Deploying an Artificial Intelligence Application to Detect Flood from Sentinel 1 Data

Authors

  • Paolo Fraccaro IBM Research Europe, Hartree Centre, Daresbury, United Kingdom
  • Nikola Stoyanov IBM Research Europe, Hartree Centre, Daresbury, United Kingdom
  • Zaheed Gaffoor IBM Research Africa, Nairobi, Kenya
  • Laura Elena Cue La Rosa IBM Research Brazil, Sao Paolo, Brazil
  • Jitendra Singh IBM Research India, Gurgaon, India
  • Tatsuya Ishikawa IBM Research Japan, Tokyo, Japan
  • Blair Edwards IBM Research Europe, Hartree Centre, Daresbury, United Kingdom
  • Anne Jones IBM Research Europe, Hartree Centre, Daresbury, United Kingdom
  • Komminist Weldermariam IBM Research Africa, Nairobi, Kenya

DOI:

https://doi.org/10.1609/aaai.v36i11.21517

Keywords:

Deep Learning, Geospatial, Satellite Imagery, Climate Change

Abstract

As climate change is increasing the frequency and intensity of climate and weather hazards, improving detection and monitoring of flood events is a priority. Being weather independent and high resolution, Sentinel 1 (S1) radar satellite imagery data has become the go to data source to detect flood events accurately. However, current methods are either based on fixed thresholds to differentiate water from land or train Artificial Intelligence (AI) models based on only S1 data, despite the availability of many other relevant data sources publicly. These models also lack comprehensive validations on out-of-sample data and deployment at scale. In this study, we investigated whether adding extra input layers could increase the performance of AI models in detecting floods from S1 data. We also provide performance across a range of 11 historical events, with results ranging between 0.93 and 0.97 accuracy, 0.53 and 0.81 IoU, and 0.68 and 0.89 F1 scores. Finally, we show the infrastructure we developed to deploy our AI models at scale to satisfy a range of use cases and user requests.

Downloads

Published

2022-06-28

How to Cite

Fraccaro, P., Stoyanov, N., Gaffoor, Z., Cue La Rosa, L. E., Singh, J., Ishikawa, T., Edwards, B., Jones, A., & Weldermariam, K. (2022). Deploying an Artificial Intelligence Application to Detect Flood from Sentinel 1 Data. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12489-12495. https://doi.org/10.1609/aaai.v36i11.21517