The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Latent Space Simulation for Carbon Capture Design Optimization

Brian Bartoldson,' Rui Wang,'> Yucheng Fu,’ David Widemann,'
Sam Nguyen,' Jie Bao,’ Zhijie Xu,’ Brenda Ng!
'Lawrence Livermore National Laboratory
2UCSD

3Pacific Northwest National Laboratory
{bartoldson, widemann1, nguyen116, ng30} @IInl.gov; ruw020@ucsd.edu; {yucheng.fu, jie.bao, zhijie.xu} @pnnl.gov

Abstract

The CO> capture efficiency in solvent-based carbon capture
systems (CCSs) critically depends on the gas-solvent inter-
facial area (IA), making maximization of IA a foundational
challenge in CCS design. While the IA associated with a par-
ticular CCS design can be estimated via a computational fluid
dynamics (CFD) simulation, using CFD to derive the IAs as-
sociated with numerous CCS designs is prohibitively costly.
Fortunately, previous works such as Deep Fluids (DF) (Kim
et al., 2019) show that large simulation speedups are achiev-
able by replacing CFD simulators with neural network (NN)
surrogates that faithfully mimic the CFD simulation process.
This raises the possibility of a fast, accurate replacement for
a CFD simulator and therefore efficient approximation of the
IAs required by CCS design optimization. Thus, here, we
build on the DF approach to develop surrogates that can suc-
cessfully be applied to our complex carbon-capture CFD sim-
ulations. Our optimized DF-style surrogates produce large
speedups (4000x) while obtaining IA relative errors as low as
4% on unseen CCS configurations that lie within the range of
training configurations. This hints at the promise of NN surro-
gates for our CCS design optimization problem. Nonetheless,
DF has inherent limitations with respect to CCS design (e.g.,
limited transferability of trained models to new CCS pack-
ings). We conclude with ideas to address these challenges.

Introduction

Reducing the carbon intensity of electricity generation, the
leading contributor of global greenhouse gas (GHG) emis-
sions, is a key component of work towards achieving stabi-
lization of GHG concentrations at a safe level (Edenhofer
2015). Critically, GHG emissions of fossil-based power
plants can be reduced via carbon dioxide (CO;) capture
technologies (Edenhofer 2015).

Capture of CO, from power-plant flue gas is gener-
ally achieved through pre-combustion, oxyfuel-combustion,
or post-combustion technologies (Koytsoumpa, Bergins,
and Kakaras 2018). Of these, the most widely adopted is
the solvent-based post-combustion approach (Koytsoumpa,
Bergins, and Kakaras 2018; Wang et al. 2017), wherein CO»
is captured through an absorption process caused by inter-
action between a particular liquid solvent and the flue gas
inside a reactor column filled with packings (see Figure 1a).
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A foundational challenge underlying design of such
solvent-based carbon capture systems (CCSs) is optimiz-
ing the pairing of solvent and packing to maximize the gas-
solvent interfacial area (IA) a for the CO5 absorption reac-
tion. Notably, CO capture efficiency is determined by k4a,
where k, is the gas film mass transfer coefficient (Singh,
Galvin, and Sun 2017; Song, Seibert, and Rochelle 2018).

Capturing local effects from the hydrodynamics, heat, and
mass transfer of the absorption process, CFD simulation
helps us understand the IA associated with a solvent and
packing configuration. While physically faithful, CFD is too
computationally expensive to be used to evaluate potential
configurations inside a CCS design optimization process.

We address this challenge by learning neural network
(NN) surrogates for our CFD simulator. Specifically, we ap-
ply the Deep Fluids (Kim et al. 2019) surrogate approach
and variants we introduce to CFD-simulated CCS volume
fraction fields (from which we can compute IA). Once
trained, these surrogates can quickly simulate the volume
fraction fields of an unseen CCS configuration, enabling fast
IA predictions for our CCS design optimization process.

Critically, our experiments focus on whether these fast
surrogates accurately predict IA and liquid volume fraction.

While the original Deep Fluids (DF) approach gave visu-
ally realistic results on simpler problems, it produced high
errors on our CCS application’s complex domain. Thus, we
developed multiple innovations to customize DF (e.g., end-
to-end training and new NNs for latent-space simulation).
Our innovations led to a final DF-inspired surrogate that
can simulate CCSs with unseen configurations and predict
IA with 4% relative error compared to the CFD simulation
that is 4000x slower. This result demonstrates the promise
of NN-based simulation for CCS design optimization.

Relevance of Al to Application

Modeling the spatiotemporal dynamics of a system is es-
sential not just to our CCS application, but to a wide ar-
ray of applications in physics, epidemiology, and molecular
dynamics. Traditional approaches rely on running numeri-
cal simulations: known physical laws encoded in systems of
complicated coupled differential equations are solved over
space and time via numerical differentiation and integration
schemes. However, such methods are computationally inten-
sive, requiring expertise and manual engineering in each ap-



plication (Houska et al. 2012; J.C.Butcher 1996).

Consequently, there is an active, expansive literature on
deep learning (DL) methods for accelerating or replacing
numerical simulations (Wang 2021; Willard et al. 2020).
For example, deep dynamics models can approximate high-
dimensional spatiotemporal dynamics by directly forecast-
ing future states, bypassing numerical integration (Wang
et al. 2020; Wang, Walters, and Yu 2021; de Bezenac, Pa-
jot, and Gallinari 2018). Sanchez-Gonzalez et al. (2020) de-
signed a deep encoder-processor-decoder graph architecture
for simulating fluid dynamics under a Lagrangian descrip-
tion. de Avila Belbute-Peres, Economon, and Kolter (2020)
combined graph neural networks with a CFD simulator run
on a coarse mesh to generate high-resolution fluid flow pre-
dictions. Tompson et al. (2017) replaced the numerical pres-
sure solver with convolutional networks in Eulerian fluid
simulation and obtained realistic results.

When a CFD model is replaced with a surrogate that fore-
casts future states within a lower-dimensional latent space,
larger speedups are realizable. These “latent space physics”
can be learned with an autoencoder that maps physical fields
to latent vectors and an LSTM that models the temporal evo-
lution of the latent vectors. These surrogates enable fluid
flow pressure field simulations hundreds of times faster than
CFD’s (Wiewel, Becher, and Thuerey 2019). In Deep Flu-
ids (DF) (Kim et al. 2019), the LSTM is replaced by an
MLP, and an auxiliary term is added to the loss to ensure
divergence-free motion for incompressible flows.

The speedup provided by these methods is relevant to
our CCS design optimization, which requires volume frac-
tion field simulations for numerous CCS configurations. Ac-
cordingly, we applied DF to our CCS data. Our innovations
for DF include new latent-space simulation networks—
we explore various MLPs, CNNs, LSTMs (Hochreiter
and Schmidhuber 1997), and transformers (Vaswani et al.
2017)—as well as end-to-end training.

Application and AI Approach

This work augments DF to achieve acceptable surrogate
predictions for our CO»-capture-simulation application. We
first describe our application and its related CFD data. Then,
we discuss our DF-inspired Al surrogates and the innova-
tions we developed to improve DF’s performance.

Application and CFD Data Description

Our application is IA-based design optimization of CCSs.
In particular, we seek a means to find CCSs associated with
high IA, a key determinant of CO,-capture efficiency. A typ-
ical (but slow) approach is to predict IA using the volume
fraction fields resulting from a CFD simulation of a repre-
sentative column model (RCM) (Figure 1a), which is a rep-
resentative section of the bench-scale column of our CCS.

This involves simulating the counter-current solvent and
gas flow in the 3D RCM (containing 6.5 million data points)
then solving continuity and momentum equations with the
Volume of Fluid (VOF) method (Fu et al. 2020):
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Figure 1: (a) The 3D RCM of our CCS. In our simulation,
parameter v is the rate at which CO;BOL (solvent) is in-
jected into the column from above, while COs-laden gas is
injected from below. (b) Volume fraction field in 2D domain
at t = 500 and v = 0.01m/s. (c) The 50 CCS configura-
tions we used to train and test our DF-inspired surrogate.
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where p is density, p is viscosity, u is velocity, p is pressure,
g is gravity, and F; is the surface tension arising at the gas-
liquid interface. The density and viscosity are calculated by
a volume fraction average of liquid (o) and gas phase (1-a).
The evolution of « is governed by the transport equation:
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Running many such CFD simulations to thoroughly ex-
plore the CCS configuration space (which involves: packing
type, e.g., Gyroid vs. Schwarz-D; inlet velocity v; solvent
viscosity/surface-tension; etc.) is computationally infeasi-
ble. However, it may be possible to use existing CFD data to
train an Al surrogate model to quickly and accurately sim-
ulate dynamics of CCSs with never-before-seen configura-
tion settings. During IA-based optimization, this surrogate’s
faster speed would allow more thorough exploration of the
CCS configuration space, improving the chance of finding a
CCS design with better CO2-capture performance.

To evaluate the utility of Al surrogates for our application,
we measure the speed and accuracy of surrogate simulations
of CCSs with values of the solvent inlet velocity parameter
not seen during training. Our data is N = 50 CCS CFD
simulations, each with a unique inlet velocity (Figure 1c).
Nirain = 40 simulations are used for training, while the
remaining N;.,; = 10 simulations are for evaluation.

As a first step, we worked with CFD data from a 2D do-
main, derived from a vertical slice of the larger 3D CCS do-

+V - (puu) = =Vp+ uV?u+ pg + F,,

(ua) = 0.
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Figure 2: DF surrogate simulation (“full rollout”, w = T'— 1) of CCS’s 2D volume fraction field, with IA computation att = T'.

main (scaling to the 3D case is discussed in our path to de-
ployment section). Like the 3D domain, the 2D domain with
150,073 polygonal mesh grid points has its counter-current
flow solved via the VOF method. Starting from an initial
state, a particular CCS configuration on this 2D domain
reaches a steady state in 5000 timesteps (Figure 1b shows
a single timestep), using a wall-clock time Wcrp = 3600 s
when run on 96 CPU cores.

Before training surrogates, the simulation data is tempo-
rally downsampled to 500 timesteps. As our Al approach
uses CNNs that operate on uniform grids, the simulation
data is then spatially downsampled via linear interpolation

to obtain uniform grid data gf@ € @G, where G = RFxk,
i € 1,2,...,50 denotes the simulation index, and ¢ €
{1,2,...,T} is the timestep with 7" = 500 (we omit ¢ and ¢
when referring to generic elements of ). We report results
for k = 64 but saw similar performance with k£ = 128.
Note that we train surrogate models only on volume-
fraction field dynamics because our application is focused

on IA, which is a function of the volume-fraction field gt(i).

Al Approach to Our CFD Simulations

Here, we discuss surrogate simulation with DF and our in-
novations. DF is a data-driven, NN-based, non-intrusive sur-
rogate approach. In our application, surrogate input is the
timestep ¢t € N, a frame g, € G that represents the volume
fraction field at that timestep, and the inlet velocity v € R of
the CCS. Surrogate outputs g;4; are volume fraction fields
at times ¢ + j. (Note, we use hats to denote predicted quan-
tities.) DF achieves this as follows (see Figure 2):

1. Encode the frame: Reduce the dimensionality of the
frame g; via an encoder network E : G — R€. The out-

put of E is a latent vector denoted by ;.

. Add simulation-configuration details to latent vector:
Replace the last two elements of I; = E(g;) with [v, t].

. Temporally advance the latent vector: Use a separate
latent integration network (LIN) I : R® — R€ to predict
the change Al; = l;11 — [; and thereby obtain the next
latent vector l; 1 = Iy + I(l;); perform this step w times.

. Decode the new latent vector(s): Feed ZAtH to the de-
coder network D : R® — G to obtain gy ;.
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FE and D are trained together as an autoencoder, more
generally as a latent vector model LVM : G — G x R¢,
which encodes then decodes a g; and provides the corre-
sponding latent vector (or encoding) [; as output. Notably,
by inserting the simulation-specific information [v, ] into
the encoder’s latent code rather than predicting it, we re-
move the supervised learning of these values done in (Kim
et al. 2019) in exchange for allowing the decoder and LIN
to train with the exact simulation parameters [v, ¢]. Given a
trained LVM, the DF approach computes the latent vector
[ for every training simulation frame g. The LIN [ is then
trained to predict the deltas among these [ within a rollout
window (Al., 7 € {t,...,t + w — 1} with w as the window
size) given only /; (and thus also [v, t]) as input.

Once [ is trained, it can be iteratively applied to perform

a full rollout that produces [; and g; for ¢t € {1,..., T}, given
only g1 and v as input. Full rollouts are useful when using
trained surrogates to replace CFD simulation (see Figure 2).

In our experiments, we study how surrogate performance
changes in response to modifying the training-time rollout
window size w and other variables. Additionally, we evalu-
ate larger modifications to the DF approach: joint training of
the LVM and LIN (end-to-end training), and new LVM/LIN
architectures (e.g., transformers).

Latent vector models Like the original DF approach, we
use a CNN autoencoder (comprising both £ and D) as
an LVM. The encoder network F is four Conv2D layers
(with stride 2, padding 1, kernel size 3, and layer-specific
channel counts [128, 256,512, 1024]) followed by a linear
layer that maps from the final convolutional feature map to
R¢. The decoder network D completes a symmetric archi-
tecture for the LVM, with a linear layer followed by four
ConvTranspose2D layers (using the layer-specific channel
counts [512, 256, 128, 1]) so that the output has ¢’s shape.
We also consider replacing the CNN autoencoder with
an LVM derived from an SVD of the training data (B =
USVT, where B € RF *NerainT) Specifically, encoding
then decoding B via multiplication with the truncated ma-
trix U. ;.. gives the best rank-c approximation B (Eckart and
Young 1936). This provides a strong baseline for the larger
and slower CNN LVM, which also compresses frames to
size c but uses nonlinear transformations to make possible
decodings B with rank m>c and thus smaller error.



Finally, we explore the usage of vision transformers
(ViTs) as LVMs. As in Dosovitskiy et al. (2021), we split
each input frame into 16x 16 patches, linearly embed each
of them, add position embeddings, and feed the resulting se-
quence of vectors to a standard transformer encoder. Then,
the transformer decoder takes as input the latent vectors
from the encoder and an extra learnable embedding. The
learnable embedding’s state at the output of the transformer
decoder serves as the frame representation and is linearly
transformed to generate the reconstructed frame.

Latent integration networks As in DF, we use an MLP
to learn [, the latent integration network (LIN). We explore
several modifications to the proposed MLP LIN. We modify
the LIN’s depth and width, and augment the input dimension
to exploit more history (i.e., more frames as input) such that
I : R®*¢ — R¢, where sequence length s is the number of
prior timesteps the LIN uses as input (when ¢ < s, the s — ¢
remaining rows/timesteps of the input space are initialized
at 0 and filled gradually as the LIN produces them).

In addition to MLPs, we evaluated other competitive
sequence models, such as CNNs (Oord et al. 2016),
LSTMs (Hochreiter and Schmidhuber 1997), and transform-
ers (Vaswani et al. 2017), as LINs. For the LSTM and
transformer networks, we use PyTorch implementations: the
transformer is a series of six 8-head transformer encoder
layers with hidden dimension ¢, while the LSTM network
is a series of LSTM layers with hidden dimensions H =
[, ..., hn]. To test CNNs, we created AutoRegressive CNN
(ARC) LINs that comprise 1D convolutional layers with out-
put channel counts [h1, ha, ..., hy, c], the first layer using ¢
input channels, and all layers using kernel size 3 and padding
1. The output layer of each LIN is a linear layer that maps
to R¢, except for the ARC LIN’s output layer, which uses a
learnable linear combination of the rows from the final fea-
ture map to compute Al; € R Finally, with the ViT LVM,
we used a single linear layer for the LIN, as the performance
bottleneck when using the ViT was the LVM.

Performance optimization and evaluation When train-
ing LVMs, we optimize the relative error loss Lgrg(g, g) =

Héﬁ;”g l2 averaged across the K volume fraction fields in a
2

batch, as we found this performed better than RMSE and
preliminary results showed no quantitative benefit of the
gradient-matching loss term used in DF. Similarly, to train

the LIN, we optimize the relative error loss Lgrg(l;, ;) aver-
aged over the K w-timestep latent vector rollouts (i.e., there
are K{w unique relative errors each batch). When using end-
to-end training, the K w rolled-out latent vectors are decoded
to frames g;, then Lrg(gt, g+) is computed and gradients are
taken with respect to the parameters of F, I, and D. We
show the effect of training the LIN with RMSE (instead of
Lgyg) and of different values of w and s in our experiments.

While our loss functions aim to ensure accurate recon-
struction of ¢;, our ultimate goal is [A-based optimiza-
tion of CCS designs. Thus, we are primarily interested in
the ability of DF-inspired surrogates to estimate steady-
state IA correctly, given only the initial conditions g; and
inlet velocity v of a new, unseen CCS. After training
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Figure 3: Mean test error for our LVMs at up to five c values.

our models, we measure the steady-state IA relative er-
ror Lrg (IA@%)L IA(g(TZ))) , where i indexes the Niest

ously- . . ~(i) - .
previously-unseen test simulations, g’ is derived from a
full rollout, and /A : G — R is the integral of surface ar-
eas for which the volume fraction is 50% (on a 2D volume
fraction field, such surfaces correspond to volume fraction
isocurves).

Then, report the mean error:
v

o SN L (1A@), 14(65))).

While this mean, final-timestep IA relative error is a crit-
ical metric for our application, we are also interested in
whether surrogates could potentially replace CFD simula-
tions for purposes other than IA estimation. Thus, to test
the ability of surrogates to mimic CFD volume fraction dy-

we

Niest
i=1

Errorpa

namics at all timesteps, we use §£z) from full rollouts on the
test data to compute average volume fraction relative error:

EI’I‘OI‘VF = NtelstT Zi\giét Zthl LRE (/g\t(1)7 glgl)) .

Finally, we use the ratio of the wall-clock time of the
CFD simulation to that of a surrogate’s full rollout (which
is run on four NVIDIA P100 GPUs) to compute the relative
speedup offered by our Al approach: Sy = chiga

Experiments

To understand whether Al surrogates may help our IA-
based CCS-design-optimization task, we use our CFD data
to study the accuracy and speedups of DF surrogates and
our innovative approaches. We report the mean of two runs
(and standard deviation) for each result. Our code is avail-
able here: https://github.com/CCSI-Toolset/DeeperFluids.

The performance of DF-inspired surrogates depends on
the performances of both LIN (/) and LVM (£ and D). So
we first study performance of LVMs. Given the best LVM,
we use its latent vectors to train LINs, with which we per-
form “full rollouts” to evaluate performance of the entire
surrogate system via Erroryg, Errorpa, and Sy,. We then
test the benefit of end-to-end training of the LVM and LIN.
Finally, we study the effects of key model/training hyperpa-
rameters.

LVM Architecture Comparison

To test how the DF approach might benefit our application,
we first consider LVM error of three model classes, includ-
ing two new approaches that we introduced to DF. Specif-
ically, we compare the performances of a CNN-based au-



LIN Errorpa Erroryp Sw Surrogate Training style Errorpa Erroryp
ARC 0.07 (0.00)  0.49 (0.00) 4800 CNN+ARC  Classic DF 0.07 (0.00) 0.52 (0.01)
LSTM 0.08 (0.01)  049(0.01) 2700 CNN+ARC  E2EDF  0.06 (0.00) 0.48 (0.00)
1%’[”’ ] ggg (8~82) g"s'z (8~88) 2‘3‘88 ViT+Linear  Classic DE 0.53 (0.25) 0.7 (0.08)
ransformer 08 (0.04) -1 (0.00) ViT+Linear ~ E2EDF 036 (0.08) 0.59 (0.03)

Table 1: For each LIN architecture, the best Errorjp and
Erroryr found via hyperparameter sweeps (standard devia-
tions in parentheses) with wall-clock time speedup Syy .

toencoder (used in DF); a ViT (Dosovitskiy et al. 2021) with
similar parameter count; and SVD, a faster, linear approach.

To measure performance, we average the frame
reconstruction and A  errors, Lggr(g,9) and
Lre(IA(gr),[A(gr)), across the test data. As SVD
is linear, we expect it to be less accurate than CNNs/ViTs,
which are powerful approximators that can represent non-
linear functions. However, ViTs and CNNs require careful
optimization to perform well. This is especially true for
ViTs, which lack the inductive biases of CNNs (e.g., trans-
lation equivariance and locality), harming their performance
when data is scarce (Dosovitskiy et al. 2021) as it is here.
Thus, SVD may potentially outperform CNNs or ViTs.
Consistent with the difficulty of training ViTs without ex-
tra/sufficient data, we found SVD outperformed our ViT on
the LVM reconstruction task (Figure 3). However, SVD did
not outperform the CNN. The ability of CNNs but not ViTs
to outperform SVD reinforces the (particularly important in
our low-data regime) point that image-processing inductive
biases provided by convolutional layers offer a significant
benefit. As CNN-based autoencoders produced the best
LVMs, we use them in our remaining experiments except
where we indicate use of a ViT LVM.

LIN Architecture Comparison

Given the latent vectors from the CNN LVM, we sought to
determine the best LIN architecture. While the original DF
used an MLP for I, other architectures such as LSTM, CNN,
and transformer offer competitive performance in sequence
modeling. To test whether these other architectures may out-
perform MLPs on our data, we trained each architecture us-
ing several settings for c, s, w, b, H, and the loss function.
Then, with this set of trained models, we compared the best
Erroryy and Errorpa of each architecture.

While an MLP had the best performance across multiple
runs (0.06 mean Errorra), we found that the best single
model for our IA-based optimization application was a
transformer, with Errorys of just 0.04 (Table 1). Each ar-
chitecture in Table 1 has roughly 1 x 10° parameters. For
each performance measurement, the best models were found
by optimizing Ly rather than RMSE, except for the best
transformer according to Errorra, which was found by op-
timizing RMSE. In addition, the best models trained with
s = 6, except for the the best transformer and MLP models
according to Errorra, which trained with s = 1. Finally, all
models attained their best performance with 50 < w < 300.

The surrogate speedups are significant (up to 5400x) and
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Table 2: The effect of end-to-end training/fine-tuning.

Erroria
H w=20 50 150 200 300 499
1024, 512 033 008 009 0.10 0.11 2.53
(0.14) (0.00) (0.00) (0.00) (0.00) (0.26)
128,128,128 0.64 0.08 0.08 007 0.06 225

(0.11) (0.01) (0.00) (0.00) (0.00) (0.18)

Table 3: Effect on Errorra of window w and layer sizes H.

partly stem from their 10x larger timesteps.

End-to-End Training/Fine-tuning

The original DF trained LIN and LVM separately. Here, we
investigate whether end-to-end (E2E) training improves per-
formance. We applied E2E fine-tuning to a pretrained CNN
LVM + ARC LIN surrogate and E2E training to a ViT LVM
+ linear LIN surrogate, then compared against classic train-
ing (Table 2). Consistent with the benefit of LIN training
that directly optimizes Lgrg(D(1), g), we found both E2E
approaches significantly improved Erroryr and Errorya .

Hyperparameter Study

Here, we illustrate the effects of key DF hyperparameters,
noting when optimal settings deviate from those in the orig-
inal DF model. Settings of factors not shown in a table are
held constant and may be found in our open-source code.

Deeper LINs and larger rollout windows have higher
performance We found that, for our data, the wide MLP
LIN with H = [1024,512] used in the original DF per-
formed worse than a narrower, deeper MLP LIN with H =
[128, 128, 128] (Table 3). Since the narrower, deeper LIN of-
fered superior performance with far fewer parameters, we
used H = [128,128, 128] for our other experiments. Addi-
tionally, we found that increasing the window size, which
allows the model to see and learn to control accumulation
of error from repeated LIN applications during training, is
helpful up to a point: as shown by the high error at w = 499,
too many LIN applications make training difficult.

Relative error outperforms RMSE as a LIN loss func-
tion, longer sequence lengths can be helpful Optimiz-
ing the relative error loss (Lrg) of [ rather than the RMSE
significantly improved Erroryr and led to the best Errorya
(Table 4). Use of Lrg as an optimization target may lead to
better Erroryyr because each of these functions computes a
relative error; i.e., Lrg has an advantage over RMSE when
high relative error in latent space translates to high relative



Errorra Errorvg
LIN S LRE RMSE LRE RMSE
ARC 1 0.10(0.02) 0.09 (0.00) 0.52(0.01) 0.55(0.00)
6 0.12(0.03) 0.12(0.02) 0.52(0.01) 0.53(0.00)
LSTM 1 0.11(0.01) 0.09 (0.02) 0.53 (0.03) 0.54 (0.00)
6 0.11(0.01) 0.10(0.01) 0.52(0.00) 0.54 (0.00)
MLP 1 0.06 (0.00) 0.08 (0.00) 0.53 (0.00) 0.55 (0.00)
6 0.09 (0.00) 0.10(0.03) 0.49 (0.00) 0.52(0.00)
Transformer 1 0.09 (0.01) 0.08 (0.04) 0.52 (0.00) 0.55 (0.00)
6 0.09 (0.03) 0.14 (0.08) 0.53 (0.00) 0.68 (0.11)

Table 4: The effect on Error;p and Erroryy of LIN archi-
tecture, input sequence length s, and training loss.

error in frame space. The fact that Lrg also led to the best
Erroryp may be attributable to the more accurate frame re-
constructions obtained when using this loss.

Increasing the sequence length s tended to improve
Erroryr (Table 4), regardless of optimization target (ex-
cept with the transformer). Thus, for most LINs, to mini-
mize discrepancies between CFD and Al surrogate simula-
tions (Erroryy), our results support combining the relative
error loss Lrg with s > 1. Notably, Kim et al. (2019) use
RMSE and s = 1 (with the MLP LIN).

Path to Deployment

We now discuss the potential of our NN surrogate in the de-
sign of an industrial scale coal-fired power plant CCS and
the necessary steps to achieve this deployment. At industrial
scale, the 3D packed column for carbon capture is meters
long, much larger than the 3D RCM shown in Figure 1la.
To scale our approach to this case, two critical steps are re-
quired. First, the surrogate will be modified to predict the
data generated from the 3D RCM CFD simulations. At this
3D RCM scale, the CFD simulation cost is manageable, so
we can produce data as needed for training the NN surrogate.
Second, after verifying the accuracy of the 3D surrogates,
they will be further scaled to predict industrial scale column
data. Notably, the NN is well suited for this upscaling due
to its remarkably cost-effective performance compared to
the physics-based CFD simulations. Further, modifying our
LVMs to accommodate 3D data is straightforward, and the
knowledge and methodologies relevant to the 2D models can
be transferred to the 3D case to avoid costly methodology
optimization at the 3D scale. However, we expect that the
larger 3D domains will require more computing resources
and data to reach acceptable performance levels.

Once trained, the 3D NN surrogates can provide data for
various industry-scale CCS configurations via high through-
put IA prediction. We can leverage this to perform IA-based
CCS optimization by coupling the NNs with FOQUS (Eslick
et al. 2014), an advanced optimization and uncertainty quan-
tification tool developed for carbon capture simulations. Ad-
ditionally, the NN surrogate-based IA prediction can be in-
tegrated into ASPEN (Van der Spek et al. 2020), which ac-
counts for multiple systems in a coal-fired power plant to
produce carbon capture techno-economic analysis.
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Discussion and Limitations

[A-based design optimization of CCSs is prohibitively
costly when relying on CFD, motivating our study of the DF
surrogate simulation approach and variants we introduced
here. We found these Al surrogates could quickly simulate
volume fraction field dynamics accurately enough to make
low-error IA predictions for new CCS configurations. In-
deed, DF appears to be promising for our application, as it
is 4000x as fast as our CFD model with just 4% IA error.
While several of the DF surrogate variants we explored
neared this performance level, our results on 2D data suggest
that the most promising surrogate employs a CNN LVM, a
transformer LIN, and E2E training. Thus, this surrogate will
be our focus as we begin scaling to and evaluating on 3D
CCS CFD data, a crucial next step on our path to industrial-
scale deployment of our DF-style surrogate models.
Importantly, though, DF has limitations for our applica-
tion. The CNN LVM likely needs to be retrained to adapt
to CCSs with different packings, as performance of CNNs
on data distributions different from the train distribution sig-
nificantly degrades (Hendrycks and Dietterich 2018; Beery,
Van Horn, and Perona 2018). For example, an LVM could
minimize velocity field error by learning to always output 0
at packing locations, but doing so would cause high error on
new data with different packing locations. To guard against
this, an interesting future direction is to use graph neural net-
works (GNNs) to learn dynamics from nodes on graphs that
represent mesh-based simulation data. The GNN’s learned
internode dynamics have been shown to generalize well to
new domains (Pfaff et al. 2020), and such generalization
could allow us to change CCS packings without retraining.
Relatedly, our analysis left unclear whether performances
observed on the data we studied would extend to models
trained on new packing configurations or models tested on
levels of v beyond those seen during training. Notably, our
analysis covered most practical operating values of v. Fur-
ther, a preliminary study found that models that perform well
on the packing configuration used here can be trained on a
new packing configuration and obtain similar performance.
Thus, the DF approach could potentially be used to train a
model for each packing configuration, allowing the design-
optimization procedure to quickly obtain IA values at any
relevant v via simulation with the model trained on the pack-
ing being considered (e.g., rather than using a single GNN
model that works well for all packing configurations).
Another limitation of the DF approach is high field rel-
ative error. While errors of surrogate simulated fields were
low enough to facilitate accurate IA estimates, similar appli-
cations may require more faithfulness to the CFD fields. Fu-
ture work, akin to the end-to-end training we studied, could
further improve relative errors of DF-predicted fields.
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