to security reasons, are unaware of one another and unable
to communicate – hence multi-agent and partially observ-
able. We observe that popular RL algorithms such as DQN
(Mnih et al. 2015), REINFORCE (Williams 1992) and PPO
(Schulman et al. 2017) fail on such tasks (Table 2).

To overcome these challenges, we present the Analytic De-
terministic Policy Gradient (ADPG), a scheme that makes use
of domain knowledge to estimate the gradient for a determin-
istic policy update. As this task lacks a ground truth reward
function, we present a fitting reward function and show that
this reward function, in a multi-agent partially-observable
setting, leads to convergence to a global optimum.

To validate our claims, we develop an RL environment,
based on a realistic networking simulator, and perform exten-
sive experiments. The simulator, based on OMNeT++ (Varga
2002), emulates the behavior of state of the art hardware
deployed in current datacenters: ConnectX-6Dx Network
Interface Card (NIC). In addition, we further test the gen-
eralization and robustness of the agent by porting it to real
hardware and evaluating it there. Our experiments show that
our method, Analytic Deterministic Policy Gradient (ADPG),
learns a robust policy, in the sense that it is competitive in all
the evaluated scenarios, both in simulation and when tested
in the real world. Often, it outperforms the current state-of-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12615

Many to One All to All Long Short Real World
Aurora / PPO / REINFORCE x x x x

DCQCN v v x v
HPCC / SWIFT x v v v

ADPG (this paper) v v v v

Table 1: Comparison of various approaches. A v means the method has successfully controlled and prevented congestion in this
task, whereas x presents a failure. As can be seen, ADPG is the only learning-based method successful in tackling the task of
congestion control, and the only method across all compared methods that succeeds in all tasks.

the-art methods deployed in real datacenters 1.

2 Related Work
Multi-agent RL: Recent work in games has shown the
premise of multi-agent RL, where trained agents have com-
peted with the top human players. These methods have been
applied to tasks ranging from board games such as Go (Silver
et al. 2017) and up to high dimensional 3-dimensional multi-
player games such as DOTA (Berner et al. 2019) and Star-
Craft (Vinyals et al. 2019). Despite these impressive achieve-
ments, we find that due to the combination of challenges in
our task (partial observability, multi-objectiveness and multi-
agent) the methods in these papers can’t be applied in tasks
such as datacenter congestion control.

Hand-tuned congestion control: Here, we focus on dat-
acenter congestion control. Previous work tackled this prob-
lem from various angles. Alizadeh et al. (2010) used a TCP-
like protocol, increasing the rate until congestion is sensed,
and then dramatically decreasing it. Mittal et al. (2015); Ku-
mar et al. (2020) focused on round-trip latency measurements
to react quickly to changes. Zhu et al. (2015) used a statistical
signal provided by the switch (ECN), and Li et al. (2019)
added telemetry information, requiring specialized hardware,
yet proves to benefit greatly in terms of reaction times.

Optimization-based congestion control: Although most
previous work has focused on hand-tuned algorithmic behav-
ior, two notable mentions have taken an optimization-based
approach. Dong et al. (2018) presented the PCC-Vivace algo-
rithm, which combines information from fixed time intervals
such as bandwidth, latency inflation, and more. As it tackles
the problem via online convex optimization, it is stateless; as
such, it does not optimize for long-term behavior but rather
focuses on the immediate reward (bandit setting).

PCC-Vivace was then extended in the Aurora system (Jay
et al. 2019). Aurora provides the monitor interval, defined
in PCC-Vivace, as a state for a PPO (Schulman et al. 2017)
algorithm. While in this work we focus on a realistic multi-
agent simulator, in Jay et al. (2019) the focus was on a naive
single-agent noisy connection. Thus, we observe that apply-
ing the PPO algorithm to our setting, as was done in Jay
et al. (2019), results in stability and convergence issues (see
Table 1). Hence, comparing to Jay et al. (2019), our novelty
is twofold. (1) We consider a realistic setting that is used

1The supplementary material, including additional results,
proofs and detailed experimental information is provided in
arxiv.org/abs/2102.09337

within real datacenters to evaluate congestion control algo-
rithms prior to deployment, and (2) rising from the issues
highlighted in this task, we present a novel on-policy deter-
ministic policy gradient method that is capable of quickly
converging to a satisfying solution.

3 Networking Preliminaries
In datacenters, traffic contains multiple concurrent data
streams transmitting at high rates. The servers, also known as
hosts, are interconnected through a topology of switches. A
directional connection between two hosts that continuously
transmits data is called a flow. We assume, for simplicity, that
the path of each flow is fixed.

Each host can hold multiple flows whose transmission
rates are determined by a scheduler. The scheduler iterates
in a cyclic manner between the flows, also known as round-
robin scheduling. Once scheduled, the flow transmits a burst
of data. The burst’s size generally depends on the requested
transmission rate, the time it was last scheduled, and the
maximal burst size limitation.

A flow’s transmission is characterized by two primary
values. Bandwidth: the average amount of data transmitted,
measured in Gbit per second; and latency: the time it takes
for a packet to reach its destination. Round-trip-time (RTT)
measures the latency of source→destination→source. While
the latency is often the metric of interest, most systems are
only capable of measuring RTT.

4 Congestion Control
Congestion occurs when multiple flows cross paths, trans-
mitting data through a single congestion point (switch or
receiving server) at a rate faster than the congestion point
can process. In this work, we assume that all connections
have equal transmission rates, as typically occurs in most
datacenters. Thus, a single flow can saturate an entire path by
transmitting at the maximal rate.

Each congestion point in the network has an inbound buffer
enabling it to cope with short periods where the inbound rate
is higher than it can process. As this buffer begins to fill, the
time (latency) it takes for each packet to reach its destination
increases. When the buffer is full, any additional arriving
packets are dropped.

4.1 Objective
CC can be seen as a multi-agent problem. Assuming there are
N flows, this results in N CC algorithms (agents) operating

12616

simultaneously. Assuming all agents have an infinite amount
of traffic to transmit, their goal is to optimize the following
metrics (where ↑/↓ mean higher/lower is better, respectively):

1. Switch bandwidth utilization (↑) – the % from maximal
transmission rate.

2. Packet latency (↓) – the amount of time it takes for a
packet to travel from the source to its destination.

3. Packet-loss (↓) – the amount of data (% of maximum
transmission rate) dropped due to congestion.

4. Fairness (↑) – a measure of similarity in the transmission
rate between flows sharing a congested path. We consider
minflows BW
maxflows BW

∈ [0, 1].

These objectives may be contradictory. Minimizing latency
often comes at the expense of maximizing throughput. Hence,
multi-objective schemes present a Pareto-front (Liu, Xu, and
Hu 2014) for which optimality w.r.t. one objective may result
in sub-optimality of another. However, while the metrics
of interest are clear, the agent does not necessarily have
access to signals representing them. For instance, fairness
is a metric that involves all flows, yet the agent is unaware
of how many other transmissions are active and what data
they transmit. The agent only observes signals relevant to the
flow it controls. As such, it is impossible for a flow to obtain
an estimate of the current fairness in the system. Instead,
we reach fairness by setting each flow’s individual target
adaptively, based on known relations between its current
RTT and rate. More details on this are given in Sec. 5.1.

5 Reinforcement Learning Preliminaries
We model the task of congestion control as a multi-agent
partially-observable Markov decision process (POMDP) with
multiple objectives and continuous actions, where all agents
share the same policy. Each agent observes statistics relevant
to itself and does not observe the entire global state.

A POMDP is defined as the tuple (O,S,A, P,R) (Puter-
man 1994; Spaan 2012). An agent interacting with the envi-
ronment at state s ∈ S observes an observation o(s) ∈ O. Af-
ter observing o, the agent selects a continuous action a ∈ A.
In a POMDP, the observed state does not necessarily contain
sufficient statistics for determining the optimal action. After
performing an action, the environment transitions to a new
state s′ based on the transition kernel P (s′ | s,a) and receives
a reward r(s,a) ∈ R.

Let Π be the set of stationary deterministic policies on A,
i.e., if π ∈ Π then π : O → A. In this work, we focus on the
average reward performance metric, also known as the gain
of the policy π, ρπ(s) ≡ limT→∞

1
T E

π[
∑T
t=0 r(st,at) |

s0 = s], where Eπ denotes the expectation w.r.t. the dis-
tribution induced by π. The goal is to find a policy π∗,
yielding the optimal gain ρ∗, i.e., for all s ∈ S, π∗(o(s)) ∈
arg maxπ∈Π ρ

π(s) and the optimal gain is ρ∗(s) = ρπ
∗
(s).

5.1 Reinforcement Learning For Congestion
Control

The agent, a congestion control algorithm, controls the data
transmission rate at the source. Specifically, the algorithm

runs within the network-interface-card (NIC). At each deci-
sion point, the agent observes statistics correlated with the
specific flow it controls. The agent then acts by determining a
new transmission rate for that flow and observes the outcome
of this action. We define the four elements in (O,A, P,R)
(Section 5).

Observations. The agent can only observe information
relevant to the flow it controls. In this work, we consider the
flow’s transmission rate and the RTT measurement.

Actions. The optimal transmission rate depends on the
number of agents simultaneously interacting in the network
and on the network itself (bandwidth limitations and topol-
ogy). As such, the optimal transmission rate will vary greatly
across scenarios. To ensure the agent is agnostic to the
specifics of the network and can easily generalize, we de-
fine the next transmission rate ratet+1 as a multiplication of
the previous rate with the action. I.e., ratet+1 = at ·ratet,
where in our experiments at ∈ [0.8, 1.2].

Transitions. The transition st → s′t depends on the dy-
namics of the environment and on the frequency at which
the agent is polled to provide an action. Here, the agent acts
(is asked to provide an updated transmission rate) once an
RTT packet is received. This is similar to the definition of a
monitor interval by Dong et al. (2018), but while they consid-
ered fixed time intervals, we consider event-triggered (RTT)
intervals.

Reward. As the task is a multi-agent partially observable
problem, the reward must be designed such that there exists
a single fixed-point equilibrium.

Based on Appenzeller, Keslassy, and McKeown (2004), a
good approximation of the RTT inflation (RTT-inflation =

RTT
base-RTT) in a bursty system, where all flows transmit at the
ideal rate, behaves like

√
N , where N is the number of flows.

In this case, the combined transmission rate of all flows sat-
urates the congestion point, the system is on the verge of
congestion, and the major latency increase is due to the pack-
ets waiting in the congestion point’s buffer. This latency is
orders of magnitude higher than the empty-system routing
latency. As such, we can assume that all flows sharing a con-
gested path will observe a similar RTT inflation. We define

rt = −
(

target− RTTit
base-RTTi

·
√

rateit

)2

, (1)

where target is a constant value shared by all flows,
base-RTTi is defined as the RTT of flow i in an empty system,
and RTTit and rateit are respectively the RTT and transmission
rate of flow i at time t. RTTit

base-RTTi is also called the RTT infla-
tion of agent i at time t. The ideal reward is obtained when
target =

RTTit
base-RTTi ·

√
rateit. Hence, when the target is larger,

the ideal operation point is obtained when RTTit
base-RTTi ·

√
rateit is

larger. As increasing the transmission rate increases network
utilization and thus the observed RTT, the two grow together.
Such an operation point is less latency sensitive (RTT grows)
but enjoys better utilization (higher rate). As Proposition 1
shows, maximizing this reward results in a fair solution.
Proposition 1. The fixed-point rate (solution) for allN flows
sharing a congested path is max rate

N .

12617

Informally, the optimal reward for all agents is 0. An agent
for which RTTit

base-RTTi ·
√

rateit > target needs to reduce the
transmission rate, which in turn will also reduce the RTT.
On the other hand, an agent below the target will act in the
opposite direction. As all agents sharing the same congestion
point observe approximately the same RTT, the fixed point
solution is a fair solution. A formal proof is provided in the
supplementary material, in addition to experiments showing
how the target affects the behavior.

6 Our Approach: Analytic Deterministic
Policy Gradient

In this section, we present the intricate combination of chal-
lenges arising in our setup. We explain why existing popular
approaches are expected to fail, as we indeed observe and
show later in experiments. We then introduce our algorithm
that leverages the unique properties of the problem to over-
come those challenges.

The challenge. We address three challenges rising when
learning in multi-agent partially-observable domains. The
first is non-stationarity. When multiple agents are trained in
parallel while interacting in a shared environment, it becomes
non-stationary from the point of view of each agent, as other
agents continually change. As a result, one is restricted to
on-policy methods to ensure agents are trained on relevant
data. Even had the environments changed slowly due to slow
learning rate, off-policy methods were still not applicable.
Such methods require access to the policies of other agents,
which are out of reach in our case.

Second, partial-observability hinders value-function es-
timation. Specifically, policy gradient methods that utilize
value functions require direct access to states rather than
observations to generate correct gradient estimations (Az-
izzadenesheli, Yue, and Anandkumar 2018)[Theorem 3.2].
Instead, we shall directly use episodic reward trajectories as
done in REINFORCE (Williams 1992).

The third challenge is instability of stochastic policies.
While REINFORCE avoids value-function estimation, it re-
quires the policy to be stochastic. However, stochastic poli-
cies in our multi-agent partially-observable setup lead to
highly unstable behavior. The multiple agents operate at the
same time with the common goal of fairness. Thus, it is essen-
tial that they stabilize together to an equilibrium. We observe
empirically that this is achievable only with deterministic
policies. This also explains the failure of REINFORCE in
our experiments later. Such instability was also observed for
PPO by (Touati et al. 2020).

The combination of the above three challenges creates a
unique set of limitations for a learning algorithm. Namely,
it should be on-policy, should not depend on value-function
estimation, and needs to support deterministic policies. We
now propose an efficient approach that combines all these
properties. It is achievable thanks to access to the derivative
of the reward function.

Our algorithm. To generate deterministic policies, as a
first choice one might consider Deterministic Policy Gradient
(Silver et al. 2014, DPG). However, it relies on value function
estimation, as do its successors such as DDPG (Lillicrap et al.

2015). Instead, we work around this by directly estimating
the gradient via derivation of the reward function.

For s ∈ S, the Analytic Deterministic Policy Gradient is
defined as

∇θρπθ (s) = ∇θ lim
T→∞

1

T
E

[
T∑
t=0

r
(
o(st), πθ(o(st))

)]

= lim
T→∞

1

T
E

[
T∑
t=0

∇ar(o(st),a)|a=at · ∇θπθ(o(st))

]
.

(2)

Similarly to DPG, it is on-policy. Moreover, despite the par-
tial observability, the gradient estimation is unbiased since
it relies on rollouts (Azizzadenesheli, Yue, and Anandkumar
2018)[Eq. (2)].

The gradient estimator used here is different from common
estimators (Sutton et al. 2000; Silver et al. 2014) as it requires
access to∇ar(o(st),a).

Claim 2. The following is an analytical approximation of
the deterministic gradient

∇θρπθ (s) ≈

[
lim
T→∞

1

T

T∑
t=0

(
target (3)

− rtt-inflationt ·
√

ratet
)]
∇θπθ(o(s)) .

in the supplementary material, we provide an extensive
derivation of Claim 2.

7 Experiments
We evaluate our approach in two domains. First, in a sim-
ulated domain, using a hardware emulator built on top of
OMNeT++ (Varga 2002). Then, the trained agent is also
deployed on real hardware and tested in a real environment.

Emulated settings: We focus on 3 major benchmarks:
(1) Many-to-one: N→ 1. N senders transmit data through
a single switch to a single receiver. We evaluate the agents
on 2i → 1, for i ∈ {7, 10, 12, 13}. The exact configuration
is presented in the supplementary material.
(2) All-to-all: Multiple servers transmitting data to all other
servers. Given N servers, there are N congestion points
(switches). Data sent towards server i routes through switch
port i. This synchronized traffic causes high system load.
(3) Long-short: This scenario evaluates how each agent re-
acts to changes. A single flow (the ‘long’ flow) transmits an
infinite amount of data, while several short flows randomly
interrupt it with a short data transmission. The goal is to test
how fast the long flow reacts and reduces its transmission
rate and how fast the short flows increase their transmission
rate. Once the short flows finish transmitting, the long flow
should quickly recover to the full line rate. We follow the
process from interruption until full recovery. An example of
ideal behaviors is presented in the supplementary material.

Evaluation setup: To show our method generalizes to un-
seen scenarios, motivating the use in the real world, we split
the scenarios to train and test sets. We train the agents only

12618

128 to 1 1024 to 1 4096 to 1 8192 to 1
SU FR QL SU FR QL SU FR QL SU FR QL

Aurora packet loss packet loss packet loss packet loss
PPO 1 26 3 packet loss packet loss packet loss
REINFORCE 51 100 3 74 70 7 53 45 22 packet loss
DCQCN 100 56 11 100 50 13 95 65 12 95 64 12
HPCC 83 96 5 59 48 27 packet loss packet loss
SWIFT 97 94 26 89 96 27 88 85 77 packet loss
ADPG (ours) 92 95 8 90 70 15 91 44 26 92 29 42

Table 2: Many-to-one test results. Numerical comparison of ADPG (our method) with various baselines. We color the tests
that failed (extensive periods of packet loss) in red. As the task has multiple objectives, Bold face denotes results that are not
Pareto-dominated (Definition 1).

in the many-to-one domain, on the following scenarios simul-
taneously: 2 → 1, 4 → 1, and 8 → 1. Evaluation (test) is
performed on many-to-one, all-to-all, and long-short scenar-
ios. We provide an extensive overview of the training process,
including the technical challenges of the asynchronous CC
task, in the supplementary material.

Compared Baselines. We compare with three RL bench-
marks (1) REINFORCE (Williams 1992) (2) PPO (Schul-
man et al. 2017), (3) Aurora (Jay et al. 2019) and three
rule-based approaches (4) DCQCN (Zhu et al. 2015), (5)
HPCC (Li et al. 2019) and (6) SWIFT (Kumar et al. 2020).
For RL-based methods, we used “official” implementations
and for rule-based methods we used in-house implementa-
tions that are currently deployed in datacenters. Additional
details are provided in the supplementary material.

Evaluation metrics: We report three metrics: (1) SU:
Switch Utilization, measured in %, higher is better, (2) FR:
Fairness, defined as minrate·100

maxrate , higher is better, (3) QL:
Queue Latency, measured in µ seconds, lower is better.

In our experiments, bold face denotes results that are not
dominated (in the Pareto sense).

Definition 1 (Domination). Result A dominates B if for all
metrics m ∈ M A(m) ≈ B(m) and there exists at least
one metric m such that A(m)� B(m). Based on feedback
from datacenter managers, we determined that ||A(m) −
B(m)|| ≤ 5 to be similar ∀m.

7.1 Experiments With Simulated Data
Simulating a networking environment is hard to do correctly.
The behavior may be sensitive to hardware limitations, and
should take into account packet loss that may occur due to
other agents interacting with the network.

To test our approach, we used a hardware emulator built on
top of OMNeT++ (Varga 2002). OMNet++ is a sophisticated
simulator that is used by the largest data centers to bench-
mark congestion control algorithms prior to deployment. It
accurately emulates hardware devices, including limitations
of parallel compute by on-board CPU. While no simulation
is perfect, this simulator minimizes the difference between
the simulated environment and the real world.

Many-to-one: Table 2 gives the results for the many-to-
one scenario. Competing methods are competitive when the
number of flows and interactions are small. However, with

4 hosts 8 hosts
SU FR QL SU FR QL

DCQCN 89 93 4 87 66 5
HPCC 71 18 3 69 60 3
SWIFT 93 100 10 92 100 11
ADPG 94 77 6 94 97 8

Table 3: All-to-all test results. In these tests, none of the
algorithms exhibited packet loss.

more flows, all methods aside from ADPG and DCQCN have
extensive periods of packet loss and high latency. Across
all tasks, previous RL methods (REINFORCE, PPO and
Aurora) fail, either converging to extremely safe behavior
or constantly transmitting at full-line-rate entirely ignoring
latency and packet loss. This validates our arguments that as
these methods rely on strong assumptions, they are unfit for
many real-world tasks.

All-to-all: Each method provides a different trade-off bal-
ancing between utilization, fairness and latency – see Sec-
tion 7.1. Similarly to the many-to-one scenario, ADPG is
capable of generalizing and exhibits competitive behavior.

Long-short: Fig. 1 depicts performance for the long-short
scenario, numerical results are in the supplementary mate-
rial. Here, algorithms are quantified based on how quickly
they react to changes. ADPG was not trained with this sce-
nario, but performs well. Here, HPCC was fastest to react.
This is expected since it was specifically designed to handle
long-short scenarios (Li et al. 2019). Unlike HPCC, ADPG
achieves 100% utilization before and after the interruption
and recovers faster than both SWIFT and DCQCN (which
fails in this scenario).

Summary: We find that ADPG learns a robust policy. Al-
though in certain tasks the baselines marginally outperformed
it, ADPG always obtained competitive performance. In ad-
dition, ADPG is the only learning-based method capable of
successfully solving the task and thus controlling the net-
work congestion. As ADPG was trained only in low-scale
many-to-one scenarios, it highlights the ability of our method
to generalize and learn a robust behavior (successful behav-
ior within higher scale and diverse test scenarios), that we
believe will perform well in a real datacenter.

12619

2 to 1

(a) ADPG (b) DCQCN (c) HPCC (d) SWIFT

8 to 1

(e) ADPG (f) DCQCN (g) HPCC (h) SWIFT

Figure 1: Long Short test results. The goal is to recover fast, but also avoid packet loss. Higher buffer utilization means higher
latency. A fully utilized buffer (100% utilization of the 5MB allocated) leads to packet loss. In these tests, none of the algorithms
encountered packet loss. The top row (Figs. 1a to 1d) presents the results of a long-short test with 2 flows, and the bottom row
(Figs. 1e to 1h) presents a test with 8 flows. We plot the bandwidth utilization of the long flow and the buffer utilization in
the switch. Recovery time is measured as the time it takes the long flow to return to maximal utilization. As can be seen, in
both scenarios, DCQCN does not recover within a reasonable time. In addition, in HPCC, the long flow does not reach 100%
utilization, even when there are no additional flows.

2 to 1 1024 to 1 2000 to 1

DCQCN 89 ± 0.1 86 ± 1.3 78 ± 0.6
HPCC 84 ± 0.2 68 ± 0.1 72 ± 0.1
SWIFT 89 ± 0.0 82 ± 0.2 83 ± 0.5
ADPG 86 ± 1.2 82 ± 3.9 72 ± 3.2

Table 4: Real-world, Many-to-one test results, comparing
switch utilization %.

7.2 Experiments In The Real-World
Going beyond the simulated environment, we deployed
trained agents in real hardware devices. As existing hardware
lacks the accelerators required for fast inference, the reaction
time (forward pass) was on the order of 400µsec. This was
slower than used in our simulated experiments, which were
designed to simulate future hardware with O(1µsec) reac-
tion time. Importantly, the baselines we compare with do not
rely on DNN inference, thus react within O(1µsec).

We deployed our trained agent from Section 7.1 after per-
forming quantization and porting code to native C. Results
are in Section 7.2. Even though the ADPG agent was trained
under the assumption of a much faster reaction time, it per-
forms on-par with other methods, outperforms HPCC in the
many-to-one test and is competitive to DCQCN in the low-
scale setting. We expect dramatic improvement with faster
hardware (future generation).

8 Summary
AI centric algorithms have the ability to leverage direct inter-
action with the datacenter in order to optimize performance.
We presented the fundamental challenges this task presents

when using reinforcement learning tools. These challenges
prevent popular algorithms from successfully solving the
task. We proposed an on-policy deterministic policy gradient
algorithm and presented a way to use domain knowledge to
obtain an analytical gradient estimation.

Experiments in a simulated environment, a realistic OM-
NeT++ network simulator commonly used to benchmark
CC algorithms for deployment in real datacenters, show that
our method ADPG successfully addresses this task. More
generally, they demonstrate the efficacy and generalization
capabilities of an RL approach which is in contrast to the
hand-crafted algorithms that currently dominate the field of
CC. While some baselines achieve outstanding performance
in specific evaluation scenarios, they catastrophically fail
in others. In contrast, ADPG learned a robust policy that
performed well across all scenarios we tested, and often ob-
tained the best results. We also show that ADPG generalizes
to unseen domains and is capable of operating at a large-scale
without incurring packet loss, a setting where most competing
methods fail.

Finally, we deployed our trained agent in real hardware.
Current hardware suffers from high latency, an issue that we
expect to solve with the next generation NICs. Regardless,
our method was capable of successfully obtaining competi-
tive behavior, thus increasing our confidence in its applicabil-
ity when combined with future low-latency hardware.

While there are yet many challenges on the path of ap-
plying RL in the real world, we believe these results to be
a promising start. While the baseline algorithms have gone
through years of meticulous hand tuned optimization, ADPG
was capable of quickly obtaining competitive behavior both
in simulation and in the real world.

12620

References
Alizadeh, M.; Greenberg, A.; Maltz, D. A.; Padhye, J.; Patel,
P.; Prabhakar, B.; Sengupta, S.; and Sridharan, M. 2010. Data
center tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 conference, 63–74.
Appenzeller, G.; Keslassy, I.; and McKeown, N. 2004. Sizing
router buffers. ACM SIGCOMM Computer Communication
Review, 34(4): 281–292.
Azizzadenesheli, K.; Yue, Y.; and Anandkumar, A. 2018.
Policy gradient in partially observable environments: Ap-
proximation and convergence. arXiv e-prints, arXiv–1810.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.
Dong, M.; Meng, T.; Zarchy, D.; Arslan, E.; Gilad, Y.; God-
frey, B.; and Schapira, M. 2018. {PCC} vivace: Online-
learning congestion control. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI}
18), 343–356.
Jay, N.; Rotman, N.; Godfrey, B.; Schapira, M.; and Tamar, A.
2019. A deep reinforcement learning perspective on internet
congestion control. In International Conference on Machine
Learning, 3050–3059.
Kumar, G.; Dukkipati, N.; Jang, K.; Wassel, H. M.; Wu,
X.; Montazeri, B.; Wang, Y.; Springborn, K.; Alfeld, C.;
Ryan, M.; et al. 2020. Swift: Delay is simple and effective
for congestion control in the datacenter. In Proceedings of
the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies,
architectures, and protocols for computer communication,
514–528.
Li, Y.; Miao, R.; Liu, H. H.; Zhuang, Y.; Feng, F.; Tang,
L.; Cao, Z.; Zhang, M.; Kelly, F.; Alizadeh, M.; et al. 2019.
HPCC: High precision congestion control. In Proceedings
of the ACM Special Interest Group on Data Communication,
44–58.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Liu, C.; Xu, X.; and Hu, D. 2014. Multiobjective reinforce-
ment learning: A comprehensive overview. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 45(3):
385–398.
Mittal, R.; Lam, V. T.; Dukkipati, N.; Blem, E.; Wassel, H.;
Ghobadi, M.; Vahdat, A.; Wang, Y.; Wetherall, D.; and Zats,
D. 2015. TIMELY: RTT-based Congestion Control for the
Datacenter. ACM SIGCOMM Computer Communication
Review, 45(4): 537–550.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. nature, 518(7540): 529–533.
Puterman, M. L. 1994. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms. In ICML.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Spaan, M. T. 2012. Partially observable Markov decision
processes. In Reinforcement Learning, 387–414. Springer.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in neural
information processing systems, 1057–1063.
Touati, A.; Zhang, A.; Pineau, J.; and Vincent, P. 2020. Stable
policy optimization via off-policy divergence regularization.
In Conference on Uncertainty in Artificial Intelligence, 1328–
1337. PMLR.
Varga, A. 2002. OMNeT++ http://www. omnetpp. org. IEEE
Network Interactive, 16(4).
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):
350–354.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4): 229–256.
Zhu, Y.; Eran, H.; Firestone, D.; Guo, C.; Lipshteyn, M.;
Liron, Y.; Padhye, J.; Raindel, S.; Yahia, M. H.; and Zhang,
M. 2015. Congestion control for large-scale RDMA deploy-
ments. ACM SIGCOMM Computer Communication Review,
45(4): 523–536.

12621

