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Abstract

Wind energy is an important source of renewable and sus-
tainable energy and therefore an elementary component of
any future energy supply. However, the operation of large
wind farms places high demands on reliability and is often
impacted by high maintenance and repair costs in the event
of a failure. A frequency converter is one of the most im-
portant components of each wind turbine, which ensures that
the frequency of the generated energy synchronises with the
grid frequency and thus enables the flow of energy into the
power grid. The detection of anomalies in these devices is
complex due to the high frequency and multidimensionality
of different sensor information from the energy control units
and requires fault patterns to be discovered and detected in
large time series. In this paper, we show how state-of-the-art
self-supervised-learning techniques, namely LSTM autoen-
coders, can be successfully applied to real-world data. We
describe the extensions we have made to deal with the often
very noisy sensors and describe the construction of the train-
ing data set. The trained system was first tested and evaluated
on synthetic data and subsequently on a large real-world data
set. In both cases, it was shown that outliers can be reliably
identified using our presented approach.

Introduction
Operation & Maintenance (O&M) is an essential cost driver
in the wind sector, accounting for about 25-30% of the to-
tal life cycle costs for offshore wind turbines (Röckmann,
Lagerveld, and Stavenuiter 2017). The key contribution to
reducing costs is early fault detection, as it not only prevents
critical failures, but also makes maintenance schedules more
effective, reduces downtime and increases operational relia-
bility (Entezami et al. 2012). Predictive (condition-based)
maintenance (PM) is commonly used to detect errors at an
early stage. It combines data-driven reliability models with
data from sensor streams aiming to improve O&M strate-
gies (Hameed, Ahn, and Cho 2010). The economic benefit
of predictive maintenance compared to other maintenance
strategies has already been demonstrated (see e.g. Horen-
beek et al.) In the preventive approach, both current sen-
sor data and historical data are analysed to plan mainte-
nance proactively. The collected data is used for analytics,
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decision-making procedures, diagnosis and prognosis, and
optimisation (Rinaldi, Thies, and Johanning 2021).

When analysing the data, the focus has to be on outliers
in the data sets in order to detect untypical operations of
the wind turbines. Finally, outlier detection is an important
factor in uncovering erroneous behaviour. In our work, we
examine outliers in data based on electric sensor measure-
ments. This includes values for electric power, mechani-
cal speed, voltage and current. Studying these values is of
special significance, as they provide numerical information
about the essential task of frequency conversion. During this
task, the appropriate frequency to the grid and generator is
established and a stable energy delivery is set up.

The goal of our work is to find anomalous behaviour of
frequency converters without concrete faults having already
occurred. To do this, we examine real-world data recorded
by sensors from single converters, aiming to find unusual
parts. As a further step, we try to detect untypical behaviour
of multiple converters located in the same wind farm and
make a comparison between them. In summary, we present
and evaluate an outlier detection system based on a long-
short-term memory (LSTM) autoencoder in detail so that it
can be reused in similar use cases. We thus contribute to the
field of predictive maintenance for wind turbines by:

• applying outlier detection methods on an extensive real-
world dataset and describing the steps taken.
• suggesting a LSTM autoencoder architecture for the

given task.
• providing full source code and documentation to under-

stand the procedure and apply it to other projects.
• providing a working outlier detection system to find

anomalous behaviour of wind turbines, which has the po-
tential to ease future maintenance tasks.

In the following sections, we present our approach in de-
tail. We first provide background knowledge about the un-
derlying frequency converter. The next section reviews re-
lated research regarding predictive maintenance for wind
turbines and outlier detection in sensor streams. After that,
we introduce our outlier detection system and describe its
evaluation along with the experiments conducted. Finally,
we give a brief overview of what needs to be done to deploy
our system in a wind farm, and conclude with an outlook on
future work.
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Figure 1: System Overview of the Frequency Converter.

Frequency Converter
In this section, we first describe the underlying converter
system and its operating modes. We then explain the dataset
used for our analyses with a focus on sensor data, as they are
the main input for our outlier detection approach.

Conversion System
The main task of an electrical generator in a wind turbine is
to convert rotational mechanical energy into electrical en-
ergy. As an essential component, the frequency converter
processes the energy generated and adjusts the frequency to
the power grid. The underlying frequency conversion sys-
tem in our work is designed for the operation of a doubly-
fed induction generator (see DFIG (Pena, Clare, and Asher
1996; Muller, Deicke, and De Doncker 2002)). In DFIGs
the stator side is directly connected to the grid, while the
rotor frequency, rotor speed and generator voltage are con-
trolled by the converter. Our conversion system includes a
line side (grid side) converter (LSC) and a machine side con-
verter (MSC), both monitored by the control unit CSC4 (see
Figure 1). A DC-link is in place as an important connection
between the LSC and MSC.

Dataset
During the operation of a wind turbine, the control unit
monitors a variety of sensors. The values of individual sen-
sors are logged at intervals of about five seconds. While
analysing the sensor values, we focused on rotor speed,
mains power and DC link voltage (see Table 1). The sen-
sor Speed: Generator Rotor does not represent the speed of
the mechanical rotor blades, but the speed that results ac-
cording to the gear ratio. For mains power, a real part and an
imaginary part are stored. The value of the real part repre-
sents energetically usable active power and the value of the
imaginary part represents the reactive power that is used to
stabilise the voltage.

The sensors we are looking at provide us with tangible
measurements during the switching of operating modes. Ex-
amining the sensor data is essential in order to find unusual

Sensor Name Range*
2003 (rpm) Generator Rotor Speed 0 to 1300
2072 (kW) Mains Power (Re) 0 to 3000
2073 (kVAR) Mains Power (Im) -500 to 500
2101 (V) DC Link Voltage 0 to 1100

Table 1: Relevant sensors in data set. *Range of values cor-
responds to the usual range in which the values vary and
does not cover any theoretically possible values of the sys-
tem.

behaviour of the wind turbines. To gain an understanding,
the course of the sensor values in fault-free operation is first
described. The value for Speed: Generator Rotor is rather
low in status Standstill, but depends on the surrounding wind
speed. At a threshold value of 750rpm according to the gear
ratio, the status changes to Charge. The value for Voltage:
DC Link increases in status Charge and remains at the spec-
ified rated value during the following statuses. After switch-
ing to previous statuses back to Standstill, the value de-
creases slowly. The value for Power: Mains (Re) equals 0
at first and rises after the change from Standby to Synchroni-
sation and finally to Mains Parallel. This value indicates the
usable energy output of the wind turbines.

Our dataset consists of the sensor streams of five onshore
wind turbines, all located in the same wind farm. It contains
data from August 2018 to December 2020. Thus, a data set
is available that allows the observation of the behaviour of
converters using historical data, since it is based on a period
of about two and a half years.

Related Work
Predictive Maintenance for wind turbines focuses on several
subsystems and components. According to a study, the high-
est amount of downtime is caused by the pitch and gearbox,
followed by the converter and the generator (Li, Jing, and
Zhang 2013).

The spectrum of different methods for predictive mainte-
nance solutions covers a wide range of techniques. A rough
distinction can be made between model-based and model-
free approaches.

Model-based approaches use an underlying model of the
system dynamics from which statements, expectations and
ultimately also deviations can be predicted. Model-based
methods are used in many domains, from wind energy
(Habibi, Howard, and Simani 2019), to the control of gas
networks (Syed et al. 2020), to space travel (Djebko, Puppe,
and Kayal 2019). One possibility is to use a Kalman filter as
an estimator for different system values. This can be used,
for example, to estimate the blade pitch angle, which helps to
successfully and effectively prevent possible failures in this
area of the wind turbine, which can avert more expensive
and catastrophic subsequent failures (Cho, Gao, and Moan
2018). Such an approach can be successfully used to mon-
itor different subcomponents of a wind turbine and detect
potential failures. For example, the use of SCADA data and
information can help to better monitor the installed cooling
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systems (Röckmann, Lagerveld, and Stavenuiter 2017).
Just like model-based approaches, model-free approaches

are also widely used in industry. Model-free approaches are
less based on known or modelled system dynamics, but of-
ten use learning systems to find indications of errors with-
out necessarily having to know the complete dynamics of
the underlying system. One way to implement this approach
is to formulate the problem as a classification problem and
then use known methods, such as gradient tree bossting, to
solve the problem. This can happen, for example, by learn-
ing the system state from the recorded data, the estimation of
which can then be used as a basis for further decisions (Maz-
zoleni, Maccarana, and Previdi 2017). Other examples that
use the classification scheme but use other learning meth-
ods such as SVM can be found for example in (Santos et al.
2015). In addition to classification approaches, which be-
long to supervised learning, other approaches can be found
in less supervised or unsupervised procedures, which, for
example, find deviations between learned or determined data
representations. In (Pozo and Vidal 2016), a principal com-
ponent analysis (PCA) model of a non-damaged turbine is
compared to the values of the turbine under investigation.
A subsequent statistical hypothesis testing is carried out to
make a decision on whether a fault is reported or not. In
addition to mathematical decomposition methods, there are
gradient-based learning systems that enable data representa-
tion to be learned. One of the most important representatives
in this field are autoencoders, which offer another possibility
for deviation detection: the reconstruction probability (An
and Cho 2015). Autoencoders have attracted a lot of atten-
tion in recent years because they are able to process almost
arbitrarily complex data streams. First applications can be
found in wind turbines for the detection of icing (Yuan et al.
2019), damage in the blades (Yang and Zhang 2020) or faults
in the gearbox (Jiang et al. 2017).

Outlier Detection System
We tackle the problem of identifying anomalous parts in a
large time series by dividing the complete time series into
smaller overlapping fragments of equal size. In the follow-
ing, we will reference to these time slices as windows. Each
window is treated as an individual short time series. Finding
an anomalous part in the large time series is now equivalent
to finding an anomalous sample in a database of multiple
short time series.

To identify an anomalous window is still a challenging
task, since multiple sensor values have complex interaction
patterns over time. We tackle this task using a concept from
the outlier detection domain that utilises the reconstruction
error to identify outliers. The general idea is to model a
lossy compression algorithm that is able to reconstruct a
normal sample of a dataset. Due to the lossy compression,
this algorithm removes details of the samples and instead fo-
cuses on reconstructing the general structure. Since outliers
are by definition rare events, it is reasonable to assume that
the compression algorithm cannot reconstruct these samples
well. Therefore, the reconstruction error of a sample can
be used as an anomaly score with high values indicating
anomalous samples.

To find such a lossy compression algorithm, we train a
long short-term memory (LSTM) autoencoder to learn a
compact representation (embedding) for every window. The
model is trained by measuring the difference between the
input and the reconstruction and propagate the error back
through the network. Since we can assume that the great ma-
jority of windows in our dataset show normal behaviour, we
hypothesise that the LSTM autoencoder indeed focuses on
reconstructing the normal patterns. Therefore, rare patterns
in the data would lead to high reconstruction errors.

Preprocessing
The different sensor series are resampled to a unified time
axis with a constant frequency of one value every five sec-
onds. After that, any missing values are filled using near-
est neighbour interpolation with an interpolation limit of
three consecutive values. Consequently, no gaps larger than
15 seconds are interpolated. The time series is subdivided
into overlapping windows with a length of 180 values each
(i.e. 15min). Choosing the right overlapping to extract the
windows is a tradeoff. On the one hand, we do not want to
miss any anomalous event in the time series, which favors
a large overlapping (small shift). On the other hand, a small
shift leads to many windows that are almost identical. This
can violate the assumption that outliers are rare events and
make the autoencoder also learn how to reconstruct these
rare patterns. In our case the additional computational costs
of a small shift can be neglected during this consideration,
since our models can already be trained on several hundreds
of thousands of samples in just a few minutes. We choose an
offset of 60 values (i.e. 5min) as a compromise to guarantee
that each moment in time is only present in a maximum of
three windows. After the extraction, all windows still con-
taining missing values are discarded. Finally, all sensors are
normalized, i.e. scaled to the interval [0, 1].

Model Architecture
We use two different model architectures for the single-
turbine and multi-turbine scenario. Both models are derived
from the same architectural design.

The encoder module of our LSTM autoencoder architec-
ture consists of a block of one or more 1D convolutional lay-
ers followed by a stacked lstm layer. The first convolutional
layers are intended to be a fully learnable preprocessing step
for the input sensors. In particular, this eliminates the need to
smooth sensor values during preprocessing, since this can be
learned in the convolutional layer. Without the first convolu-
tion block, the model was not trainable. This is most likely
due to the complex structure of the cost function, whose
minimum is even more difficult to find due to highly fluc-
tuating input sensors. After the convolutional layers, lstm
layers are used to encode the temporal sensor information
into a fixed-size embedding. This is where most of the com-
pression is realised.

From the last lstm layer of the encoder, data goes to the
decoder, which repeats the embedding of the encoder to
reach the window length. The repeated embedding is pro-
cessed by another stacked lstm layer to unfold compressed
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information on the time axis. A linear layer is used to ex-
pand the result to the same dimension that is returned by the
last convolutional layer in the encoder. Then, a 1D transpose
convolution is performed to undo the original convolution
to obtain a result that has the same shape as the input. Our
single-turbine model architecture is shown in figure 2.

The single-turbine and multi-turbine model differ primar-
ily in the amount of layers and layer sizes in convolution
and lstm blocks. While the single-turbine model contains a
single convolutional and lstm layer in the encoder, the multi-
turbine model uses two consecutive convolutional layers fol-
lowed by two stacked lstm layers. These modifications were
found to be necessary due to the larger feature space for mul-
tiple wind turbines.

In our single-turbine model, a convolutional layer with 8
filters and an embedding size (lstm output) of 32 dimensions
is used. We use convolution filter with a kernel size of 7 and
a stride of 2. The multi-turbine model uses 35 (conv-1) and
50 (conv-2) filters and an embedding size of 128. The stride
is adapted for the multi-turbine model to 3 in the first and 1
in the second convolutional layer.

Training
During the training, the mean squared error (MSE) of the
input x and its reconstruction x′ (model output) is calcu-
lated and the error is backpropagated through the network.
We train our single-turbine models for 10 epochs on over
218,000 samples (windows) with a batch size of 128 and a
fixed learning rate of 0.001 using the Adam optimizer. The
multi-turbine model is trained for 20 epochs on over 103,000
samples (windows) with the same batch size and learning
rate, since the dataset is much smaller compared to a single
wind turbine. The reduction of the dataset size is caused by
our constraint that windows containing any missing values
after interpolation are not considered in our analysis, which
is obviously more difficult to achieve the more wind turbines
are considered.

Evaluation
We evaluate our outlier detection system in various settings.
First, the single-turbine scenario is evaluated. In this sce-
nario, we try to identify anomalous windows in the sensor
data of a single wind turbine. To do this, we use both syn-
thetically generated outliers and a large real-world dataset.
Second, we observe the behavior of all five wind turbines
to analyse the behavior for inconsistencies between differ-
ent wind turbines of the same wind farm. We call this the
multi-turbine scenario.

Synthetic data is used to verify that our model indeed finds
windows that show rare situations. All work done on the
real-world dataset is performed in a completly unsupervised
setting, i.e. we do not have any information about the ex-
pert interpretation of the wind turbine’s behaviour upfront.
The dataset has been analysed during a research project with
the aim to search for anomalous behaviour of a wind turbine
with a focus on its frequency converter.

We implemented our models based on the framework Py-
Torch (Paszke et al. 2017). We provide full access to our

source code as well as to all data samples given to the sub-
ject matter experts.1 Each of our models was trained on a
single NVIDIA RTX A6000 GPU within a few minutes.

Single-Turbine
The goal of the single-turbine scenario is to find anomalous
windows in a wind turbine’s sensor data. That is, patterns
should be selected that are rare for the wind turbine at hand.

Synthetic Data We expect that our synthetically generated
windows will result in a high reconstruction error so that
they can be clearly identified as outliers.

We use three different mechanisms to generate our artifi-
cial data. First, we choose random time windows that cover
a period during which the wind turbine fed electricity into
the grid. We set the rotor speed of the wind turbine to 0 for
the entire window. Even if a rotor speed of 0 occurs many
times in the data set during a complete window, this win-
dow should be uniquely identifiable, since this specific con-
stellation cannot occur in practice. Our second-generation
method swaps the values of two different sensors in a given
window. In our last generation method, we simulate a defect
in the wind turbine. Specifically, we model the occurrence
of a short circuit in the intermediate circuit of the frequency
converter. We again use windows during which the wind tur-
bine fed electricity into the grid and vary the point of time
of the defect.

We evaluate the performance of our model using the dif-
ferent generation methods one after the other. First, five win-
dows are generated and injected into the dataset. After that,
the trained model is used to calculate the reconstruction loss
for all windows. We measure the recall in the top-n, i.e. the
n windows with the highest reconstruction errors. We set n
equal to 50. Compared to the size of the dataset, this is a
relatively small sample. Our model is able to clearly sep-
arate all generated samples from the normal data leading
to a recall of 1.0 for all generator methods in the top-50.
The separation is made so clearly that even in the top-10
the recall is greater or equal than 0.8 for all methods. Figure
3, left subplot, shows the change in the reconstruction loss
for the five generated windows before and after the swap of
two sensors. This shows that the model has learned the or-
dinary relationships of the dataset and recognizes alienated
data points without effort.

Real-World Data Knowing that the model basically de-
tects exceptional time windows, we now examine the real-
world dataset for exceptional sections. We handed over the
top-20 time windows, i.e. the 20 windows with the highest
reconstruction errors, for all five wind turbines to the tech-
nical experts. In addition, we delivered five time windows
with a significantly lower reconstruction error for all five
wind turbines, i.e. time window with the 10001-10005 high-
est reconstruction error, to provide a reference point. Figure
4 shows an example of such a ”normal” window. A total
of 125 samples were handed over. We assume that there is
a significant difference between windows with high recon-
struction error and those with a lower reconstruction error,

1https://github.com/n-1-l-s/cobamas-sensor-od
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Figure 2: Model architecture of our single-turbine LSTM autoencoder.

Figure 3: Change of the reconstruction error for five different
windows when swapping sensors 2003 and 2101 (left) or
simulating a short circuit after 170 timesteps, i.e. 14min
(right).

not only from the technical point of view, but also from the
professional’s point of view.

The technical experts evaluated all the examples and clas-
sified their feedback into four different categories:

C1) Shutdown at nominal load. Unintentional stop, possibly
due to overtemperature, overspeed or similar monitor-
ing outside the frequency converter.

C2) Normal shutdown due to low wind. Probably gusty
wind or unfavorable wind conditions.

C3) Jump in DC link voltage at standstill. Light error on DC
link voltage meter (fiber optic interruption).

C4) Manual stop.

Categories C1 and C3 represent clearly unintended be-
haviour of the wind turbine. Category C2 represents a not
ideal but still normal situation. Category C4 describes a
more rare event that is typically performed for maintenance
tasks or to reset a wind turbine.

Table 2 summarises the given feedback. From that, one
can see that the unintended behaviour classes C1 and C3

Reconstruction-
Error

Wind
Turbine C1 C2 C3 C4

high

T1 20 0 0 0
T2 16 4 0 0
T3 20 0 0 0
T4 20 0 0 0
T5 19 0 1 0

low

T1 0 5 0 0
T2 0 4 0 1
T3 0 5 0 0
T4 0 5 0 0
T5 0 5 0 0

Table 2: Results of the single-turbine evaluation. For each
turbine 20 windows with the highest reconstruction errors
and 5 windows with a low reconstruction error have been
classified by the experts.

dominate the windows with the highest reconstruction er-
rors. High reconstruction errors were only assigned to four
windows that show normal behavior from a professional
point of view. We consider these four windows as false pos-
itives. In the reference windows, that have a much lower re-
construction error, C2 dominates. It turns out that normal
wind turbine behavior is indeed correlated with lower re-
construction errors of our model.

Multi-Turbine
In the multi-turbine scenario, time windows are searched for
when the behavior of the various wind turbines is inconsis-
tent. Therefore, time windows are identified that show un-
expected behavior of one or more wind turbines in the same
wind farm. In practice, wind turbines in a wind farm do not
behave identically all the time. Due to their positioning, the
wind turbine’s behavior can differ, since the wind conditions
vary at different locations. Even inside the area of a single
wind farm the differences in wind conditions for each wind
turbine are so large, that some wind turbines might be run-
ning while others do not have sufficient wind conditions to
operate. We assume that our model is able to capture these
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Figure 4: Example of a window with a low reconstruction error. The top row shows the raw values of the four sensors. Below,
the normalized sensor values (orig norm) are displayed along with their reconstructions (recon) generated by our model. More
examples can be found in the code repository.

differences between multiple wind turbines in a wind farm
as normal variation. Consequently, large reconstruction er-
rors should only occur when the wind turbines diverge in an
unexpected way. To be able to capture the dependencies be-
tween multiple wind turbines, we extend the capacity of our
model.

Synthetic Data Analogous to the single-turbine scenario,
we are first testing our system with synthetic data. To gener-
ate artificial outliers, we select two different windows. Sen-
sor data is taken from window w1 for four out of five wind
turbines. The sensor data of the last wind turbine is taken
from window w2. After that, the newly constructed sample
is injected into the real-world dataset. We repeat this process
multiple times to insert a total of five different artificial out-
liers into the dataset. All generated samples are found in the
ten windows with the highest reconstruction errors (top-10).
Therefore, they are easily identified as outliers by our model.

Real-World Dataset We handed over the ten windows
with the highest reconstruction errors to the experts for their
assessment. The experts rated 8/10 examples as useful for
assessing the condition of the wind turbine. The top-10 win-
dows show a noticeable reactive power at a wind turbine, the
unexpected shutdown of a wind turbine at full capacity, a full
breaking of a wind turbine with high wear of the mechanical
components, half-charged DC link over a long period of time
as well as short shutdowns from nominal range. The full
braking situation is included two times in two different win-
dows in the top-10. This is an artifact caused by the sliding
window mechanism as described in section “Preprocessing”.
Two samples, rated as normal behaviour, show a light wind
situation and a rare situation in which, due to an oversup-
ply of electricity in the power grid, the wind turbines absorb
power. Images of the sensor waveforms of the top-10 exam-
ples, including the sensor reconstructions by our model, are
included in our code repository.

Deployment
We showed that our approach is able to detect anomalous
situations for the behavior of a single wind turbine as well
as for a group of wind turbines. We also showed that it is
possible to use a pre-trained model for a new wind turbine
in the same wind farm. Thus, our approach can be applied to
new wind farms by equipping all wind turbines with a data
acquisition unit. A model can be trained on historic data of
a single wind turbine or a small set of wind turbines. Af-
ter that, the trained model can be used to score the data se-
ries for all wind turbines inside the wind farm. Thereby, the
monitoring processes for the wind turbines can be eased by
providing a summary of anomalous situations for all wind
turbines. Technical experts can use this information to assess
the condition of each wind turbine and initiate maintenance
before a fault occurs.

Conclusion
We proposed an outlier detection system, based on the re-
construction loss of sensor data, for wind turbines. Our sys-
tem is based on a LSTM autoencoder and has been evaluated
using synthetic data and a large real-world dataset. The sys-
tem has proven that it is capable of reliably detecting anoma-
lies in the behavior of a wind turbine, even though it has
only a very limited view of the entire wind turbine (i.e., the
frequency converter only). For future work, it is desirable
to include data sources from other components to obtain a
holistic view of the wind turbine. We evaluated our system
on five wind turbines of a single wind farm. In the future, we
will investigate whether a pre-trained model can be used in
another wind farm.
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